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Abstract—Sonatype’s 2023 report found that 97% of developers
and security leads integrate generative Artificial Intelligence
(AI), particularly Large Language Models (LLMs), into their
development process. Concerns about the security implications
of this trend have been raised. Developers are now weighing
the benefits and risks of LLMs against other relied-upon
information sources, such as StackOverflow (SO), requiring
empirical data to inform their choice. In this work, our goal is
to raise software developers’ awareness of the security implica-
tions when selecting code snippetsby empirically comparing the
vulnerabilities of ChatGPT and StackOverflow. To achieve this,
we used an existing Java dataset from SO with security-related
questions and answers. Then, we asked ChatGPT the same
SO questions, gathering the generated code for comparison.
After curating the dataset, we analyzed the number and types
of Common Weakness Enumeration (CWE) vulnerabilities of
108 snippets from each platform using CodeQL. ChatGPT-
generated code contained 248 vulnerabilities compared to
the 302 vulnerabilities found in SO snippets, producing 20%
fewer vulnerabilities with a statistically significant difference.
Additionally, ChatGPT generated 19 types of CWE, fewer than
the 22 found in SO. Our findings suggest developers are under-
educated on insecure code propagation from both platforms, as
we found 274 unique vulnerabilities and 25 types of CWE. Any
code copied and pasted, created by AI or humans, cannot be
trusted blindly, requiring good software engineering practices
to reduce risk. Future work can help minimize insecure code
propagation from any platform.

Keywords: Software Engineering Security, Empirical
Study, Large Language Models, Software Supply Chain,
Code Generation

1. Introduction

Artificial Intelligence (AI) as assistant tools have become
commonplace within software development. According to
Sonatype’s 2023 State of the Supply Chain report [1], 97%
of developers and security leads integrate generative AI into
their software engineering processes. In particular, the report
found that Large Language Models (LLMs) are commonly
utilized by developers, with ChatGPT as the most used tool.
Moreover, GitHub’s State of Open Source Software report
for 2023 [2] revealed that almost a third of open-source
projects with stars have a maintainer using GitHub Copilot.

Figure 1. Example of how we compared ChatGPT and StackOverflow

As LLMs are now widely adopted within software en-
gineering, practitioners have raised concerns regarding the
security of the tool [3], [4]. Code generated by LLMs
can contain vulnerabilities [5], [6] and security-related code
smells [7]. Research has found vulnerable code generated by
LLMs in GitHub [8]. Consequently, AI-generated code may
affect the software supply chain. Sonatype’s 2023 report on
Generative AI in software development [9] highlighted that
security is a primary concern among respondents. Alarm-
ingly, despite security concerns, 74% of respondents felt
pressured into using generative AI.

Developers are weighing the benefits and risks of using
LLMs by contrasting them with other information sources,
notably online forums like StackOverflow (SO), commonly
used during development [10], [11]. Consequently, a devel-
oper may want to know how the security of LLMs-generated
code compares with other web-based information sources.
The choice of development source influences the security
and functionality of the resulting code [12]. As current
web-based information sources contain insecure code [13],
[14], [15], [16], developers must know which information
source is less insecure. Hence, choosing a more secure
source can propagate fewer security issues to developers
and guide policy decisions about using LLMs. Empirical
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data is needed to provide insights about the differences in
code vulnerabilities between LLMs and other information
sources for informed decision-making.

The goal of this work is to raise software develop-
ers’ awareness of the security implications when selecting
code snippetsby empirically comparing the vulnerabilities
of ChatGPT and StackOverflow. To achieve this goal, the
following research questions were answered:
RQ1: What vulnerabilities differences are there between

ChatGPT and SO code snippets?
RQ2: What types of vulnerabilities in terms of Common

Weakness Enumeration (CWE) types are present for
ChatGPT-generated code versus SO-answered?

To answer these questions, we conducted an experi-
mental study comparing two widely adopted web-based
information sources used in software development: Chat-
GPT [17] and SO [18]. Fig. 1 provides an example of
how we compared the ChatGPT and SO. In this study, we
used 108 Java security-related code snippets from SO taken
from Chen et al. [14]. We queried ChatGPT, reusing the SO
question as our prompt, to gather AI-generated code snippets
for comparison. We then detected the vulnerabilities in the
code with CodeQL [19], a static analysis tool developed by
GitHub that provides CWE.

We found that ChatGPT-generated code contains fewer
vulnerabilities and types of vulnerabilities compared to
SO. Still, both platforms can be sources of insecure code
propagation as we found 274 unique vulnerabilities and 25
types of CWE. Additionally, the vulnerabilities found in the
ChatGPT-generated code and SO overlapped only in 25%
of the vulnerabilities. The contributions of our work are:

• A comparison of the vulnerabilities found in 108 of
ChatGPT-generated and SO-answered Java security-
related code snippets.

• An enhanced dataset of 108 ChatGPT snippets associ-
ated with 87 questions and 90 answers from security-
related SO questions 1.

• A list of 25 different vulnerabilities found in ChatGPT
or SO snippets with their respective CWEs.

The remainder of this work is divided as follows. Sec-
tion 2 details the methodology. Section 3 describes our
results and Section 4 discusses our findings. Section 5
delineates the limitations of the study. Section 6 presents
the related work. Finally, Section 7 concludes the work.

2. Methodology

We conducted an experimental study to compare both
information sources in five steps. First, we selected the
platforms under study, ChatGPT and SO (Step 1). We then
selected security-related questions and answers from SO
(Step 2) and collected the code snippets from the answers
(Step 3). We prompted ChatGPT with the SO questions to
generate code (Step 4) and gathered the generated snippets
(Step 3). We then compare the gathered vulnerabilities of

1. Our dataset: https://zenodo.org/records/10806611

SO and ChatGPT using CodeQL (Step 5). In the following
subsections, we detail each step.

2.1. Step 1: Platform selection

We choose the two platforms to compare the code in
LLMs and web-based information sources. For our LLM
we chose ChatGPT, developed by OpenAI, for two main
reasons. First, in the 2023 report on Generative AI in
software development, Sonatype found that ChatGPT was
the most used tool by 86% of the respondents [9]. Second,
LLMs can be interacted with as a conversational agent in a
similar way that a developer may ask a question and receive
an answer in SO. The tools are thus directly comparable. For
our traditional web-based information source we selected
SO, an online question-and-answer forum for programmers,
for the following reasons. SO remains widely utilized and
frequented by its users. Based on data from February 2024,
the site hosts 22 million users with 2,700 questions per
day [20]. 92.5% of users visit the site at least weekly or
a few times a month [21]. Additionally, prior work about
insecure code propagation has investigated the SO site [12],
[13], [14], [15], [16]. By choosing SO, we directly build
upon and extend prior knowledge on the security of online
information sources.

2.2. Step 2: Question and answer selection

We collect a dataset of questions with answers to sample
SO answers and generate code with LLMs. We intentionally
sampled the questions and answers to serve the purpose
of our study through a purposeful sample [22]. We used
a previously curated Java code snippet dataset by Chen et
al. [14]. The dataset provided 1,429 SO answers with secure
or insecure code snippets for security-related questions from
2008-2017. The dataset was chosen as it was previously
manually curated and is publicly available. Additionally, a
dataset with security-related questions was selected as not
all questions in the wild have software vulnerabilities. Our
sampling approach can thus serve as an upper bound for
vulnerabilities found in SO posts. At the same time, Java
is consistently a top programming language for developers
in open source software [2]. After gathering the answers
identifiers from the datasets, when analyzing the data we no-
ticed that some snippets were partially stored. For example,
imports were missing from the snippet in SO. At the same
time, the dataset did not store the text of the associated ques-
tions and answers. As we needed the complete snippets, we
mined SO to gather the answers through the StackExchange
API [23]. Specifically, we collected the title and body of the
questions with the answers. In total, 1,216 questions and
1,377 answers were mined. We could not gather 52 answers
indicated in the dataset with their respective questions as
they were no longer available in SO.

2.3. Step 3: Code snippet filtration

We curate the code snippets to analyze the answers’
vulnerabilities. Hence, we collected the associated code
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snippets for each of the 1,377 answers. To achieve this in
an automated manner, we utilized the Beautiful Soup 4
Python library [24] to parse the HTML of the answers
to find the code blocks. We further checked the found
code blocks to verify they were Java snippets using the
javalang Python library [25]. We gathered in total 3,739

code snippets.
We further curated our data to verify that the snippets

could compile further analysis (Step 5). To find code snip-
pets that were not single lines of code, as one-liners are
not compilable in Java, we gathered snippets stored in code
blocks. Based on our analysis, the criteria were verified if
the code block’s parent HTML tag was of type <pre> .
After applying the criteria, 2,432 snippets remained. As code
snippets may have multiple Java classes in the same snippet
or none at all, we then filtered that snippets had only one
class name. We verified the criteria using the javalang
Python library [25]. After the step, 526 snippets remained.

Finally, we compiled each snippet to satisfy the vul-
nerability detection tool requirements. We did not mod-
ify any code snippets to avoid introducing bias into
the code. Hence, we verified and tried to fix compi-
lation errors due to missing package libraries for all
close snippets with a missing package error. In our ini-
tial compilation of the snippets, we gathered all er-
rors due to missing packages through the regular ex-
pression error : package [a−zA−z.]+ does not exist . We
manually searched and downloaded all missing packages
through Maven the . jar files, searching all packages. Then,
we recompiled all the snippets. We were unsuccessful for 62
packages missing in 86 code snippets, which may have also
contained other compilation errors. In total, 216 snippets
remained, corresponding to 189 questions and 204 answers.

2.4. Step 4: ChatGPT answers generation

We generate answers from ChatGPT to compare LLMs
generated code. For each of the 216 remaining snippets, we
asked the ChatGPT model the following prompt: For all the
following questions, generate a compilable code snippet in
Java. [BODY].

We selected a prompt that leveraged the SO post as
we did not want to introduce additional bias to the model.
Still, based on our tests, we were required to detail which
programming language the question was for, which in our
case was Java. Additionally, to verify that the code given was
a complete program and not a code snippet, we specified that
the code must be compilable due to the limitations of our
vulnerability detection tool for Java. Finally, we prompted
the model with the complete body of the SO question,
though more expensive, was more comparable to how users
asked questions in SO.

We thus prompted ChatGPT ( gpt−3.5−turbo−0613 )
through the OpenAI REST API in Python [26] and stored
each reply. Combining the answers with the questions gen-
erated a total of 237 pairs of SO snippets. We then followed
the process outlined in Step 3 with some minor differences.

TABLE 1. SUMMARY OF VULNERABILITIES IN CHATGPT AND
STACKOVERFLOW (SO). THE PLATFORM WITH FEWER

VULNERABILITIES IS HIGHLIGHTED.

GPT SO Overlap

Questions with vulnerabilities 77 75 81%
Answers with vulnerabilities 79 77 79%
Code snippets with vulnerabilities 87 83 79%
Vulnerabilities in snippets* 248 302 -
Unique vulnerabilities in snippets 158 183 25%

Chi-squared test significance: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

First, as the API returned markdown, we processed the
result with the regular expression ```[ˆ`]*``` finding code
blocks based on whether the text was enclosed by a code
snippet block ( ``` ). Second, as we only selected code
block snippets, we did not need to filter if they were code
blocks. Additionally, we downloaded missing libraries for
the ChatGPT snippets with the same procedure. We were
unsuccessful for 29 imports for 11 code snippets that could
have other compilation errors. After filtering 108 snippets
pairs related to SO 87 questions and 90 answers remained.

2.5. Step 5: Vulnerability detection

We utilized a static analysis tool to determine the se-
curity vulnerabilities of each code snippet from ChatGPT
and SO. These tools are one way to detect vulnerabili-
ties and have been used in industry [27]. Specifically, we
utilized CodeQL [19], a semantic code analysis engine
developed by GitHub. CodeQL has been used to evalu-
ate the code generated by LLMs in prior research [5],
[8]. At the same time, CodeQL is one of the better-
performing static analysis tools for Java [28]. CodeQL
detects vulnerabilities by querying the code on a database
with vulnerability variants. We utilized version v2.16.1
and java− security −and−quality . qls test suite that con-
tains queries for security and quality of Java code. We
analyzed 234 queries for each snippet.

To determine the significance of the differences during
our analysis, we utilized standard statistical analysis tests in
R [29]. We mapped the CWE we found with MITRE’s 2023
Top-25 Most Dangerous Software Weaknesses list [30].

3. Results

3.1. Vulnerabilities

To understand the differences between platforms, we
start by analyzing the vulnerabilities detected by CodeQL.
Table 1 shows a summary of the results. We found vulner-
abilities in 77 questions for ChatGPT. On the other hand,
the number of questions with vulnerabilities for SO was
75. Hence, SO had fewer questions with vulnerabilities,
yet the differences were insignificant when we performed
a Chi-squared test (p = 0.87). Additionally, the overlap
in questions with vulnerabilities was 81%. Similarly, the
number of answers with vulnerabilities was 79 for ChatGPT
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Figure 2. Number of vulnerabilities in the code snippets in each platform.

and 77 for SO, with an overlap of 79%. SO had fewer
answers with vulnerabilities, yet the differences were not
statistically significant (p = 0.87). Likewise, ChatGPT gen-
erated 87 snippets with vulnerabilities, higher than the 83
found in SO with an overlap of 79%. The differences were
not statistically significant (p = 0.76).

We found 248 vulnerabilities across all ChatGPT code
snippets. Meanwhile, we found 302 vulnerabilities in the SO
code snippets. Hence, the number of vulnerabilities is 20%
fewer in ChatGPT snippets than SO. We performed a Chi-
squared test to determine if the differences in the number
of vulnerabilities of the code snippets by platform were
statistically significant. We found a statistically significant
difference (p = 0.02).

Fig. 2 shows a violin chart with a box plot of the number
of vulnerabilities of the snippets for each platform. The
average and median number of vulnerabilities per snippet for
ChatGPT were 3.04 and 2, respectively. The average number
of vulnerabilities for SO code snippets was 3.62, while 2
was the median. The maximum vulnerabilities found in a
snippet was 24, created in SO. To compare the number of
vulnerabilities in each code snippet produced in SO versus
ChatGPT, we utilized a paired t-test. We did not find a statis-
tically significant difference in the number of vulnerabilities
in each code snippet (p = 0.25). Therefore, the differences
were not statistically significant despite ChatGPT producing
on average code snippets with fewer vulnerabilities than SO.

We gathered the unique vulnerabilities in each snippet
to compare the overlap of vulnerabilities, as vulnerabilities
could be present in different lines. The number of unique
vulnerabilities in the code snippets is 158 for ChatGPT and
183 for SO. We found no statistically significant difference
with the unique snippet vulnerabilities for the platforms
using a Chi-squared test (p = 0.18). The vulnerabilities
generated by ChatGPT and present in SO code snippets are
only the same in 25% of snippets. Noticeably, there is a
difference of at least 54% between the overlap of unique
vulnerabilities in snippets and the other overlaps.

3.2. Vulnerabilities CWEs

We gathered the vulnerabilities associated with CWEs
to understand how the security issue types varied between

TABLE 2. THE TYPES OF CWE FROM THE INFORMATION SOURCES.
THE PLATFORM WITH FEWER VULNERABILITIES IS HIGHLIGHTED. THE

DELTA (∆) REPRESENTS THE DIFFERENCE BETWEEN PLATFORMS.

CWE-ID # GPT # SO ∆ Top 25

CWE-078 2 0 2 5
CWE-088 2 0 2 -
CWE-248 4 10 6 -
CWE-295 13 12 1 -
CWE-297 4 4 0 -
CWE-326 4 7 3 -
CWE-327 95 122 27 -
CWE-328 95 122 27 -
CWE-329 7 8 1 -
CWE-330 0 3 3 -
CWE-335*** 0 16 16 -
CWE-338 0 3 3 -
CWE-391 14 18 4 -
CWE-404 37 29 8 -
CWE-476 1 6 5 12
CWE-477 19 15 4 -
CWE-561 13 13 0 -
CWE-570* 0 4 4 -
CWE-571* 0 4 4 -
CWE-581 0 2 2 -
CWE-772 37 29 8 -
CWE-780 3 6 3 -
CWE-798* 36 20 16 18
CWE-835** 8 0 8 -
CWE-1204 7 8 1 -

Chi-squared test significance: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

platforms. The CWEs we found are shown in Table 2. We
found 25 different types of CWEs in both platforms.

In ChatGPT we found 19 CWEs. The most frequent
type of CWEs are CWE-327: Use of a Broken or Risky
Cryptographic Algorithm and CWE-328: Use of Weak
Hash, both tied in first place with 95 snippets. CWE-327
captures when cryptographic algorithms used are insecure.
Hence, the desired security cannot be guaranteed. Mean-
while, CWE-328 is similar as it covers when the hash
algorithm does not meet security expectations. The CWE
is found by the CodeQL rules “Use of a broken or risky
cryptographic algorithm” and “Use of a potentially broken
or risky cryptographic algorithm”. Tied in second place is
CWE-404: Improper Resource Shutdown or Release and
CWE-772: Missing Release of Resource after Effective
Lifetime, found in 37 snippets. Both CWEs cover when
resources are incorrectly released. CWE-404 captures a
release before it becomes available, whereas CWE-772 is
after the resource is no longer needed. The CWE is found
by the CodeQL rules “Improper Resource Shutdown or
Release” and “Missing Release of Resource after Effective
Lifetime’. Lastly, the third-most present is CWE-798: Use
of Hard-coded Credentials. The vulnerability describes
when credentials like passwords or cryptographic keys are
hard-coded in the code and can be leveraged by attackers
to bypass authentication. Additionally, CWE-798 is in 18th
place in MITRE’s Top 25. The rule “Hard-coded credential
in API call” captures the CWE.

In SO we found 22 types of CWEs. Hence, ChatGPT
generated fewer types of CWEs with a difference of 14.63%.
Tied for first place, CWE-327: Use of a Broken or Risky
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Cryptographic Algorithm and CWE-328: Use of Weak
Hash were found in 122 snippets. In the second place, with
29 snippets, was CWE-404: Improper Resource Shut-
down or Release and CWE-772: Missing Release of Re-
source after Effective Lifetime. In third place was CWE-
798: Use of Hard-coded Credentials with 20 snippets.
Interestingly, the order of the top most common CWEs is the
same for both ChatGPT and SO. However, the number of
vulnerabilities for the most frequent CWEs found in each
platform differed with a delta ranging from 8 to 27. For
the top CWEs, ChatGPT created fewer vulnerabilities for
CWE-327 and CWE-328. Meanwhile, SO produced fewer
vulnerabilities for CWE-404, CWE-772, and CWE-798.

ChatGPT snippets were better than SO for 15 types of
CWEs. Meanwhile, SO was better for 8 types of CWEs.
Finally, 2 types of CWEs had the same number of snippets.
The CWEs with the largest differences were CWE-327: Use
of a Broken or Risky Cryptographic Algorithm, CWE-
328: Use of Weak Hash, CWE-335: Incorrect Usage of
Seeds in Pseudo-Random Number Generator (PRNG),
and CWE-798: Use of Hard-coded Credentials. CWE-
335 occurs when a pseudo-random number generator is
used, but the seed is incorrectly managed. The vulnerability
is captured by the rule “Random used only once”. The
difference between CWE-327 and CWE-328 CWEs was 27,
while for CWE-335 and CWE-798 it was 16. The remainder
of CWEs had differences ranging from 0 to 8 occurrences
in the code snippets.

We also compared the statistical significance of each
type of CWE between the platforms using a Chi-squared
test. We found five types of CWE with statistical signif-
icance. Ordered by the CWEs with the most statistically
significant results, CWE-335: Incorrect Usage of Seeds
in Pseudo-Random Number Generator (PRNG) had the
highest significance (p < 0.001). ChatGPT generated the
vulnerability 0 times compared to the 16 occurrences in
snippets in SO. CWE-835: Loop with Unreachable Exit
Condition (‘Infinite Loop’) had the second highest sta-
tistical significance (p = 0.005). The vulnerability occurs
when there is an infinite loop in an iterator. The rule
“Constant loop condition” can cover the vulnerability. The
CWE occurred in ChatGPT code 8 times, while 0 times for
SO. CWE-798: Use of Hard-coded Credentials was the
third highest statically significant difference (p = 0.03). We
found 36 occurrences in ChatGPT code, compared to the
20 occurrences in SO code. Lastly, CWE-570: Expression
is Always False and CWE-571: Expression is Always
True have statistically significant results with the same
significance (p = 0.046). The CWEs capture when the
evaluation of an expression always returns true or false,
respectively. The rule “Useless comparison test” captures
both CWEs. ChatGPT generated 0 CWE instances compared
to SO that produced 4 for each.

We found three different CWEs within MITRE’S Top
25 CWEs for 2023. Ranked by position, CWE-078: Im-
proper Neutralization of Special Elements used in an
OS Command (‘OS Command Injection’) is the highest
ranked CWE we found in 5th place. The CWE covers when

an input is used in operative systems commands that an
attacker could influence externally. The vulnerability was
captured by the rule “Executing a command with a relative
path”. Only 2 snippets generated by ChatGPT contained the
CWE. Following is CWE-476: NULL Pointer Dereference
located in the 12th place. The vulnerability captures when a
pointer deference occurs by expecting a valid pointer, yet the
pointer is null. The CWE was present in 1 ChatGPT snippet
and 6 SO snippets. Finally, CWE-798: Use of Hard-coded
Credentials is the last CWE we found on the list, positioned
in 18th place. We found the CWE in 36 times in ChatGPT
snippets, while 20 times in SO snippets.

4. Discussion

4.1. Developer recommendations

As with any disruption to software development, there
are potential benefits and risks with using LLMs. Still,
developers are under-educated on insecure code propagation
from both platforms, as both contain vulnerable code that
can propagate to developers. We found 274 different vul-
nerabilities and 25 different types of CWE in the platforms.
Adding another element to the software supply chain carries
an inherent risk. Information gathered by developers from
an outside source should be handled with caution as it
can become an attack vector for malicious actors. Hence,
our first recommendation is do not blindly trust code, AI-
generated or human-created, from outside sources. LLMs
have provided an excellent opportunity to become more
conscientious of the complete software supply chain.

Consequently, developers may wonder if they should
even use LLMs and other web-based information sources
due to security risks. Our second recommendation is despite
risks to use the platforms, but apply good software security
practices. Static analysis tools and software testing can help
detect copied and pasted code vulnerabilities. Practices can
be adopted starting with those with the highest impact [31].
At the same time, developers need to pay more attention
to CWE-335, CWE-570, and CWE-571 for LLM-generated
code, while CWE-798 and CWE-835 for SO answers.

4.2. Future work

There are several avenues for future work. First, re-
ducing insecure code can propagate fewer security risks to
users. In line with prior work [32], [33], approaches to stop
insecure code propagation need further research. Second,
we found that ChatGPT generated less vulnerable code
compared to SO using CodeQL. A question remains: why
are there even any differences as LLMs are trained using
the internet, including sites such as SO? We hypothesize
that the compression and aggregation of information of
LLMs may reduce vulnerabilities. Still, work must further
study why such differences occur, validating or refuting our
hypothesis. Companies can leverage this finding by incorpo-
rating LLMs within their development tools or information
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sources, as there may be a possible added security benefit
of the technology. Finally, in our work, we focused on code
generation. Still, LLMs are incorporated in various software
tasks, including code summarization and translation [34]. As
such, future work should evaluate the security implications
of LLMs for other software tasks.

5. Limitations

The main limitation of our work is the representativeness
and generalizability of our analysis with the diversity of
questions and answers in software development. Our find-
ings are limited by our sampling strategy, the number of
code snippets analyzed, and the Java programming language
of the snippets. Future work can expand upon the general-
izability of our findings by analyzing different development
information sources, LLMs, and programming languages
with more code snippets. Another limitation is based on
how we leveraged ChatGPT as our prompt may have biased
our results, despite our mitigation efforts to construct and
refine the prompt iteratively. Prompt engineering approaches
can be investigated to potentially reduce vulnerabilities in
the generated code. At the same time, our findings are
constrained by the time frame and version of ChatGPT
analyzed, given the evolving nature of LLMs and their
usage. Additionally, how we measured and detected vulner-
abilities in the code snippets scope our findings. Software
vulnerabilities are a commonly used measure [35], while
static analysis tools to detect vulnerabilities are a common
practice within software development [27]. CodeQL, the
tool we use to detect vulnerabilities, has been used in prior
research to evaluate code generated by LLMs [5], [8]. Static
analyzers still generate false positives, though CodeQL is
one of the less sensitive tools in Java [28]. Lastly, the non-
deterministic nature of LLMs limits the reproducibility of
our work. To combat this threat, we make our dataset public.

6. Related work

Software supply chain attacks leverage software compo-
nents to compromise downstream users [36]. For example,
relying on third-party packages from ecosystems like npm
and PyPi could compromise consumer packages [37], [38].
As the software supply chain continues evolving, a recent
concern for practitioners is the usage of LLMs in devel-
opment [3], [4]. Research has revealed that code generated
by GitHub Copilot can introduce vulnerabilities in public
repositories [8]. LLMs have thus become an additional
consideration in the security of the software supply chain.

Regarding software security, works have leveraged
LLMs for vulnerability repair [39], [40] and detection [41].
Works have also shown uses for LLMs in software security
testing [42], [43] and security code reviews [44]. Comple-
mentary to prior works, data poisoning [45] and prompt
injection attacks [46] exploits have been found for LLMs
in software development contexts. Research has evaluated
several quality attributes of code generated by LLMs, in-
cluding the correctness and usability [6], [10], [11], [47],

[48], [49], [50]. At the same time, studies have evaluated the
security of the generated code. Insecure code propagation
has previously been studied within software security for
platforms as SO [51]. Research has identified security risks
such as vulnerabilities [5], [6] and code smells [7] in code
generated by LLMs. Datasets [52] and frameworks [53] have
also been created to evaluate the security of LLMs for code
generation.

Prior work comparing the security of LLM-generated
code is the most related to our study. Research has
contrasted differences in the code when developers use
LLMs [54], [55]. At the same, work has evaluated if LLMs
have introduced the same vulnerabilities as humans [56].
In line with Asare et al. [56] and Sandoval et al. [55], the
security impact of LLMs is low. At the same time, Asare
et al. [56] also found that the vulnerabilities generated by
LLMs were different than human-produced. Contrary to the
findings of the other works and our study, Perry et al. [54]
found that participants were more likely to generate less
secure code. Still, Perry et al. [54] found participants who
trusted AI less provided code with fewer security vulnerabil-
ities. Hence, LLMs may be a positive addition to the security
of software projects if leveraged intentionally. The studies
analyzed C, C++, Python, and JavaScript code, while we
studied Java code. Hence, we hypothesize that the findings
are applicable across different programming languages.

Our study complements prior work by contrasting code
vulnerabilities of LLMs with a web-based information
source, SO. By comparing LLMs with an established plat-
form like SO, we enhance our understanding of the security
risks associated with using generative AI. Hence, we help
developers by increasing the awareness of the security risks
when selecting the information source for code snippets.

7. Conclusions

With the widespread adoption of LLMs in software engi-
neering, developers have raised concerns about the security
risk implications and the potential impact on the software
supply chain. Developers are weighing the benefits and risks
of using LLMs compared to other web-based information
sources, such as online forums like SO. Notably, SO also
contains code with security issues. Hence, developers re-
quire empirical data comparing the security of both plat-
forms to inform their choices.

We compared ChatGPT and SO vulnerabilities for 108
Java code snippets using CodeQL. Based on our findings,
software developers are under-educated on insecure code
propagation from any information online source, be it AI-
generated or human-created code. ChatGPT as a platform
generated more vulnerabilities and types of CWE than SO.
Still, the code in ChatGPT and SO had 274 different vul-
nerabilities and overlapped only in 25% of snippets. Any
code that can be copied and pasted from an outside source,
AI-generated or human-created, cannot be blindly trusted,
requiring applying good software security practices. The
security concerns surrounding generative AI are an opportu-
nity to increase conscientiousness about software security.

6



Acknowledgments

This work was supported and funded by the National
Science Foundation Grant No. 2207008, CNS-2026928,
North Carolina State University Provost Doctoral Fellow-
ship, and Goodnight Doctoral Fellowship. Any opinions
expressed in this material are those of the authors and do not
necessarily reflect the views of any of the funding organiza-
tions. We thank the Realsearch and WSPR research groups
from North Carolina State University for their support and
feedback. Additionally, we are grateful for the reviewer’s
time and feedback.

References

[1] Sonatype, “Annual State of the Software Supply Chain,” 2023.

[2] GitHub, “The state of open source software.” https://octoverse.github.
com/, 2023.

[3] W. Enck, Y. Acar, M. Cukier, A. Kapravelos, C. Kästner, and
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