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Convex Optimization Based State Estimation against SparseIntegrity Attacks

Duo Han∗, Yilin Mo ∗ and Lihua Xie∗

Abstract— We consider the problem of robust estimation
in the presence of integrity attacks. There arem sensors
monitoring the state and p of them are under attack. The
malicious measurements collected by the compromised sensors
can be manipulated arbitrarily by the attacker. The classical
estimators such as the least squares estimator may not provide
a reliable estimate under the so-called(p,m)-sparse attack.
In this work, we are not restricting our efforts in studying
whether any specific estimator is resilient to the attack or
not, but instead we aim to present some generic sufficient and
necessary conditions for robustness by considering a general
class of convex optimization based estimators. The sufficient
and necessary conditions are shown to be tight, with a trivial
gap.

I. I NTRODUCTION

The concept of networks has been increasingly prevailing
for decades, e.g., computer networks, sensor networks or
social networks. Regardless of numerous benefits introduced
by bridging machines or humans through networks, the inter-
connect and distributed nature renders networks vulnerable
to various kinds of attacks, ranging from physical attacks to
internet viruses to groundless rumors through online social
networks. This article is concerned with the integrity attacks
in sensor networks which are widely embedded in various
industrial systems such as smart grid [1] or Supervisory
Control And Data Acquisition (SCADA) systems [2]. During
the integrity attack, the adversary can take full control ofa
subset of sensors and arbitrarily manipulate their measure-
ments. The motivations for launching such an attack in indus-
trial systems may include creating arbitrage opportunities in
electricity market, stealing gas or oil without being noticed,
posing potential threat to national defense, etc. Since thefirst
SCADA system malware (called Stuxnet) was discovered and
extensively investigated [3], [4], increasing research attention
has been paid to resolve the security issues in estimation and
control systems [5].

In this article, we focus on the problem of robust estima-
tion against compromised sensory data in order to mitigate
the damage caused by the integrity attack. Robustness for
an estimator is urgently needed since quite a number of
the commonly used estimators under attack fail to give a
reliable estimate and thus lead to poor system performance.
For instance, a linear estimator is not robust since one
bad measurement is enough to ruin the final estimate. A
better estimator may be the geometric median of all mea-
surements [6]. To be concrete, we consider the problem
of estimating a vector statex ∈ Rn from measurements
collected bym sensors, where the measurements are subject

∗: School of Electrical and Electronic Engineering, NanyangTechnolog-
ical University, Singapore. Email: dhanaa,ylmo,elhxie@ntu.edu.sg

to any random noise. For practical reasons, the spatially
distributed sensors cannot be fully guaranteed to be secure.
Some of them may be controlled by the attacker and due
to the resource limitation the attacker can only attack up
to p < m sensors. Without posing any restrictions on the
attacker, we assume that the compromised sensory data can
be arbitrarily changed.

Related Work: A quite similar problem in the context of
power systems is bad data detection, which has been studied
over the past decades [7], [8]. The method of checking the
magnitude of residue is useful for identifying random bad
data or outliers but may not work for intentional integrity
attacks [9], [10]. For example, Liu et al. [11] successfully
showed that a stealthy attack changing the state while not
being detected is possible. Kim et al. [12] studied a so-called
framing attack. Under such a attack, the bad data detector is
misled to delete those critical measurements, without which
the network is unobservable and a convert attack may be
launched.

For dynamical systems, detecting malicious components
via fault detection and isolation based methods has also been
extensively studied, [13]–[17]. However, in most of these
works, the system is assumed to be noiseless, which greatly
favors the failure detector. Pajic et al. [18] improved the work
by considering the systems with bounded noise. On the top
of sufficient conditions for exact recovery in noiseless case,
they showed that the worst error is still bounded even under
attack. However, their estimator is based on a combinatorial
optimization problem, which in general is computational
hard to solve and may not be applicable for large scale sys-
tems. In [19], [20], the authors use reachability analysis and
ellipsoid approximation to characterize all possible biases the
adversary can inject to the system.

In the area of statistics, the concept of robust estimators
is not new [21]–[23]. The robustness is often measured by
breakdown points [24], [25] or influence functions [26].
Many existing works studied one or several estimators and
discussed the breakdown point properties [27]–[30]. How-
ever, a unified analysis for most useful estimators is still
absent.

Motivated by different behaviors of various estimators
under the integrity attacks, we manage to provide a unified
robustness analysis framework integrating most commonly
used estimators. To reach this goal, we first give a formal def-
inition on the robustness of an estimator. To achieve greater
generality, a general convex optimization based estimator
is proposed and necessary and sufficient conditions on the
robustness of such an estimator is proved. The significance
of this work is that the analytical results presented in this
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manuscript can be used for characterizing and designing a
robust estimator in the presence of compromised sensory
data.

The rest of the paper is organized as follows. In Section
II we formulate the robust estimation problem. Our main
results on the robustness of a general convex optimization
based estimator is presented in Section III. The concluding
remarks are given in Section IV.

II. PROBLEM SETUP

A. System Model

Assume thatm sensors are measuring the statex and the
measurement equation for theith sensor is given by

zi = Hix+ wi, (1)

wherex ∈ Rn is the state of interest,zi ∈ Rmi is the “true”
measurement collected by theith sensor, andwi ∈ Rmi is
the measurement noise for theith sensor. The measurement
matrixH , [H⊤

1 , H⊤
2 , . . . , H⊤

i ]⊤ ∈ R(
∑

i
mi)×n is assumed

to be observable,i.e., H is full column rank. In the presence
of attacks, the measurement equation can be written as

yi = zi + ai = Hix+ wi + ai, (2)

whereyi ∈ Rmi is the “manipulated” measurement andai ∈
Rmi is the attack vector. In other words, the attacker can
change the measurement of theith sensor byai. Denote

z , [z⊤1 , z
⊤
2 , . . . , z

⊤
m]⊤, y , [y⊤1 , y

⊤
2 , . . . , y

⊤
m]⊤, (3)

w , [w⊤
1 , w

⊤
2 , . . . , w

⊤
m]⊤, a , [a⊤1 , a

⊤
2 , . . . , a

⊤
m]⊤.

Denote the index set of all sensors asS , {1, 2, . . . ,m}.
For any index setI ⊆ S, define the complement set to be
Ic , S\I. In our attack model, we assume that the attacker
can only compromise at mostp sensors but can arbitrarily
chooseai. Formally, a(p,m)-sparse attack can be defined
as

Definition 1 ((p,m)-sparse attack):A vectora is called a
(p,m)-sparse attack if there exists an index setI ⊂ S, such
that:

(i) ‖ai‖ = 0, ∀i ∈ Ic;
(ii) |I| ≤ p.

Define the collection of a possible index set of malicious
sensors as

C , {I : I ⊂ S, |I| = p}.

The set of all possible(p,m)-sparse attacks is denoted as

A ,
⋃

I∈C

{a : ‖ai‖ = 0, i ∈ Ic}.

The main task of this work is to investigate the generic
sufficient and necessary conditions for an estimator to be
robust to(p,m)-sparse attacks. To this end, we first formally
define the robustness of an estimator.

Definition 2 (Robustness):An estimatorg : R
∑

i
mi 7→

Rn which maps the measurementsy to a state estimatêx is

said to be robust to the(p,m)-sparse attack if it satisfies the
following condition:

‖g(z)− g(z + a)‖ ≤ µ(z), ∀a ∈ A, (4)

whereµ : R
∑

i
mi 7→ R is a real-valued mapping onz.

The robustness implies that the disturbance on the state
estimate caused by an arbitrary attack is bounded. A trivial
robust estimator isg(y) = 0 which provides very poor esti-
mate. Therefore, another desirable property for an estimator
is translation invariance, which is defined as follows:

Definition 3 (Translation invariance):An estimatorg is
translation invariant ifg(z +Hu) = u+ g(z), ∀u ∈ R

n.
Remark 1:Notice that if an estimator is robust and trans-

lation invariant, then

‖g(z)− g(z + a)‖ = ‖x+ g(w) − x+ g(w + a)‖

= ‖g(w)− g(w + a)‖ ≤ µ(w).

Therefore, the maximum bias that can be injected by an
adversary is only a function of the noisew.
In the next subsection, we propose a general convex opti-
mization based estimator which is translation invariant.

B. A General Estimator

A large variety of estimators are developed by the research
community to solve the state estimation problem. In order
to achieve greater generality, we first propose a general
convex optimization based estimator. We then show that
many estimators can be rewritten in this general framework.

The estimator that we study in this paper is assumed to
have the following form:

x̂ = g(y) , arg min
x̂

∑

i∈S

fi(yi −Hix̂), (5)

where the following properties of functionfi : Rmi 7→ R

are assumed:

(i) fi is convex.
(ii) fi is symmetric,i.e., fi(u) = fi(−u).

(iii) fi is non-negative andfi(0) = 0.

Remark 2: It is easy to check that the estimatorg is
translation invariant. One can viewyi −Hix̂ as the residue
for the ith sensor andfi as a cost function. The convex
constraints onfi ensures that the minimization problem can
be solved in an efficient (possibly also distributed) way.
The symmetric assumption onfi is typically true for many
practically used estimator and can actually be relaxed. The
last assumption implies that the cost achieves minimum value
when the residue is0.
We now investigate several commonly used estimator and
show that they can be written as (5).

(a) Least Square Estimator:

x̂ = arg min
x̂

‖y −Hx̂‖
2
2 = arg min

x̂

∑

i∈S

‖yi −Hix̂‖
2
2

= (H⊤H)−1H⊤y. (6)



(b) Another example is an estimator which minimizes the
sum of thel1 norm of the residue,i.e.,

x̂ = arg min
x̂

∑

i∈S

‖yi −Hix̂‖1 . (7)

In the case thatmi = n andHi = In, ∀i, the estimate
is a vector in which theith entry is the median over the
ith entries of all measurementsyi’s.

(c) The following is designed to minimize the sum of thel2
norm of the residue:

x̂ = arg min
x̂

∑

i∈S

‖yi −Hix̂‖2 . (8)

The optimal estimate in the case thatmi = n andHi =
In, ∀i is the geometric median of allyi’s, which is called
anL1 estimator in [6]. In other words,̂x is the point in
Rn that minimizes the sum of Euclidean distances from
yi to that point.

(d) Pajic et al. [18] proposed the following robust estimator
in the presence of integrity attack:

minimize
x̂,a,w

‖w‖2

subject to y = Hx̂+ w + a, ‖a‖0 ≤ q.

However, the minimization problem involves zero-norm,
and thus is difficult to solve in general. A commonly
adopted approach is to useL1 relaxation to approximate
zero-norm, which leads to the following minimization
problem:

minimize
x̂,a,w

‖w‖2 + λ‖a‖1 (9)

subject to y = Hx̂+ w + a.

If we define the following function:

d(u) , minimize
ai

‖u− ai‖
2
2 + λ ‖ai‖1 (10)

Then one can easily prove that the optimization problem
(9) can be rewritten as

x̂ = arg min
x̂

∑

i∈S

d(yi −Hix̂). (11)

In the next section, we shall present sufficient and neces-
sary conditions for the robustness of the general estimator
(5). Since (7), (8) and (11) are all special cases of (5), we
can easily analyze their individual robustness.

III. ROBUST ANALYSIS FOR A GENERAL ESTIMATOR

This section is devoted to the derivation of necessary
and sufficient conditions for the robustness of the general
estimator. Denote the compact setU , {u ∈ Rn : ‖u‖ = 1}.
Before proceeding to the main results, we need the following
lemma.

Lemma 1:Let q : R → R be a convex function and
q(0) = 0, then q(t)/t is monotonically non-decreasing on
t ∈ R+. Moreover,

q(t+ 1)− q(t) ≥ q(t)/t. (12)

Proof: For any0 < α < 1, we have

q(αt) ≤ αq(t) + q(0) = αq(t).

Divide both side byαt, we can prove thatq(t)/t is monoton-
ically non-decreasing. Therefore,q(t+ 1)/(t+ 1) ≥ q(t)/t,
which implies (12).
As a consequence of Lemma 1, we know thatfi(tHiu)/t
is monotonically non-decreasing. As a result, there are only
two possibilities:

(i) fi(tHiu)/t is bounded for alli and for all u, which
implies that the limitlimt→∞ fi(tHiu)/t exists.

(ii) fi(tHiu)/t is unbounded for somei andu.

The next lemma provides several important properties for
the case wherelimt→∞ fi(tHiu)/t exists, whose proof is
reported in the appendix:

Lemma 2: If the following limit is well defined,i.e., finite,
for all u ∈ R

n:

lim
t→∞

fi(tHiu)

t
= Ci(u), (13)

then the following statements are true:

(i) Ci(αu) = |α|Ci(u) and Ci(u1 + u2) ≤ Ci(u1) +
Ci(u2).

(ii) Define the functionhi(u, v, t) : R
n × R

mi × R 7→ R,

hi(u, v, t) ,
1

t
[fi(v + tHiu)− fi(v)] . (14)

Then the following pointwise limit holds:

lim
t→∞

hi(u, v, t) = Ci(u). (15)

Moreover, the convergence is uniform on any compact
set of (u, v).

(iii) For any v andu, we have that

fi(v +Hiu)− fi(v) ≤ Ci(u). (16)
Remark 3: Intuitively speaking, one can interpretfi as a

potential field and the derivative offi as the force generated
by sensori (if it is differentiable). By (16), we know that the
force from the potential fieldfi along theu direction cannot
exceedCi(u) (or Ci(u)/‖u‖ to normalize). On the other
hand, Equation (15) implies that this bound is achievable.

We now give the sufficient condition for the robustness of
the estimator.

Theorem 1 (Sufficient condition):If the following condi-
tions hold:

1) Ci(u) is well defined for allu ∈ R
n and all i ∈ S;

2) the following inequality holds for all non-zerou:
∑

i∈I

Ci(u) <
∑

i∈Ic

Ci(u), ∀I ∈ C, (17)

then the estimatorg is robust.
Proof: Our goal is to prove that there exists aβ(z),

such that for anyt ≥ β(z), ‖u‖ = 1, a ∈ A, the following
inequality holds:
∑

i∈S

fi(yi −Hi × tu) <
∑

i∈S

fi(yi −Hi × (t+ 1)u). (18)



As a result, any point‖x̂‖ ≥ β(z)+1 cannot be the solution
of the optimization problem since there exists a better point
(‖x̂‖−1)x̂/‖x̂‖. Therefore, we must have‖g(y)‖ ≤ β(z)+1
and hence the estimator is robust.

Suppose the set of malicious sensors isI, to prove (18),
we will first look at benign sensors. Due to the uniform
convergence ofhi(u, v, t) to Ci(u) on U × {−zi} shown
in Lemma 2, given anyδ > 0 we can always find a finite
constantNi depending onδ and zi such that for allt ≥
Ni(δ, zi), the following inequality holds:

hi(−zi, u, t) =
1

t
[fi(tHiu− zi)− fi(−zi)] ≥ Ci(u)− δ,

(19)

for any ‖u‖ = 1. By (12), we can derive that

fi((t+ 1)Hiu− zi)− fi(tHiu− zi) ≥ Ci(u)− δ. (20)

We defineβ(z) , max1≤i≤m Ni(δ, zi) and fix δ to be

δ =
1

m
min
‖u‖=1

min
I∈C

(

∑

i∈Ic

Ci(u)−
∑

i∈I

Ci(u)

)

. (21)

Notice that we writemin‖u‖=1 instead of inf‖u‖=1 since
Ci(u) is continuous and the set{u : ‖u‖ = 1} is compact.
Hence, the infimum is achievable, which further proves that
δ > 0 is strictly positive. Hence, fori = 1, . . . ,m, if t >
βδ(z) we have

fi((t+ 1)Hiu− zi)− fi(tHiu− zi)

≥ Ci(u)− δ, ∀‖u‖ = 1. (22)

Since for good sensors,zi = yi, we know that
∑

i∈Ic

[fi((t+ 1)Hiu− zi)− fi(tHiu− zi)]

≥
∑

i∈Ic

Ci(u)− (m− p)δ, ∀‖u‖ = 1. (23)

We now consider malicious sensors. By Lemma 2 (iii), we
know that fori ∈ I, and anyu
∑

i∈I

fi(yi − tHiu)−
∑

i∈I

fi(yi − (t+ 1)Hiu) ≤
∑

i∈I

Ci(−u).

(24)

Hence from (21), (24) and (23), we know that
∑

i∈S

fi(yi − (t+ 1)Hiu)−
∑

i∈S

fi(yi − tHiu)

≥
∑

i∈Ic

Ci(u)−
∑

i∈I

Ci(u)− (m− p)δ > 0,

which proves (18).
Remark 4:Assuming thatyi is a scalar andw = 0, Fawzi

et al. [16] prove that the state can be exactly recovered under
the integrity attack if and only if for allu 6= 0, there are at
least2p + 1 non-zeroHiu. Notice that if for someu 6= 0,
there are less than2p+1 non-zeroHiu, then we can chooseI
to contain the largestp Hiu and thus violate (17). As a result,
our sufficient condition is stronger than the ones proposed
in [16]. The main reason is that we seek to use convex

optimization to solve the state estimation problem, while
in [16], a combinatorial optimization problem is needed to
recover the state.
We next give necessary conditions for the robustness of the
estimator.

Theorem 2 (Necessary Condition I):If Ci(u) is well de-
fined for all u ∈ R

n and all i ∈ S but there exist some
‖u0‖ = 1, I0 ∈ C such that

∑

i∈I0

Ci(u0) >
∑

i∈Ic

0

Ci(u0), (25)

then the estimator is not robust to the attack.
Proof: The robustness of the estimator is equivalent

to that the optimal estimatêx satisfies‖x̂‖ ≤ µ(z) for all
a ∈ A, whereµ is a real-valued function. To this end, we
will prove that for anyr > 0, there exists ay such that all̂x
that satisfies‖x̂‖ ≤ r cannot be the optimal solution of (5).

We will first look at the compromised sensors. For every
δ > 0 we can always find a finite constantNi(δ) such that
for any x̂ ∈ {x̂ : ‖x̂‖ ≤ r} and for all t > Ni, the following
inequality holds:

fi(tHiu0 −Hix̂)− fi(tHiu0 −Hi(x̂+ u0))

≥fi((t+ 1)Hiu0 −Hi(x̂+ u0))− fi(tHiu0 −Hi(x̂ + u0))

≥hi(u0,−Hi(x̂+ u0), t) ≥ Ci(u0)− δ, ∀i ∈ I0. (26)

The first inequality is derived from (12). The second inequal-
ity is due to the uniform convergence ofhi(u, v, t) to Ci(u)
on {u0} × {v : v = −Hix+ u0, ‖x‖ ≤ r}.

Let us choose

δ =
1

m





∑

i∈I0

Ci(u0)−
∑

i∈Ic

0

Ci(u0)



 ,

and t = maxi∈I0
Ni(δ) andyi = tHiu0 for all i ∈ I0, then

we know for any‖x̂‖ ≤ r,
∑

i∈I0

[fi(yi −Hix̂)− fi(yi −Hi(x̂+ u0))]

≥
∑

i∈I0

Ci(u0)− pδ.

Now let us look at the benign sensors. By Lemma 2 (iii) we
have

fi(zi −Hi(x̂+ u0))− fi(zi −Hix̂)

≤ Ci(u0), ∀i ∈ Ic
0 . (27)

From (26) and (27),
∑

i∈S

fi(yi −Hi(x̂+ u0))−
∑

i∈S

fi(yi −Hix̂)

≤
∑

i∈Ic

0

Ci(u0)−
∑

i∈I0

Ci(u0) + pδ < 0.

Thus for such ay satisfying

yi =

{

zi, if i ∈ Ic
0

tHiu0, if i ∈ I0,



x̂+u0 is a better estimate than allx̂ satisfying‖x̂‖ ≤ r. Since
r is an arbitrary positive real number, we can conclude that
the estimator is not robust.

Before continuing on, we would like to provide some
remarks on the main result. First, it is worth noticing that the
existence of a well defined limit offi(tHiu)/t is crucial for
the robustness ofg. For example, the least squares estimator
cannot be robust sincefi is in quadratic form. Using the
potential field and force analogies in Remark 3, one can
interpret the results presented in this section as: the estimator
g is robust if the force generated by any sensor is bounded
and if the combined force of any collection ofp sensors is
no greater than the combined force of the remainingm− p
sensors.

Secondly, one can see that the conditions proved in The-
orem 1 and 2 are very tight, with only a trivial gap where
the LHS of (25) equals the RHS.

IV. CONCLUDING REMARKS

We have studied the robust estimation problem wherep out
of m sensors are under attack. The malicious measurements
can be arbitrarily manipulated and thus a robust estimator
which can give a reliable estimate is needed. Our interest is
not to study any concrete estimator in presence of attacks.
Instead, we have considered a general class of estimators
which integrate a large number of important estimators as
special cases and given sufficient and necessary conditions
for the robustness of the estimator. Future works include
the robustness analysis for the dynamical state estimation
problem.

V. A PPENDIX

Proof of Lemma 2:

(i) If α = 0, then clearlyCi(0) = 0. On the other hand,
if α 6= 0, from the definition in (13), we have

Ci(αu) = lim
t→∞

1

t
fi(|α|tHiu)

= |α| lim
t→∞

1

|α| t
fi(|α|tHiu) = |α|Ci(u).

Due to the scaling property ofCi(u) and the convexity
of fi, we have

Ci(u1 + u2) = 2Ci

(

u1 + u2

2

)

≤ Ci(u1) + Ci(u2).

Therefore, we know thatCi is actually a semi-norm on
Rn

(ii) Based on the convexity offi, we obtain

2fi(
tHiu

2
) ≤ fi(v + tHiu) + fi(−v), (28)

fi(tHiu) ≥ 2fi(
2v + tHiu

2
)− f(2v). (29)

Dividing both sides of (28) and (29) byt and taking
limit over t, we have

Ci(u) ≤ lim inf
t→∞

1

t
fi(v + tHiu) + lim

t→∞

1

t
fi(−v),

(30)

Ci(u) ≥ lim sup
t→∞

2

t
fi(v +

t

2
Hiu)− lim

t→∞

1

t
fi(2v).

(31)

Sincelimt→∞ fi(−v)/t = limt→∞ fi(2v)/t = 0, from
(31) and (30) we have the following pointwise limit

lim
t→∞

hi(u, v, t) = Ci(u).

Notice that for a fixed(u, v), by Lemma 1,h(u, v, t)
is monotonically non-decreasing with respect tot. Fur-
thermore,Ci(u) is continuous since it is a semi-norm.
Therefore, by Dini’s theorem [31],h(u, v, t) converges
uniformly to Ci(u) on a compact set of(u, v).

(iii) By the convexity offi, we have

fi(v + tHiu)− fi(v + (t− 1)Hiu)

≤ fi(v + (t+ 1)Hiu)− fi(v + tHiu),

and

fi(v + (t+ 1)Hiu)− fi(v + tHiu)

≤
1

t
(fi(v + tHiu)− fi(v)).

Then we can conclude that

fi(v +Hiu)− fi(v)

≤ lim
t→∞

1

t
(fi(v + tHiu)− fi(v)) = Ci(u).
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