From Requirements to Features: An Exploratory
Study of Feature-Oriented Refactoring

Roberto E. Lopez-Herrejon
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
roberto.lopez@jku.at

Abstract—More and more frequently successful software sys-
tems need to evolve into families of systems, known as Software
Product Lines (SPLs), to be able to cater to the different
functionality requirements demanded by different customers
while at the same time aiming to exploit as much common
functionality as possible. As a first step, this evolution demands
a clear understanding of how the functional requirements map
into the features of the original system. Using this knowledge,
features can be refactored so that they are reused for building
the new systems of the evolved SPL. In this paper we present
our experience in refactoring features based on the requirements
specifications of a small and a medium size systems. Our work
identified eight refactoring patterns that describe how to extract
the elements of features which were subsequently implemented
using Feature Oriented Software Development (FOSD) — a novel
modularization paradigm whose driving goal is to effectively
modularize features for the development of variable systems. We
argue that the identification of refactoring patterns are a stepping
stone towards automating Feature-Oriented Refactoring, and
present some open issues that should be addressed to that avail.

Keywords-Software Product Lines; Feature Orientation; Prod-
uct Line Evolution; Feature Oriented Refactoring

I. INTRODUCTION

Today, software systems are more frequently being built as
families of systems also known as Software Product Lines
(SPLs) [1]-[3]. In a SPL, each member product implements
a different combination of features — increments in program
functionality [4]. The success of a SPL lies at the effective
management and realization of its variability, defined as
the capacity of software artifacts to vary [5][44]. Extensive
research and practice have been documented that corroborates
the signifcant benefits of applying SPL practices both in
academia and industry [2], [3], [6].

In this paper, we present our experience in refactoring
features from the requirements specifications of two single
software systems (i.e. without variability). From these sys-
tems, we manually extracted the features using a three-steps
refactoring process and created a SPL for each of them. This
work identified eight refactoring patterns that describe how to
extract the code fragments that realize the features which were
subsequently implemented with an advanced modularization
paradigm. Furtheremore, a priority-based scheme is proposed
to disambiguate the refactoring of code elements that are
shared by more than one feature. We analyze the issues

Leticia Montalvillo-Mendizabal
Universitat Politecnica de Catalunya
Barcelona, Spain
leticia.montalvillo@est.fib.upc.edu

Alexander Egyed
Systems Engineering and Automation
Johannes Kepler University Linz, Austria
alexander.egyed @jku.at

encountered and present a set of open issues that must be
addressed towards automating feature refactoring. Next we
shortly present the foundations of the modularization approach
we used for our study.

II. FEATURE ORIENTED SOFTWARE DEVELOPMENT

Feature Oriented Software Development (FOSD) provides
formalisms, methods, languages and tools for building vari-
able, customizable and extensible software [7]. FOSD has
been successfully used in several case studies [8], [9]. FOSD
advocates modularizing features, increments in program func-
tionality [4], as the systems building blocks. At the heart of
FOSD is a feature algebra that drives the (de)composition of
software artifacts [1], [10]-[12]. A feature module contains all
the software artifacts, or parts thereof, required for implement-
ing the corresponding feature.

In FOSD features are composed hierarchically starting from
the root element of the corresponding models. Elements that
have the same name and type at the same hierarchical level
are composed together, elements that do not have a corre-
sponding matching element are copied along hierarchically.
FEATUREHOUSE [13] is a general architecture of software
composition supported by a framework and tool chain and
is a descendant of Batory’s AHEAD program generator [1].
FEATUREHOUSE provides facilities for feature composition
based on a language-independent model of software artifacts
and an automatic plug-in mechanism for the integration of new
artifact languages.

Figure 1 sketches how feature composition works in FEA-
TUREHOUSE. Lines 2-9 shows the contents of class C in
feature A, two field variables and a method. Lines 11-21 show
a class refinement that has one field variable, a refinement to
method m that uses keyword original, and a new method
m2. The composition yields a class C that has the three fields
from both features (lines 24-26). It also creates a method m
from the version of feature B (lines 27-32) but substituting the
keyword original with the statements of the method it is
refining', namely stmt1 and stmt2 (lines 29-30). Finally
method m2 from feature B is copied along to the composed
class (lines 33-35). For further details on FOSD and supporting
tools please refer to [1], [13].

IThe actual composition result is more elaborate but its functionality is
comparable to the code snippet shown in the figure.

// Feature A
public class C {
int f1;
double f2;
public void m() {
stmtl] ;
stmt2 ;

O 00O\ BN =

}

}

10 | // Feature B

11 | public class C {
12 float f3;

13 public void m() {

14 stmt3 ;

15 original ();

16 stmt4 ;

17 }

18 public void m2() {
19 stmt5 ;

20 }

21 |}
22 | // Composed class C
23 | public class C {
24 int f1;

25 double f2;

26 float f3;

27 public void m() {

// feature A
// feature A
// feature B

28 stmt3 ;

29 stmtl; // original

30 stmt2; // original

31 stmt4 ;

32 }

33 public void m2() { // feature B
34 stmt5 ;

35 }

36 |}

Fig. 1: FEATUREHOUSE composition example

III. FEATURE ORIENTED REFACTORING PROCESS

Feature Oriented Refactoring (FOR) is the process of de-
composing a program into features and modularizing them
using advanced modularization paradigms [14]. In this section,
we describe the process followed to refactor the two projects
presented in Section IV. For our study we used FEATURE-
HOUSE as implementation platform because it supports FOSD
for current versions of Java language [13]. We start by describ-
ing the modularization steps we followed, and then present
our strategy to deal with cases where a program element was
shared by more than one feature.

A. Modularization steps

Our ultimate goal was to modularize systems using FOSD.
Our starting point was a list of systems requirements described
in prose and the source code which in most of the cases
provided little or no additional documentation information.
We identified three steps to modularize a program into feature
modules that are illustrated in Figure 2. The first two: (1)
identifying features, and (2) making decisions are iterative
processes, meaning that once a feature fragment is identified
in source code we might have to make a decision and continue
with the identification process for other feature fragments.
These three steps are:

Identify features Refactor code

F1 — —
— Making . F1 F2 F3
decisions module | [module | | module
[= P
Fig. 2: Modularization steps diagram

1) Identify features in code. In this step we create conceptual
traces between the requirements given and the source
code provided. In our study we consider the requirements
as the features that should be modularized. For this
identification we followed as guidance: the naming pat-
terns of the program elements, the relationship between
requirements and GUI elements, and code inspections.

2) Making decisions. A piece of code may be identified to
belong to more than one feature. A common reason for
this is because such piece of code is the manifestation
of an interaction among the features involved. At this
moment a decision has to be made for the modularization
to proceed. In Section III-B we describe the approach we
followed.

3) Refactor source code. At this point, we know exactly
which code implements each feature. Therefore, we im-
plement it according to a modularization paradigm, which
in our case was FEATUREHOUSE. In performing this
step, we collected eight refactoring patterns that try to
maintain the original implementation structure as much
as possible while implementing the required functionality
in our developing platform.

B. Feature Module Disambiguation

In several instances, deciding in which features to mod-
ularize a code fragment is not straightforward process. A
code fragment can effectively implement parts of one or
more features. We say that those fragments are shared by the
features and reflect their interaction. Nonetheless, a decision
on where to modularize a code fragment has to be taken. We
applied a priority-based scheme where each feature that shares
a give piece of code is assigned a priority; the feature with the
highest priority is selected to modularize it. For the systems
we study, the priority scheme was as follows: i) high priority
root feature, ii) medium priority mandatory features, and iii)
low priority optional features.

IV. FEATURE ORIENTED REFACTORING STUDY

In order to help us gauge the applicability of our FOR
process, we use two distinct system projects that are publicly
available as single systems, that is, without any consideration
whatsoever of variability. In this section we describe the
main characteristics of these two systems, their structure and
the refactoring patterns that we found in them. We selected
these two systems because of their size (small and medium)
and availability of documentation and other related program
analysis information which we will exploit as part of our future
work.

A. Video-On-Demand Player (VODPlayer) Project

VODPlayer stands for a Video On Demand Player. This
project is a program which allows users connected to a server
to watch short movie clips.

1) System description: In this system, there are 13 require-
ments considered as shown in Table I. As indicated in the
previous section, for the purpose of our study we equated
the term functional requirement with feature. Thus, this table
shows both the name of the requirement (e.g. R4) and its
corresponding implementing feature (e.g. Pause). Notice that
in the second column the description and functionality of each
feature is provided at a conceptual level. But this is not enough,
it is also important to define which elements at code level
actually implement a feature. The last column of Table I shows
the criteria used for selecting feature code. Requirements R5,
R6 and R7 are non-functional requirements and as such they
do not have a corresponding refactoring criterion. Based on
the feature descriptions, we developed a SPL by making some
of the features optional and considering feature combinations
that are meaningful for this domain. The feature model we
elaborated for VODPlayer is shown in Figure 3.

VODPlayer
/ y
| Pause || Playlmm || StartMovie | | VRClnterface | |QuitPIayer| | SelectMovie |
StartPlayer
|ChangeServer| | Detail |

Fig. 3: Feature Diagram of VODPlayer

VODPLayer is implemented in Java with a total of
3.6KLOC, across 42 classes of which 12 are listeners for the
GUI elements. There are four main classes which are the core
frames of the application. We refer to these classes when we
illustrate our refactoring patterns. These classes are:

e VODClient: is the main frame of the application and
appears when users connect to the application.

e ListFrame: this frame is displayed after selecting
movies (clicking the Movies button) in VODClient
frame. From this frame, users can connect to other
servers, select a movie, display its details or close the
frame.

e Detail: this frame is displayed after clicking Detail
button on ListFrame frame and displays information
about the movie selected.

e ChangeServer: this frame is displayed after clicking
Servers button on ListFrame frame and allows users
to connect to another server to get a new movie list.

2) Refactoring Patterns: In this subsection we present
and illustrate the five refactoring patterns we found in
VODPLayer. For simplicity, we follow a similar notation to
Alves et al. [15]. We use the term C to refer to a class, £s for
a set of class fields, ms a set of methods in a class, T for a

class C{ (a)
fs
ms
Tm(ps) {
body’
bodyA
}
/
class C{ (b) class C{ (c)
s Tm(ps) {
ms original(ps)
Tmips) { bodyA
body’ }
} }
/

Fig. 4: Addition at end of method: (a) original, (b) refactored
and (c) refining classes

1 |// Original VODClient

2 | public final void stopmovie() { // T m(ps)
3 if (curmovie == null) return; // body’
4 buttonControl2.setLabel ("PLAY"); // bodyA
5|1

6 | // Refactored VODCLIENT Feature StartMovie

7 | public final void stopmovie() { // T m(ps)
8 if (curmovie == null) return; // body’
9

}

10 | // Refining class VODClient Feature StopMovie

public final void

stopmovie () {

// T m(ps)

12 original (); //original (ps)
13 buttonControl2 .setLabel ("PLAY"); // bodyA
14 |}

Fig. 5: Example addition at end of method

type, ps a method parameter set, and terms with prefix body
to denote sets of statements that appear in a method.

Addition at end of method. This pattern allows adding
a piece of code at the end of a method. Figure 4(a) shows
the method m in class C to be refactored. The result of the
identification process is a piece of code that must be refactored
into its associated feature (e.g. feature A), this is denoted
with term bodyA. The term body’ denotes the fragment
of method m that executes before bodyA. Figure 4(b) depicts
the refactored class, now only with body’ in method m, while
Figure 4(c) shows the refining class with the refinement of
method m. Notice here that the refining class calls special
method original. Note also that, bodyA cannot use any
variable defined for body’, it can only use variables defined
in itself, ps parameter(s) and f£s variables of class C.

Figure 5 illustrates this pattern applied to method
stopmovie. Notice that the original method body has two
elements a begin (body’) and an end (body?2). According
to our pattern, this method is refactored in two pieces. In this
case the refactored class is contained in StartMovie feature
(lines 6-9), and the refining class in St opMovie feature (lines
10-14).

Addition anywhere with a hook method. This type of
refactoring pattern allows to add pieces of code in any state-

TABLE I: VOD Player Requirements, Features, and Refactoring Criteria

l

Requirement/Feature [Requirement description

| Refactoring Criteria

R1/SelectMovie Display a list of movies and select one | Code that allows getting & displaying a list of movies and selecting one
R2/PlayImm Play movie immediately after selection | Code enabling playing a movie immediately after it’s selected
R3/Detail Display textual movie information Every code line, button, attribute that displays a movie detail frame
R4/Pause Pause a movie Code and buttons that enables a movie to be paused
RS5/- 3 seconds max to load movie list Non-functional requirement
R6/- 3 seconds max to load movie textual Non-functional requirement
R7/- 1 second max to start playing a movie | Non-functional requirement
R8/VRClnterface Provide VCR-like user interface General graphic player UL Dimensions of the frame, general buttons & labels
R9/StopMovie Stop a movie Piece of code & buttons that enables a movie to be stopped
R10/StartMovie Start a movie Code making possible watching a movie. Load movie
R11/ChangeServer Change server Code making possible a change of the server
R12/QuitPlayer Exit the player Code lines that enable closing and quitting the VOD Player
R13/StartPlayer Start the movie player The implementation concerning the running of the VOD Player
class C{ (a) 1 |// Original VODClient bc2AP
fs 2 | void bc2AP(ActionEvent actionEvent) //T m(ps)
Trmips) 30
fa 4 if (bc2.getLabel ().equals("PLAY")){ //body’
fs 5 if (curmovie == null) //body”’
body’ 6 return; //body’
bodyA 7 vthread = new Thread (video); //body’
body” 8 vthread . start (); //body”’
}} 9 bc2.setLabel ("PAUSE"); //bodyA
10 }
11 //body’’
12 |}
class C { (b) class C { 13 | //Refactored class VODClient feature StartMovie
fs (e 14 | void bc2AP(ActionEvent actionEvent){ // T m(ps)
ms Ra hook(fa) { 15 if (bc2.getLabel ().equals("PLAY")){ //body’
Tm(ps) { original(fa) 16 if (curmovie == null) //body’
fa bodyA 17 return; //body’
fs , return ra 18 vthread = new Thread (video); //body’
body } s y
hook(fa) } 19 vthread . start (); //body”’
body” 20 setLabelPause (); // hook(fa)
} 21
Ra hook(fa) {...} 22 } // b()dy ’
/ 23 1)

. 24 | void setLabelPause // hook (fa
Fig. 6: Addition anywhere with a hook method: (a) original, 55 | ,, Refining class §/)0{$Client feature Pause (fa)
(b) refactored and (c) refining classes 26 | void setLabelPause (){ // Ra hook(fa)

27 original (); //original(fa)
28 bc2.setLabel ("PAUSE"); //bodyA
29 |}

ment where it is needed. Consider the method depicted in Fig-
ure 6(a). In method m, the piece of code denoted with bodya
belongs to feature A and consequently must be refactored
into that feature. Therefore this class must be decomposed
in the refactored class shown in Figure 6(b) and the refining
class of Figure 6(c). Please notice that bodyA is between
body’ (the code of the method which is executed before)
and body” (the code which is executed after). This pattern
replaces bodyA with a call to a new method hook (fa)
which can be subsequently refined by feature A to execute
the original functionality of bodyA. Note that this method
has a parameter fa because it is common that hook methods
make reference to some variables local to method m. Similarly,
sometimes it is also necessary for these methods to return
a value, denoted in ra of type Ra. Figure 6(b) shows this
replacement and the new method, and Figure 6(c) illustrates
the refinement to method hook (fa) done by feature A and
expressed with the original keyword.

Fig. 7: Example addition anywhere with hook method

Figure 7 illustrates the refactoring for method bc2AP? in
VODClient class (lines 1-12). At the identification step we
found the code belonging to feature Pause in line 9. This
line of code is refactored by introducing setLabelPause
hook method in the refactored class, in our example in feature
StartMovie (lines 13-24). Note that it also holds the
implementation of the empty hook method (line 24). Finally,
the refining class is contained in feature Pause (lines 25-29).
Notice here the use of the original keyword in line 27 that
denotes a method refinement.

Move entire method. This pattern refactors a method in
a class by removing it from the refactored class and adding
a copy to the refining class. Figure 8(a) depicts class C

2The methods names are shorten for simplicity. For instance, the name of
method mA is buttonControl2_actionPerformed.

class C{ (a)
fs
ms
mA
/
class C{ (b) classC{ (c)
fs mA
ms }
}

class C{
fs
fA
ms

}

(a)

N

classC{
fs
ms

}

(b)

classC{
fA
}

(c)

Fig. 8: Move entire method: (a) original, (b) refactored and
(c) refining classes

Fig. 10: Move field: (a) original, (b) refactored and (c) refining

1 |// Original class

2 | public class VODClient extends Frame {

3 boolean isStandalone; // fs

4 BorderPanel bevelPanel2;

5

6 public VODClient() { ... }

7 void bclAP(ActionEvent actionEvent){...} // ms
8 void bc3AP(ActionEvent actionEvent){...}

9 void bc4AP(ActionEvent actionEvent){...} // mA
10

11 |}

12 | // Refactored class

13 | public class VODClient extends Frame {

14 boolean isStandalone; // fs

15 BorderPanel bevelPanel2;

16

17 public VODClient() { ... }

18 void bclAP(ActionEvent actionEvent){...} // ms
19 void bc3AP(ActionEvent actionEvent){...}

20

21 |}

22 | // Refining class in feature QuitPlayer

23 | public class VODClient extends Frame {

24 void bc4AP(ActionEvent actionEvent){...} // mA
25 |}

classes

Non assigned Feature |

classC{
fs
ms

}

classC{

fs

— ms

}

Fig. 9: Example move entire method

with fields £s, methods ms, and method mA which has been
identified as belonging to feature A. The original class turns
into: i) refactored class containing both fields £s and methods
ms as shown in Figure 8(b), and ii) refining class with method
mA as depicted in Figure 8(c).

At this moment, it is important to draw a parallel with
standard object-oriented refactoring in particular with the move
method pattern [16]. The crucial difference is that in our case
the method moves across features. In other words, the method
stays in the same class C but it moves from its containing
feature (or legacy code like in our study) to a new feature
such as A.

An example of this pattern is method bc4APin class
VODClient of the original system shown in lines 1-11 of
Figure 9. This method was identified as being in charge
of quitting the VOD player when button Quit is hit, and
consequently refactored to feature QuitPlayer as illustrated
in lines 22-25 of Figure 9.

Move field. This pattern refactors a field from a class and
puts it into the refinement of the given class. For example,

Fig. 11: Move entire class

class C depicted in Figure 10(a) describes the class C with its
fields £s, methods ms, and field £A which has been identified
to belong to feature A. Again, the original class is divided into
two classes: refactored class depicted in Figure 10(b) and the
refining class depicted in Figure 10(c) with field £A. The use
of this pattern is frequently accompanied with instances of the
previous pattern that moves entire methods.

Examples of this pattern are the refactorings of fields in
class ListFrame that correspond to the visual elements
(e.g. buttons and labels) of this frame class. Because these
variables form part of the GUI they were moved to feature
VCRInterface.

Move entire class. This pattern refactors a class from
original code to a feature as described in Figure 11. On the
left we have the original class with its methods and field, and
on the right the same class with its elements but now in a new
containing feature A. It should be noted though that in order
to perform this refactoring, both methods ms and fields ms
must all be identified to belong in feature A.

Examples of this refactoring pattern are the classes that
implement the distinct listeners required to react and respond
to events in the GUI. For instance, DetailListenerl that
corresponds to the listener for the Detail frame which is
refactored to feature Detail.

B. Gantt Project

Gantt Project is a cross-platform desktop tool for project
scheduling and management [17]. It is free and open source.
The main objective for this project was to validate the appli-
cability of our work to systems of larger size. We found many
instances of the patterns identified in VODPlayer, some of
which allowed us to extend and generalize these patterns. But
also this project provided examples of three new patterns.

1) System Description: The system is implemented in Java
in a total of approximately 41 KLOC with 479 classes mod-
ularized in 43 packages. Among other functionality, Grant-

GanttProject
CreateTasks

N

Dependenc
DelTask

Fig. 12: Gantt Project feature model

@)

DeleteHum

TaskProp

HumUtil

HumProp

Project allows users to: i) create work breakdown structure,
draw dependencies and define milestones, i) manage human
resources and their work on tasks, iii) manage PERT charts,
iv) export and import charts in several file formats (e.g. PDF
and HTML), v) share projects using WebDAV. Our study
considered 16 requirements which are summarized in Table
II. As before, based on the feature descriptions we developed
a SPL by making some of the feature optional and considering
feature combinations that are meaningful for this domain. The
feature model we obtained for this system is shown in Figure
12.

2) Refactoring Patterns: In this subsection we describe the
three new patterns our work identified.

Addition at beginning of method. Figure 13 shows the
representation of this pattern. It follows the same idea that
addition at the end of the method, but in this case instead
of adding code at the end, it adds at the beginning. Figure
13(a) shows the method m in class C to be refactored, with
the piece of code bodyA that belongs to feature A. The
term body” denotes the fragment of method m that executes
after bodyA. Figure 13(b) depicts the refactored class, now
only with body’ in method m, while Figure 13(c) shows the
refining class with the refinement of method m. Notice here
that the refining class calls special method original. Note
also that bodyA can only use variables defined in itself, ps
parameter(s) and fs variables of class C, and that bodyA
cannot define any variable that body” uses. This is because
if feature A is not included in the composition then body”
will be referring to a non existing variable.

Figure 14 shows an example of the refactoring pattern
applied to method changeLanguageOfMenu () (lines 1-
12). The original method has element body2 (lines 3-5) ,
which goes at the beginning of the method, and the rest of the
body belongs to element body” (lines 6-11). The refactoring
process divides the original method into two pieces. The
refactored class is contained in feature GanttProject (lines
13-21) while the refining class is in feature CreateTask
(lines 22-29). Notice the position of keyword original at
the end of the refining method.

Overwrite method. For instance, we have a class C de-
picted in Figure 15 (a) which has a method m with parameters
ps and return type T. This pattern refactors class C into two
classes, that have both the refactored method m. However, they

class C{ (a)
fs
ms
Tm(ps) {
bodyA
body”
}
}
classC{ (b) class C{ ()
s Tmips)
Trmips) { badyA
body” original(ps)
;)/
}

Fig. 13: Refactoring addition at beginning of method: (a)
original, (b) refactored and (c) refining classes

1 |// Original GanttProject

2 | void changeLanguageOfMenu () {

3 bNewTask.setToolTipText(getToolTip //bodyA
4 (correctLabel (

5 language . getText("createTask"))));

6

7 getTabs (). setTitleAt (1, //body’’
8 correctLabel (

9 language . getText("human")));

10 setButtonText (); //body’’
11 toolBar.updateButtonsLook (); //body’’
12 |}

13 | // Refactored Feature GanttProject

14 | void changeLanguageOfMenu(){ // T m(ps)

15

16 getTabs (). setTitleAt (1, //body "’
17 correctLabel (

18 language . getText("human")));

19 setButtonText (); //body "’
20 toolBar.updateButtonsLook (); //body’’
21 |}

22 | // Refining Feature CreateTask

23 | void changeLanguageOfMenu () { // T m(ps)
24 bNewTask.setToolTipText(getToolTip //bodyA
25 (correctLabel (

26 language . getText("createTask"))));

27

28 original (); //original (ps)
29 |}

Fig. 14: Example addition at beginning

define different method bodies and return expressions, Figure
15(a) and Figure 15(b). Notice that in none of them appears
the keyword original. This means that when both classes
are composed together, one method overwrites the meaning of
the other depending on the order in which they are composed
[7].

Figure 16 illustrates an example of the overwrite refactoring
pattern in getTaskManager method (lines 1-4). Note that
for this method, we just have the element return v in the
original class (line 3), thus there is no body for this example.
This method is also refactored in two pieces. One method
is contained in feature GanttProject feature (lines 5-8),
and the second method is contained in feature TaskProp

TABLE II: Gantt Project Requirements, Features, and Refactoring Criteria

[Requirement/ Features [Requirement description

Refactoring Criteria

R1/CreateTask Create Tasks Code enabling tasks creation
R2/DeleteTask Delete Tasks Code enabling tasks deletion
R3/TaskProp Maintain Task Properties Code that maintains task properties
R4/Subtask Add/Remove Tasks as Subtasks Code that creates and deletes tasks as subtasks
R5/Miles Handle Milestones Code enabling milestones handling
R6/CreateHum Create Resources (person) Code that creates human resources
R7/DeleteHum Delete Resources (person) Code that deletes human resources
R8/HumProp Maintain Resource Properties Code for maintaining resource properties
R9/Links Add/Remove Task Links Code that adds and removes task links
R10/Dependenc Add/Remove Resources to Tasks Dependencies Codes that adds/removes resources to task dependencies
R11/TimesUser Change Task Begin/End Times manually with user changes Code that allows user to change task times
R12/TimesDep Change Task Begin/End Times automatically with dependency changes | Code that changes task times by dependency changes
R13/TimesTask Change Task Begin/End Times automatically with subtask changes Code that implements task times by subtask changes
R14/Prevent Prevent Circular Dependencies Code for preventing circular dependencies
R15/Vacations Add/Remove Holidays and Vacation Days Code for adding and deleting vacation days
R16/HumUtil Show Resource Utilization (underused or overused person) Code for showing utilization of a resource
ts (a) class C{ class C{
class C{ Dfs fs
fs ms —>| ms
ms } }
Tm(ps){
body Fig. 17: Remove field modifiers declarations
returnv
}
}
L T~ removes the modifiers declarations of a field. For instance,
ts w) ||t (©) Figure 10 left depicts a class C with both methods ms and field
"f":scf "/,"SSSC{ fs. Field f£s has modifiers declarations D. Due to refactoring
‘ms ms process, the developer might need to remove this declaration of
Tm{pS)’{ Tm(pszf modifiers to the variable. Therefore, the solution is to remove
body” | body” | directly this declaration as shown in Figure 17 on the right.
returnv returnv
} } For example, removing modifier final in the following
! ! statement:

Fig. 15: Overwrite method: (a) original, (b) refactored and (c)
refining classes

1 |// Original class GanttProject

2 | public TaskManager getTaskManager(){ //T m(ps)
3 return myTaskManager; //return v
411

5 | // Refactored in Feature GanttProject

6 | public TaskManager getTaskManager(){ //T m(ps)
7 return null; //return v
8 |}

9 | // Refining in Feature TaskProp

10 | public TaskManager getTaskManager(){ //T m(ps)
11 return myTaskManager; //return v’
12 |}

Fig. 16: Example overwrite method

(lines 9-12). In this example, please note that the first method
is empty and because it has a return value we return null.
When the refining method overwrites the method it returns
myTaskManager instead.

Remove field modifiers declarations. This pattern just

private final HumanResourceManager myresourceManager;

Notice here that the removal of the modifiers is a conse-
quence of the composition mechanism used by FEATURE-
HOUSE. Ways to address this limitation have been presented
in Apel’s et al. work [18].

V. CASE STUDY ANALYSIS

In this section we summarized the findings of our study
and present the insights gained by our work that suggest
possibilities for further research.

A. General statistics

We applied our refactoring approach to two systems. Refac-
toring VODPlayer (3.5 KLOC) took 4 days of work (approx.
32 hours). We found that each feature on average refines two
distinct classes (minimum 1 and maximum 4) and adds two
methods. For each method refined, there are on average 2-
3 features involved (minimum 1 and maximum 10). We also
noticed that the number of methods and the total LOC increase
after refactoring. This is due to method refinements because
of the wrapping that FEATUREHOUSE does for composing
them. The total increase is a small 0.42%.

Refactoring Gantt Project (41 KLOC) proved a daunting
task, because additional to the sheer size of the system there

was no proper project documentation available. We had to rely
on a lot of trial and error, and exhaustive code inspections.
The total effort required 43 days of work, so an order of
magnitude increase on the code size implied for us an order
of magnitude increase in refactoring time. We found that each
feature on average: makes 12 class refinements, has 82 base
methods, makes 5 method refinements and hook methods. For
this case study, the number of LOC and number of methods
also increased after the refactoring process, again because of
the composition done by FEATUREHOUSE. The increment
was still quite negligible with a 0.47%.

Table III summarizes the number of occurrences found of
each pattern. For VODPlayer the most frequent pattern was
the addition at end. The second most frequent was the move
entire class pattern, this was the case because there were
listener classes completely related to particular features. For
Gantt Project, the most frequent pattern was by far move entire
method. We argue that these results bear a relation to both the
granularity of our requirement descriptions and the size of
the system. In VODPlayer the requirements — our features
— were fine grained, when considering the small size of the
system, and thus demanded more fine grain patterns. On the
contrary, in the Gantt Project the requirements were more
broad and coarse grained requiring more coarse grain patterns.
Additionally, the underlying implementation technology may
as well play an important role when selecting the granularity
of features [19]. The exact relation between these three factors
is an issue we plan to explore.

B. Patterns and their composition

In the refactoring of VODPlayer we identified 6 patterns.
However, when we analyzed the Gantt Project we realized that
two of them could be fused into a more general version of the
hook method pattern which is the one we presented in section
IV-A2. This finding suggests the possibility of expressing more
complex patterns in terms of simpler ones. Thus, part of our
future research is to investigate how to formally describe,
represent and reason about the patterns we found, along the
lines of the work by Bayley et al. [20].

C. Selection Criteria

Perhaps one of the most difficult parts of the refactoring
experience was selecting the appropriate criteria to describe
what is in a feature. For VODPlayer the criteria was simpler
to obtain as it was easy to associate features with the visual
elements of the GUI and trace the corresponding relations.
However, the Gantt Project posed a set of additional challenges
as these traces were sometimes either ambiguous or hard to
obtain because of the size of the programs. In this regard, we
believe that a more formal approach to express the selection
criteria may help address this problem. An approach we will
investigate is based on the work of Classen et al. [21].

D. Feature Module Disambiguation

Element sharing among more than one feature is a common
occurrence. For example, in VODPlayer 9 variables were

shared each of them involving (on average) between 2 and 3
features, and in the Gantt Project 27 variables were shared each
involving (on average) between 3 and 4 features. In our study
we followed a simple and straightforward strategy to disam-
biguate where a code fragment is modularized when more than
one feature share it. The priority scheme we used favors first
the root feature, followed by mandatory and optional features.
In VODPlayer, 5 variables were modularized in the root,
3 in mandatory features and 1 in an optional feature. In the
Gantt Project, 21 variables were moved to the root and 6 into
mandatory features.

Though in our example the priority scheme worked fine,
this scheme may not yield optimal results in SPLs with more
complex feature models. A strategy that we will explore to
address this limitation relies on operations of feature mod-
els [22]. More concretely, on the commonality value which
represents the percentage a configuration (one feature in our
case) appears in all possible feature combinations expressed in
the feature model. We believe that refactoring a shared code
fragment into the sharing feature with higher commonality
reduces the chances of configuration problems. This is a claim
we are working to evaluate empirically.

E. Refactoring Identification

One of the prerequisites to automate the refactoring patterns
presented in this paper is to be able to recover or identify them
directly from source code. An approach we plan to investigate
is based on the work of Rasool et al. [23]. This approach
works by using annotations, regular expressions and database
queries to match a refactoring pattern to the source code
elements. Alternatively, we have ongoing research on using
execution traces for tracing requirements to code [24]. We
believe that this work can potentially help both to corroborate
the refactoring instances obtained in our study and to shed
some light for helping the automation of FOR.

F. Refactoring Application

Once an instance of a refactoring pattern has been identified,
the next step is to perform a transformation to actually carry
out the refactoring. We are considering two main alterna-
tives for the implementation of the refactorings. The first
alternative is using general purpose transformation languages,
such as TXL which provides strong support for structural
analysis and program transformation based on formal notations
such as programming languages, specification languages, and
structured documents [25]. The second option is specifying
the refactorings by example, like it is performed in several
model refactoring approaches such as [26]. In this alterna-
tive, refactorings are specified via abstract templates derived
by computing the differences between a model before and
after the refactoring is applied. The main challenge here is
specifying and validating correctly and completely all the
preconditions that should be met for a refactoring to be
applied.

TABLE III: Summary of refactoring patterns occurrence, and percentages

[Pattern Name

| VODPlayer | Gantt | VODPlayer% | Gantt% |

Addition at the beginning 0 5 0 1
Addition at the end of the method 22 41 28 9
Addition anywhere with a hook method 8 47 10 10
Overwrite method 0 25 0 5
Move entire method 12 192 16 41
Move field 17 35 22 8
Remove field modifiers declarations 0 10 0 2
Move entire class 19 110 24 24
TOTAL 78 465 100 100

G. Refactoring Validation

Considering that our two case studies do not yield a large
number of feature configurations, we manually tested all
the combinations and made sure they provide the expected
functionality.

H. Study Limitations

Next we list the limitations we identified in our study and
describe how we plan to address them in our future work:

o Small number of systems analyzed. The scope of our
study consisted of two systems that we selected for their
size, a small one to develop and fine tune our FOR
process and a larger one to corroborate and extend the
results obtained in the first system. Certainly to address
this limitation we plan to apply our approach to more
case studies not only of different sizes but also of varied
domains.

e Refactoring patterns tied to a language and supporting
platform. Our work focused on Java language and FEA-
TUREHOUSE. Certainly FOSD is applicable to other
languages [13], [27], and consequently refactoring pat-
terns for other languages could also be identified. This is
also a venue for further research.

o Ambiguous interpretation of requirement specifications.
The requirements we worked on were provided as prose,
consequently they may be open to more than one inter-
pretation. In other words, the meaning of a feature may
be different among different stakeholders. One way to
reduce this ambiguity is to involve more people in the
refactoring process and employ more precise specification
approaches as mentioned above.

VI. RELATED WORK

There is an extensive body of literature of related work. For
sake of brevity we present only those works closest to ours.

The refactoring approach we followed was inspired by Liu
et al. research [14]. In contrast to our work, they develop an
algebraic theory of feature refactoring. This theory supports
reasoning about features and their interactions. Work on FOR
by Kistner et al. proposes a model for refactoring features
that are virtually and physically separated [28], in contrast
with our work that extracts features from an interpretation
of requirements in natural language. Additionally, work by
Kuhlemann et al. [29] proposes refactorings of feature modules

to accomodate for mismatches with legacy applications instead
of refactorings from standard systems as in our study.

Our refactoring work relates to three other main research
topics. The first is feature location [30] which consists on
identifying the parts of the source code that correspond to a
specific functionality. It is one of the most common activities
undertaken by developers when they must find the location
in the code where the first change must be made when
evolving a system. This can be done manually but tool support
becomes essential when programs are large and complex.
Three alternatives have been proposed: dynamic that relies on
execution traces, static that uses text patterns on the source
code, and hybrid that combines the benefits of both previous
approaches. In contrast, our feature location process was
totally manual, meaning that first we had to understand how
the program worked and then try to assign each code element
to a feature. In principle, existing automated tool support for
feature location could be used for our purposes. However,
special consideration should be taken as in this research
area there is no consideration for the inherent variability that
features can have in SPLs.

A second related topic is program comprehension which
essentially means understanding the software systems being
dealt with [30]. There are many approaches and tools that
could be leveraged for our purposes [31]-[34], but again it
is an open question how those approaches would need to be
adapted (if at all) to consider feature variability.

The last related topic, the optional feature problem, de-
scribes a common mismatch between variability intended in
the domain and dependencies in the implementation [35]. The
problem of the optional feature arises when the implementa-
tion of two optional features is not independent. This means
that some variants that are valid in the domain cannot be
produced due to implementation issues. Several solutions are
proposed to solve this problem but all of the approaches suffer
some disadvantages such as variability reduction, development
effort increase, program performance and binary size dete-
rioration or code quality decrease. Two main approaches of
handling the problem are proposed. The first is to keep the
implementation dependency, which means that variability is
reduced as some variants cannot be produced. And the second
is to change the feature implementation, which has five differ-
ent ways of eliminating the implementation dependency. In our
study, we addressed a simplified version of this problem and

removed the dependency to the feature with higher priority.

VII. CONCLUSIONS

Evolving single systems into SPLs is becoming a more
pervasive demand in the software industry to cope with the
increasing variability present in modern software systems. This
evolution requires the ability to identify features in single
systems and refactor them usually exploiting advanced modu-
larization paradigms. In this paper, we present our experience
in refactoring two systems, one of small size and a larger
one publicly available as an open source project. Our work
followed a three-step refactoring process. We identified 8
recurring refactoring patterns and proposed a simple scheme
for disambiguating shared code elements. Finally, we dis-
cussed the main issues and alternatives towards automating
our refactoring approach.

ACKNOWLEDGMENT

This research is partially sponsored by the Austrian FWF
under agreement P21321-N15 and and Marie Curie Actions -
Intra-European Fellowship (IEF) project number 254965. Leti-
cia research was sponsored by the Erasmus exchange program
and the government of the Basque Country Spain. Currently,
she is partially sponsored by the Universitat Politecnica de
Catalunya.

REFERENCES

[1] D. S. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Software Eng., vol. 30, no. 6, pp. 355-371,
2004.

[2] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[5] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Softw., Pract. Exper., vol. 35, no. 8, pp. 705-754,
2005.

[6] F.J. vand. Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[7]1 D. Batory, “AHEAD Tool
http://www.cs.utexas.edu/users/schwartz/ATS .html.

[8] D. Batory and S. O’Malley, “The Design and Implementation of Hier-
archical Software Systems with Reusable Components,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), vol. 1, no. 4,
pp. 355-398, 1992.

[9] S. Trujillo, D. S. Batory, and O. Diaz, “Feature oriented model driven

development: A case study for portlets,” in /CSE. IEEE Computer

Society, 2007, pp. 44-53.

D. S. Batory, R. E. Lopez-Herrejon, and J.-P. Martin, “Generating

product-lines of product-families,” in ASE. IEEE Computer Society,

2002, pp. 81-92.

R. E. Lopez-Herrejon, D. S. Batory, and C. Lengauer, “A disciplined

approach to aspect composition,” in PEPM, J. Hatcliftf and F. Tip, Eds.

ACM, 2006, pp. 68-77.

Suite,” 2010,

[10]

[11]

[12] D. S. Batory, “Using modern mathematics as an fosd modeling lan-
guage,” in GPCE, Y. Smaragdakis and J. G. Siek, Eds. ACM, 2008,
pp. 35-44.

[13] S. Apel, C. Kistner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in /CSE. IEEE, 2009,
pp. 221-231.

[14] J. Liu, D. S. Batory, and C. Lengauer, “Feature oriented refactoring

of legacy applications,” in ICSE, L. J. Osterweil, H. D. Rombach, and
M. L. Soffa, Eds. ACM, 2006, pp. 112-121.

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ramalho,
“Extracting and evolving code in product lines with aspect-oriented
programming,” 7. Aspect-Oriented Software Development, vol. 4, pp.
117-142, 2007.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
1999.

“Gantt Project,” 2010, http://www.ganttproject.biz/.

S. Apel, J. Liebig, C. Kistner, M. Kuhlemann, and T. Leich, “An
orthogonal access modifier model for feature-oriented programming,” in
FOSD, ser. ACM International Conference Proceeding Series, S. Apel,
W. R. Cook, K. Czarnecki, C. Késtner, N. Loughran, and O. Nierstrasz,
Eds. ACM, 2009, pp. 27-33.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in ICSE, W. Schifer, M. B. Dwyer, and V. Gruhn, Eds.
ACM, 2008, pp. 311-320.

I. Bayley and H. Zhu, “On the composition of design patterns,” in QSIC
’08: Proceedings of the 2008 The Eighth International Conference on
Quality Software. Washington, DC, USA: IEEE Computer Society,
2008, pp. 27-36.

A. Classen, P. Heymans, and P.-Y. Schobbens, “What’s in a feature:
A requirements engineering perspective,” in FASE, ser. Lecture Notes
in Computer Science, J. L. Fiadeiro and P. Inverardi, Eds., vol. 4961.
Springer, 2008, pp. 16-30.

D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615-636, 2010.

G. Rasool, I. Philippow, and P. Méder, “Design pattern recovery based
on annotations,” Adv. Eng. Softw., vol. 41, no. 4, pp. 519-526, 2010.
B. Burgstaller and A. Egyed, “Understanding where requirements are
implemented,” in /CSM. 1EEE Computer Society, 2010, pp. 1-5.
“TXL,” 2010, http://www.txl.ca/.

P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel,
W. Retschitzegger, and W. Schwinger, “An example is worth a thousand
words: Composite operation modeling by-example,” in MoDELS, ser.
Lecture Notes in Computer Science, A. Schiirr and B. Selic, Eds., vol.
5795. Springer, 2009, pp. 271-285.

S. Apel, C. Kistner, A. GroBlinger, and C. Lengauer, “Feature
(de)composition in functional programming,” in Software Composition,
ser. Lecture Notes in Computer Science, A. Bergel and J. Fabry, Eds.,
vol. 5634. Springer, 2009, pp. 9-26.

C. Kistner, S. Apel, and M. Kuhlemann, “A model of refactoring
physically and virtually separated features,” in GPCE, J. G. Siek and
B. F. 0002, Eds. ACM, 2009, pp. 157-166.

M. Kuhlemann, D. S. Batory, and S. Apel, “Refactoring feature mod-
ules,” in ICSR, ser. Lecture Notes in Computer Science, S. H. Edwards
and G. Kulczycki, Eds., vol. 5791. Springer, 2009, pp. 106-115.

B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Trans. Software Eng., vol. 35, no. 5, pp. 684—
702, 2009.

N. Wilde and M. C. Scully, “Software reconnaissance: Mapping
program features to code,” Journal of Software Maintenance: Research
and Practice, vol. 7, no. 1, pp. 49-62, 1995. [Online]. Available:
http://dx.doi.org/10.1002/smr.4360070105

W. E. Wong and S. Gokhale, “Static and dynamic distance
metrics for feature-based code analysis,” Journal of Systems
and Software, vol. 74, mno. 3, pp. 283 - 295, 2005. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6VON-
4C8PDY97-1/2/1655dcfe96cbtb26c1b44899890b9240

R. Koschke and J. Quante, “On dynamic feature location,” in ASE, D. F.
Redmiles, T. Ellman, and A. Zisman, Eds. ACM, 2005, pp. 86-95.
M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cer-
berus: Tracing requirements to source code using information retrieval,
dynamic analysis, and program analysis,” in ICPC, R. L. Krikhaar,
R. Lammel, and C. Verhoef, Eds. IEEE Computer Society, 2008, pp.
53-62.

C. Kistner, S. Apel, S. S. ur Rahman, M. Rosenmiiller, D. S. Batory, and
G. Saake, “On the impact of the optional feature problem: analysis and
case studies,” in SPLC, ser. ACM International Conference Proceeding
Series, D. Muthig and J. D. McGregor, Eds., vol. 446. ACM, 2009,
pp. 181-190.

