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Convex Optimization Based State Estimation against Sgatsgrity Attacks
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Abstract—We consider the problem of robust estimation to any random noise. For practical reasons, the spatially
in the presence of integrity attacks. There arem sensors (istributed sensors cannot be fully guaranteed to be secure
monitoring the state and p of them are under attack. The Some of them may be controlled by the attacker and due

malicious measurements collected by the compromised semso to th limitation the attack v attack
can be manipulated arbitrarily by the attacker. The classial  © € resource fimitauon the attacker can only attack up

estimators such as the least squares estimator may not pralé {0 p < m sensors. Without posing any restrictions on the

a reliable estimate under the so-called(p, m)-sparse attack. attacker, we assume that the compromised sensory data can
In this work, we are not restricting our efforts in studying  pe arbitrarily changed.

whether any specific estimator is resilient to the attack or Related Work A quite similar problem in the context of

not, but instead we aim to present some generic sufficient and . : . .
necessary conditions for robustness by considering a gersr POWET systems is bad data detection, which has been studied

class of convex optimization based estimators. The sufficie  Over the past decades [7], [8]. The method of checking the
and necessary conditions are shown to be tight, with a trivih magnitude of residue is useful for identifying random bad

gap. data or outliers but may not work for intentional integrity

attacks [9], [10]. For example, Liu et al. [11] successfully

_ . .. showed that a stealthy attack changing the state while not
The concept of networks has been increasingly prevailingginy detected is possible. Kim et al. [12] studied a scedall

for decades, e.g., computer networks, sensor networks oI ming attack. Under such a attack, the bad data detector is

soua_l ngtworks. Regardless of numerous benefits mtraﬂucpnisbd to delete those critical measurements, without whic
by bridging machines or humans through networks, the INtefRe network is unobservable and a convert attack may be
connect and distributed nature renders networks vulneraq unched.

to various kinds of attacks, ranging from physical attacks t = g, dynamical systems, detecting malicious components

internet viruses to groundless rumors through online $0Cig;j t5it detection and isolation based methods has also bee
networks. This article is concerned with the integrity ék& o ensively studied, [13]-[17]. However, in most of these
in sensor networks which are widely embedded in variougq s the system is assumed to be noiseless, which greatly
industrial systems such as smart grid [1] or Supervisony,q s the failure detector. Pajic et al. [18] improved therkv
Control And Data Acquisition (SCADA) systems [2]. During ,, considering the systems with bounded noise. On the top
the integrity attack, the adversary can take full controbof ¢ g icient conditions for exact recovery in noiselessecas
subset of sensors and arbitrarily manipulate their measurge, showed that the worst error is still bounded even under
ments. The motivations for launching such an attack in indUS s e However, their estimator is based on a combinatoria
trial systems may include creating arbitrage opportusiitie  ,nimization problem, which in general is computational
electricity market, stealing gas or oil without being netic 54 to solve and may not be applicable for large scale sys-

posing potential threat to national defense, etc._Sincéir&te tems. In [19], [20], the authors use reachability analysis a
SCADA system malware (called Stuxnet) was discovered anginsoig approximation to characterize all possible egthe
extensively investigated [3], [4], increasing researc¢brdton adversary can inject to the system.

has been paid to resolve the security issues in estimation an |, e ‘area of statistics, the concept of robust estimators

control systems [S]. _is not new [21]-[23]. The robustness is often measured by
_ In th|s_ article, we fo_cus on the problem of robust es?“_mabreakdown points [24], [25] or influence functions [26].
tion against compromised sensory data in order to mitigaj§,ny existing works studied one or several estimators and

the damage caused by the integrity attack. Robustness {tqssed the breakdown point properties [27][30]. How-
an estimator is urgently needed since quite a number g{o; 5 ynified analysis for most useful estimators is stil
the commonly used estimators under attack fail to give gyqant.

reliable estimate and thus lead to poor system performanceqtivated by different behaviors of various estimators
For instance, a linear estimator is not robust since oNg,qer the integrity attacks, we manage to provide a unified
bad measurement is enough to ruin the final estimate. &, siness analysis framework integrating most commonly
better estimator may be the geometric m(_edlan of all Meseq estimators. To reach this goal, we first give a formal def
surem_ents_ [6]. To be concrete, we consider the problefRiion on the robustness of an estimator. To achieve greate
of estimating a vector state € R" from measurements ganerajity, a general convex optimization based estimator
collected bym sensors, where the measurements are subjggt ) onosed and necessary and sufficient conditions on the
x: School of Electrical and Electronic Engineering, Nanydieghnolog- robustness of such an estimator is proved. The significance
ical University, Singapore. Email: dhanaa,ylmo,elhxie@edu.sg of this work is that the analytical results presented in this
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manuscript can be used for characterizing and designingsaid to be robust to th@, m)-sparse attack if it satisfies the
robust estimator in the presence of compromised sensdigllowing condition:
data.

The rest of the paper is organized as follows. In Section llg(2) — g(z + a)ll < u(z), Va € A, 4)

[Mwe formulate the robust estimation problem. Our ma'rbvhereu . RZ:™ s R is a real-valued mapping on

results on the robustness of a general convex optimizatiorrhe robustness implies that the disturbance on the state
based estimator is presented in Sec lll. The concluding . . -
P fion Estimate caused by an arbitrary attack is bounded. A trivial

remarks are given in SectignllV. : : : . .

g on robust estimator ig(y) = 0 which provides very poor esti-
mate. Therefore, another desirable property for an estimat
is translation invariance, which is defined as follows:

Il. PROBLEM SETUP

A. System Model Definition 3 (Translation invariance)An estimatorg is
Assume thatn sensors are measuring the statand the translation invariant ify(z + Hu) = u + g(z), Yu € R".
measurement equation for thh sensor is given by Remark 1:Notice that if an estimator is robust and trans-

lation invariant, then
z; = Hiyx + w;, 1)

, , , lg(z) — g(z + a)|| = [z + g(w) — z + g(w + a)|
wherexr € R" is the state of interest; € R™i is the “true” _ B < p(w)
measurement collected by thith sensor, andv; € R™: is lg(w) = glw +a)|| < p(w),
the measurement noise for tith sensor. The measurementTherefore, the maximum bias that can be injected by an
matrix H = [H', Hy ,...,H]" € R=:m)>" is assumed adversary is only a function of the noise
to be observable,e., H is full column rank. In the presence |n the next subsection, we propose a general convex opti-
of attacks, the measurement equation can be written as mjzation based estimator which is translation invariant.

vi =z +ai = Hiw +wi + ai, (@) B. A General Estimator
wherey; € R™ is the “manipulated” measurement amde A large variety of estimators are developed by the research
R™: is the attack vector. In other words, the attacker casommunity to solve the state estimation problem. In order
change the measurement of thk sensor bys;. Denote to achieve greater generality, we first propose a general
cA LT T Ty a Tl T (3 (r:‘:)anr:/ex o_ptimization based gstim_ator._ We then show that
y estimators can be rewritten in this general framework.
wE w wy,..,wy]", a2[af,ag,... 0] The estimator that we study in this paper is assumed to
) have the following form:
Denote the index set of all sensors&< {1,2,...,m}.
For any index sef C S, define the complement set to be & =gy) 2 arg miani(yi — H;%), (5)
Z¢ £ S\Z. In our attack model, we assume that the attacker & Es

can only compromise at mogt sensors but can arbitraril . . .
y P P "Y \where the following properties of functiofy : R™ — R
chooseq;. Formally, a(p, m)-sparse attack can be demedare assumed:

as
Definition 1 (p,m)-sparse attack):A vectora is calleda () fi is convex.
(p, m)-sparse attack if there exists an indexBet S, such (i) fi is symmetrici.e, fi(u) = fi(—u).

that: (i) f; is non-negative angl;(0) = 0.
() [las|| =0, Vi € T¢; Remark 2:1t is easy to check that the estimatgris
(i) |1Z] < p. translation invariant. One can view — H;& as the residue

éor the ith sensor andf; as a cost function. The convex
constraints onf; ensures that the minimization problem can
be solved in an efficient (possibly also distributed) way.
The symmetric assumption afy is typically true for many
The set of all possiblép, m)-sparse attacks is denoted as Practically used estimator and can actually be relaxed. The
last assumption implies that the cost achieves minimunmevalu
A2 U {a:a;]| =0,i € I°}. when the residue i8.

ZeC We now investigate several commonly used estimator and

ghow that they can be written dg (5).

Define the collection of a possible index set of maliciou
sensors as

C&{I:IcCS,|Z|=p}

The main task of this work is to investigate the generi _
sufficient and necessary conditions for an estimator to Hé&) Least Square Estimator:
robust to(p, m)-sparse attacks. To this end, we first formally R i 92 i 9
- - & = arg min ||ly — Hil; = arg manHy' — H;z|
define the robustness of an estimator. 5 2 Fann ! vl
Definition 2 (Robustness)An estimatorg : RZ: ™ N ies
R™ which maps the measurement$o a state estimate is =(H H)""H'y. (6)



(b) Another example is an estimator which minimizes the  Proof: For any0 < a < 1, we have
sum of thel; norm of the residuei,e.,
q(at) < aq(t) +q(0) = aq(t).

r=a i i — Hiz|| 7 . . .
! rgfmm; Iy # % Divide both side byxt, we can prove thaj(t)/t is monoton-
_ ically non-decreasing. Thereforgit +1)/(t + 1) > ¢(t)/t,
In the case that; = n and H; = I,,, Vi, the estimate ,ich implies [I2). -
is a vector in which théth entry is the median over the pq g consequence of Lemnfia 1, we know thfigt H;u) /¢
ith entries of all measuremengs’s. is monotonically non-decreasing. As a result, there arg onl
(c) The following is designed to minimize the sum of the 4, possibilities:

norm of the residue: () f:(tH:u)/t is bounded for alli and for allu, which

& =arg minz lyi — Hzl|, . (8) implies that the limitlim; . f;(tH;u)/t exists.
Py (i) f:(tH;u)/t is unbounded for someandu.
The optimal estimate in the case that = n andH; = The next lemma provides several important properties for

I,, Vi is the geometric median of aji’s, which is called the case wheréim, . fi(tH;u)/t exists, whose proof is
an L, estimator in [6]. In other words is the pointin reported in the appendix: S
R™ that minimizes the sum of Euclidean distances from Lemma 2:If the f0||OW|ng limit is well deflnEdJ.e., flnlte,

y; to that point. for all u € R™:
(d) Pajic et al. [18] proposed the following robust estinmato . fi(tH;u)
in the presence of integrity attack: Jim === Ci(u), (13)
minimize [|w]||? then the following statements are true:

) 0] CZ(OLU) e |a| C’l(u) and C’l(ul + UQ) < C’l(ul) +
subject to y=HiZ+w+a, |lalo <g. Ci(uz).

However, the minimization problem involves zero-norm, (ify Define the functionk; (u, v,?) : R" x R™ x R > R,

and thus is difficult to solve in general. A commonly a1l
adopted approach is to ugg relaxation to approximate hiu, v,t) = n [fi(v + tHiu) = fi(v)]. (14)
zero-norm, which leads to the following minimization Then the following pointwise limit holds:
problem:
minimize lwll® + Al ©) Ayl v 1) = G, 49
naw Moreover, the convergence is uniform on any compact
subject to y=Hz+4+w+a. set of (u, v).

If we define the following function: (iii) For any v andu, we have that

d(u) £ minimize  [lu—a;|3 4+ Allasfl,  (20) fitv + Hiw) = i) S Ci(w).  (16)
ai Remark 3:Intuitively speaking, one can interprgt as a

Then one can eas"y prove that the Optimization prob'erﬁotential field and the derivative gt as the force generated

@) can be rewritten as by sensor (if it is differentiable). By [16), we know that the
force from the potential field; along theu direction cannot

#=argminy_ d(y; — H#). (11)  exceedC;(u) (or C;(u)/|u| to normalize). On the other

*ies hand, Equation(15) implies that this bound is achievable.

In the next section, we shall present sufficient and neces-We now give the sufficient condition for the robustness of
sary conditions for the robustness of the general estimatthe estimator.
@). Since [[V),[(B) and_(11) are all special cases[df (5), we Theorem 1 (Sufficient condition)t the following condi-
can easily analyze their individual robustness. tions hold:
1) Ci(u) is well defined for allu € R™ and alli € S;

I1l. ROBUSTANALYSIS FOR A GENERAL ESTIMATOR - .
2) the following inequality holds for all non-zera

This section is devoted to the derivation of necessary

and sufficient conditions for the robustness of the general > Ciw) < Y Ci(u), VI €C, (17)
estimator. Denote the compact 6& {u € R™ : |lu| = 1}. = ieZe

Before proceeding to the main results, we need the followingen the estimatog is robust.

lemma. Proof: Our goal is to prove that there existsfdz),

Lemma l:Let ¢ : R — R be a convex function and such that for any > 3(z), |lul| = 1, a € A, the following
q(0) = 0, thengq(t)/t is monotonically non-decreasing oninequality holds:

t € RT. Moreover, Zf( H, x ta) Zf ( Hox (64 D). (18)
iy — Hy X tu) < iy — Hy X (T + 1)u).
q(t+1) —q(t) > q(t)/t. (12) ics ics



As a result, any poinffz|| > 5(z)+ 1 cannot be the solution optimization to solve the state estimation problem, while

of the optimization problem since there exists a better fpoirin [16], a combinatorial optimization problem is needed to

(||| —1)&/||z|]. Therefore, we must havly(y)|| < 8(2)+1 recover the state.

and hence the estimator is robust. We next give necessary conditions for the robustness of the
Suppose the set of malicious sensorg jgo prove [I8), estimator.

we will first look at benign sensors. Due to the uniform Theorem 2 (Necessary Condition IIf. C;(u) is well de-

convergence of;(u,v,t) to C;(u) on U x {—z} shown fined for allu € R™ and alli € S but there exist some

in Lemmal2, given any > 0 we can always find a finite |ug|| = 1, Zp € C such that

constantN; depending ony and z; such that for allt >

N;(8, 2;), the following inequality holds: Z Ci(uo) > Z Ci(uo), (25)
i€Zp i€L§
1
hi(=zi,u,t) = o [filtHiu — 21) = fi(=z)] =2 Ci(u) =6, then the estimator is not robust to the attack.
(19) Proof: The robustness of the estimator is equivalent

to that the optimal estimaté satisfies||z| < u(z) for all

a € A, wherey is a real-valued function. To this end, we

Fi((t + V) Hu — z) — fi(tHyu — z;) > Ci(u) — 8. (20)  will prove that for anyr > 0, there exists g such that allz

that satisfied|z|| < r cannot be the optimal solution dfl(5).
We will first look at the compromised sensors. For every

1 d > 0 we can always find a finite constan; () such that
d = — min min <Z Ci(u) — ZQ(U)) - (21) foranyi e {i:|%| <r} and for allt > N;, the following
ieTe

M Jlull=1 2C i€T inequality holds:
Notice that we writemin, |-, instead ofinfy,_; since R NN A
C;(u) is continuous and the sét : |ju|| = 1} is compact. fi(tHyuo — H;) sztquO H;(Z + uo)) A
Hence, the infimum is achievable, which further proves that [i((t + 1) Hiuo — Hi(Z + uo)) = fi(tHiuo — Hi(Z + uo))
§ > 0 is strictly positive. Hence, foi = 1,...,m, if t >  >h;(uo, —H;(Z + uo),t) > C;(ug) — 0, Vi € Io. (26)
Bs(z) we have

for any ||u|| = 1. By (@2), we can derive that

We defines(z) £ maxi<;<m Ni(6, z;) and fixd to be

The first inequality is derived froni_(12). The second inegqual
Fi((t + 1) Hyu — z) — fi(tHiu — z;) ity is due to the uniform convergence bf(u, v, t) to C;(u)
_ B on{ug}t x {v:v=—Hz+ug, ||z]| <r}.
= Ci(w) =9, ¥ljull = 1. (22) Let us choose
Since for good sensors; = y;, we know that

1
Z [fl((t + l)Hlu — Zl) — fl(tHlu — Zl)] o= E Z Cl(uo) - Z Cl(uo) )
ieze i€Zy i€LS
> Z Ci(u) — (m — p)d, V|ul| = 1. (23) andt = max;ez, N;(0) andy; = tH;uo for all i € Zy, then
ieze we know for any||z|| < r,

We now consider malicious sensors. By Lemma 2 (iii), we
know that fori € Z, and anyu Z [fi(

H;#) = fiyi — Hi(Z + uo))]

1€Zy
Zfi(yi—tHu Zflyl t+1Hu <ZC chi(uO)_
1€L 1€L i€ i€,
(&9 I look at the b mm
Now let us look at the benign sensors. By Lenima 2 (iii) we
Hence from[(211),[(24) and_(3), we know that have g y (i)
fiyi t+1HU fzyz tH’U, N N
; ( 1625 ) fizi — Hi(T + o)) — fi(zi — Hi)
> Ci(u) =Y Ci(u) = (m—p)s >0, < Ci(uo), Vi€ Iy (27)
i€ze = From [26) and[{(27),
which proves[(IBB). [ |
Remark 4: Assuming thaty; is a scalar anav = 0, Fawzi Z fi(yi (% + o)) — Z filyi — HiZ)
et al. [16] prove that the state can be exactly recoveredrunde i€S i€S
the integrity attack if and only if for all: # 0, there are at < Z Ci(ug) — Z Ci(uo) +pd < 0.
least2p + 1 non-zeroH;u. Notice that if for someu # 0, i€Tg i€T,

there are less thalp+1 non-zeroH;u, then we can choose

to contain the largest H;u and thus violatd (17). As a result,
our sufficient condition is stronger than the ones proposed - if i eI
in [16]. The main reason is that we seek to use convex Yi { tHug, if i€y,

Thus for such & satisfying



Z+ug is a better estimate than allsatisfying||Z|| < r. Since
r is an arbitrary positive real number, we can conclude that
the estimator is not robust. ]
Before continuing on, we would like to provide some
remarks on the main result. First, it is worth noticing ths t
existence of a well defined limit of;(¢H,u)/t is crucial for
the robustness of. For example, the least squares estimator
cannot be robust sincg; is in quadratic form. Using the
potential field and force analogies in Remadk 3, one can
interpret the results presented in this section as: thmagir
g is robust if the force generated by any sensor is bounded
and if the combined force of any collection pfsensors is
no greater than the combined force of the remaining p
Sensors.
Secondly, one can see that the conditions proved in The-
orem[1 andR are very tight, with only a trivial gap where
the LHS of [25) equals the RHS.

IV. CONCLUDING REMARKS

We have studied the robust estimation problem wipeyet

of m sensors are under attack. The malicious measurements
can be arbitrarily manipulated and thus a robust estimator

which can give a reliable estimate is needed. Our interest is
not to study any concrete estimator in presence of attacks.
Instead, we have considered a general class of estimators
which integrate a large number of important estimators as

special cases and given sufficient and necessary conditions
for the robustness of the estimator. Future works include

the robustness analysis for the dynamical state estimation
problem.

V. APPENDIX

Proof of Lemmal2;

(i) If « =0, then clearlyC;(0) = 0. On the other hand,
if o« # 0, from the definition in[(IB), we have

(1]

[2]
Cilom) = Jim — fi(|o]tHou) .,
[4]

(5]

1
Wﬁ(laltﬂiw = [ Ci(u).

Due to the scaling property @f;(x) and the convexity
of f;, we have

|| lim
t—o0

[6]
Ci(ur + ug) = 2C; (W) < Ci(ul) + Ci(UQ).
[7]
Therefore, we know that’; is actually a semi-norm on
R’n
(i) Based on the convexity of;, we obtain

(8]

210 < filw+ tHw) + fi(—0), 28) O
fi(tHiu)Z2fi(W)—f(2v). (29) [10]

Dividing both sides of[(28) and_(29) bk and taking
limit over ¢, we have

1 1
. <ni 3 _f. . 3 _f.(—
Ci(u) < hgérolf tfz(v + tH;u) + tli)ngo th( ),

(30)

Ci(w) > limsup > fi(v + - Huu) — lim  fi(20)

Zu_ligogptlv 2Zu tg})lotzv.
(31)

Sincelim; oo fi(—v)/t = limso fi(2v)/t = 0, from
(31) and [[(3D) we have the following pointwise limit

tllzgo hl(ua v, t) = O’L(u)

Notice that for a fixedu, v), by Lemmal,h(u,v,t)

is monotonically non-decreasing with respect.téur-
thermore,C;(u) is continuous since it is a semi-norm.
Therefore, by Dini's theorem [31}(u, v,t) converges
uniformly to C;(u) on a compact set dfu, v).

(iii) By the convexity of f;, we have

< filv+ (t + 1) Hyu) — fi(v + tH;u),
and
filv+ (t+1)Hu) — f;

<

—~

v+ tH;u)
(fi(v + tHu) — fi(v)).

Then we can conclude that

~ | =

fitv + Hiu) — fi(v)
< tli)rglo %(fi(v +tHu) — fi(v)) = Ci(u).
| ]
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