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Abstract—In continual learning, the learner learns multiple
tasks in sequence, with data being acquired only once for each
task. Catastrophic forgetting is a major challenge to continual
learning. To reduce forgetting, some existing rehearsal-based
methods use episodic memory to replay samples of previous
tasks. However, in the process of knowledge integration
when learning a new task, this strategy also suffers from
catastrophic forgetting due to an imbalance between old
and new knowledge. To address this problem, we propose
a novel replay strategy called Manifold Expansion Replay
(MaER). We argue that expanding the implicit manifold of
the knowledge representation in the episodic memory helps
to improve the robustness and expressiveness of the model.
To this end, we propose a greedy strategy to keep increasing
the diameter of the implicit manifold represented by the
knowledge in the buffer during memory management. In
addition, we introduce Wasserstein distance instead of cross
entropy as distillation loss to preserve previous knowledge.
With extensive experimental validation on MNIST, CIFAR10,
CIFAR100, and TinyImageNet, we show that the proposed
method significantly improves the accuracy in continual learn-
ing setup, outperforming the state of the arts.

Index Terms—continual learning, catastrophic forgetting,
manifold diameter, Wasserstein distance

I. INTRODUCTION

Continual learning, also known as incremental learning

[1]–[3], refers to the process of sequentially learning mul-

tiple tasks without forgetting previous knowledge. In this

setting, catastrophic forgetting [4], [5] is a major challenge

for continual learning, where previously learned knowledge

is lost when learning new tasks.

Continual learning has recently gained increasing atten-

tion in the field of artificial intelligence. Various strategies

have been proposed to overcome catastrophic forgetting [6],

including rehearsal-based strategies [7]–[9], regularization-

based strategies [10], [11], and parameter isolation-based

strategies [12], [13]. These strategies are mutually orthog-

onal and can be combined in a specific scenario. Among
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these strategies, rehearsal-based methods have proven to be

a simple yet effective approach that uses episodic memory

to replay training samples. Despite its encouraging success,

there are still challenges that need to be addressed, includ-

ing the issue of overfitting and biased knowledge represen-

tation due to knowledge imbalance in episodic memory. A

naive but effective solution is increasing the memory size

when new samples come. However, this approach increases

the memory requirement and violates the setting of limited

memory resource requirements in continual learning.

To address this issue, we propose a novel replay strat-

egy called Manifold Expansion Replay (MaER). MaER

investigates two factors to improve neural network perfor-

mance in continual learning settings. Firstly, MaER views

the process of continual learning as a fusion of implicit

manifolds represented by knowledge. When the diameters

of manifolds are imbalanced, the larger one will receive

more bias while the smaller one will experience forget-

ting. Inspired by this, MaER adopts a greedy sampling

strategy to manage memory, helping the neural network

to learn unbiased presentation of all data. Secondly, MaER

introduces the Wasserstein distance as distillation loss. The

Wasserstein distance between two distributions is defined

as the minimum cost required to match one distribution

with another. Unlike traditional distance metrics such as

Euclidean distance, Wasserstein distance considers the un-

derlying structure of the compared distributions, which can

help the neural network better fuse knowledge manifolds.

We mainly evaluate MaER on Permuted MNIST, Ro-

tated MNIST, Split CIFAR10, Split CIFAR100, and Split

TinyImageNet datasets. The extensive ablation studies and

experimental results show that MaER gains significant

performance improvement, outperforming state-of-the-art

in accuracy.

Our contributions are summarized as follows:

• We propose a greedy sampling strategy to balance

knowledge by expanding the diameter of the knowl-
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edge manifold in episodic memory.

• We propose to distill knowledge using Wasserstein

distance, which helps neural networks effectively fuse

knowledge in continual learning.

II. RELATED WORK

Here we briefly review previous research works. Existing

works can be divided into three categories, i.e., rehearsal-

based, regularization-based, and parameter isolation-based.

a) Rehearsal-based Strategy: The rehearsal-based

strategy can be viewed as a review strategy that uses a

capacity-limited buffer called episodic memory to replay

a portion of the samples from the previous task at each

training session. Despite its simplicity, this rehearsal strat-

egy has been shown to be effective and work well when

large memories are available. Typical approaches include In-

cremental Classifier and Representation Learning (iCaRL)

[14], Experience Replay (ER) [7], Selective Experience

Replay (SER) [15], Continual Prototype Evolution (CoPE)

[16] and Tiny Experience Replay (TEM) [17].

b) Regularization-based Strategy: In contrast to the

rehearsal strategy, the regularization strategy adopts a more

strict continual learning setup. This strategy aims to re-

duce forgetting without accessing prior task data. Existing

methods can be further divided into two categories, i.e.,

Data-focused and prior-focused [16]. The main idea of data-

focused methods is to transfer knowledge from a teacher

model to a student model using the knowledge distillation

technique, where the teacher model has been trained on

previous tasks. The idea of using knowledge distillation to

improve performance on new tasks in continual learning

was first proposed by [18]. Subsequent research has proven

that knowledge distillation can also reduce forgetting. Typ-

ical methods include Learning without Forgetting (LwF)

[19], Learning from Less (LFL) [20], and Dark Knowledge

distillation with Memory Consolidation (DMC) [21]. The

basic idea of prior-focused methods is to estimate the im-

portance of parameters to previous tasks and then penalize

changes to important parameters during training to prevent

catastrophic forgetting. This strategy has been shown to be

effective. Typical methods include Elastic Weight Consoli-

dation (EWC) [11], Variational Continual Learning (VCL)

[22], Incremental Moment Matching (IMM) [23], Synaptic

Intelligence (SI) [10], and Riemannian Walk (RW) [2].

c) Paramters Isolation-based Strategy: This strategy

overcomes catastrophic forgetting by selecting parameters

from a fixed network or dynamically modifying the network

structure. Typical methods, selecting a subnetwork for each

task, include Hard Attention (HAT) [24], PackNet [25], and

PathNet [26]. HAT uses a hard attention mask to selectively

prune network parameters, retaining important features rel-

evant to the current task and reducing forgetting. PackNet

uses the network pruning technique to make the network

adapt to multiple tasks. PathNet divides the network into

sub-networks, with each sub-network responsible for each

task. Dynamically expanding network structure and estab-

lishing new neural connections for new tasks has also been

proven to be an effective strategy. Typical methods include

Progressive Neural Networks (PNN) [12], Deep Adaptive

Network (DAN) [27], and Reinforced Continual Learning

(RCL) [28]. Both PNN and DAN adopt a hierarchical

structure, where new network layers are established for

new tasks, and each layer is responsible for a specific task.

RCL, on the other hand, employs reinforcement learning

techniques to adjust the network’s learning strategy by

rewarding and punishing its learning process.

III. CONTINUAL LEARNING SETUP

In continual learning, a learner needs to sequentially

learn T tasks {(X1,Y1, ..., (XT ,YT )}. (Xt,Yt) represents

a dataset Dt = {(x1
t , y

1
t ), ..., (x

nt

t , ynt

t )} from task t,

randomly sampled from an unknown distribution Pt, where

xt represents the sample, yt represents the corresponding

ground truth label, and nt represents the number of samples

in the dataset. We assume that the learner can use a

capacity-limited buffer M to store a small number of

samples during learning. Our goal is to train a predictor

f = (w ◦ Φ) : X → Y , composed of a feature extractor Φ
and a classifier w, that minimizes the risk over all the data

it has seen while only having access to a limited number

of samples from previous tasks that are stored in M:

1

T

T
∑

t=1

E(x,y)∼Pt
[ℓ(f(x; θ), y)], (1)

where θ denotes the parameters of model and ℓ denotes the

loss function.

Evaluation Metrics. Following [2], [17], [29], we use av-

erage classification accuracy (ACC) and backward transfer

(BWT) to evaluate performance. Formally, ACC is defined

as:

ACC =
1

T

T
∑

j=1

aT,j , (2)

where ai,j denotes the test accuracy of the model on task j

after learning task i. BWT is defined as the average change

in accuracy of old tasks after learning a new task:

BWT =
1

T − 1

T−1
∑

j=1

max
l∈{1,...,T−1}

(al,j − aT,j) . (3)

A positive value of BWT means that learning a new task

benefits the old tasks, while a negative value indicates that

learning a new task interferes with the old tasks.

IV. MANIFOLD EXPANSION REPLAY

Recent research has shown that the replay strategy is a

simple and effective approach to continual learning. How-

ever, to develop more robust methods based on the replay

strategy, two issues need to be considered: (1) how to replay

during the training phase and (2) how to sample and manage



TABLE I
CLASSIFICATION RESULTS FOR SPLIT CIFAR10, SPLIT TINYIMAGENET, PERMUTED MNIST AND ROTATED MNIST.

Buffer Method Split CIFAR10 Split TinyImageNet P-MNIST R-MNIST

-
JOINT 98.31 ± 0.12 82.04 ± 0.10 94.33 ± 0.17 95.76 ± 0.04
SGD 61.02 ± 3.33 18.31 ± 0.68 40.70 ± 2.33 6.77± 8.53

-

oEWC 68.29 ± 3.92 19.20 ± 0.31 75.79 ± 2.25 77.35 ± 5.77
SI 68.05 ± 5.91 36.32 ± 0.13 65.86 ± 1.57 71.91 ± 5.83
LwF 63.29 ± 2.35 19.20 ± 0.31 - -
PNN 95.13 ± 0.72 67.84 ± 0.29 - -

200

ER 91.19 ± 0.94 38.17 ± 2.00 72.37 ± 0.87 85.01 ± 1.90
A-GEM 83.88 ± 1.49 22.77 ± 0.03 66.42 ± 4.00 81.91 ± 0.76
iCaRL 88.99 ± 2.13 28.19 ± 1.47 - -
HAL 82.51 ± 3.20 - 74.16 ± 1.65 84.02 ± 0.98
DER 91.40 ± 0.92 40.22 ± 0.67 81.74 ± 1.07 90.04 ± 2.61
SNCL 92.91 ± 0.81 43.01 ± 1.67 86.23 ± 0.20 91.54 ± 2.58
MaER (ours) 92.56 ± 0.49 46.34 ± 0.79 90.04 ± 0.28 91.88 ± 1.96

500

ER 93.61 ± 0.27 48.64 ± 0.46 80.60 ± 0.86 88.91 ± 1.44
A-GEM 89.48 ± 1.45 25.33 ± 0.49 67.56 ± 1.28 80.31 ± 6.29
iCaRL 88.22 ± 2.62 31.15 ± 3.27 - -
HAL 84.54 ± 2.36 - 80.13 ± 0.49 85.00 ± 0.96
DER 93.40 ± 0.39 51.78 ± 0.88 87.29 ± 0.46 92.24 ± 1.12
SNCL 94.02 ± 0.43 52.85 ± 0.67 88.53 ± 0.41 93.05 ± 1.02
MaER (ours) 93.29 ± 0.42 54.65 ± 0.77 92.34 ± 0.54 92.55 ± 1.08

TABLE II
AVERAGE ACCURACY (ACC) AND FORGETTING (BWT) RESULTS ON SPLIT CIFAR100.

Method Episodic Memory

ACC BWT

100 300 500 100 300 500

A-GEM 54.9± 2.92 56.9± 3.45 59.9± 2.64] 0.14± 0.03 0.13± 0.03 0.10± 0.02
ER 49.7± 2.97 57.7± 2.59 60.6± 2.09 0.19± 0.03 0.11± 0.01 0.09± 0.02
ER-RING 56.2± 1.93 60.9± 1.44 62.6± 1.77 0.13± 0.01 0.09± 0.01 0.08± 0.02
ER-RESERVOIR 53.1± 2.66 59.7± 3.87 65.5± 1.99 0.19± 0.02 0.12± 0.03 0.09± 0.02
MaER(ours) 57.46 ± 0.95 62.61 ± 1.59 66.4 ± 1.56 0.19± 0.01 0.13± 0.01 0.09± 0.01

FINETUNE 40.6± 3.83 - - - - -
EWC 41.2± 2.67 - - - - -

TABLE III
ABLATION STUDY OF THE DIFFERENT COMPONENTS IN PROPOSED

METHOD. LWD DENOTES THE WASSERSTEIN DISTANCE.

Method Dataset

ACC (%)

Memory size

100 300 500

LCE

P-MNIST 77.64 82.62 85.38
Split CIFAR100 56.43 59.64 64.05

LCE + LWD

P-MNIST 81.79 87.72 90.14
Split CIFAR100 57.49 62.46 66.37

MaER
P-MNIST 84.47 89.52 92.07

Split CIFAR100 57.99 63.95 67.86

memory after each task training. Our approach, MaER,

designs strategies for these two stages from a geometric

perspective.

A. How to Replay

In the replay strategy, the number of samples collected

for replay is limited. This poses a challenge in recalling

the knowledge of the entire task from these samples. If a

classification loss is used when training replay samples, the

model can only learn to classify these samples rather than

previous tasks. As a result, the model may still suffer from

catastrophic forgetting as the number of tasks increases.

For a specific task, we assume that each sample represents

a piece of meta-knowledge. The model learns the entire

knowledge manifold by learning from these samples. We

now consider the first problem encountered: how to inte-

grate this meta-knowledge when learning new tasks to form

a more comprehensive knowledge manifold. To do this,

we need to measure the distance between two knowledge

manifolds. Intuitively, the distance between the new and old

knowledge manifolds should be small because previously

acquired meta-knowledge does not change. If we view the

knowledge manifold as a distribution of meta-knowledge,

one possible choice for a distance metric is KL divergence,

which is commonly used to measure the distance between

two distributions. However, KL divergence cannot be used

as a strict distance function because it is asymmetric and

cannot provide distance information when two distributions



do not overlap. Our method, MaER, uses Wasserstein

distance to measure the distance between two knowledge

manifolds.

In mathematics, the Wasserstein distance is a distance

function defined between probability distributions on a

given metric space (M,ρ), where ρ(x, y) is a distance func-

tion for two instances x and y in the set M . Formally, the

p-th Wasserstein distance between two probability measures

µ and ν on M with p-moment is defined as:

Wp(µ, ν) :=

(

inf
γ∈Γ(µ,ν)

∫

M×M

d(x, y)p dγ(x, y)

)1/p

,

(4)

where Γ(µ, ν) represents the set of all coupling of µ and ν.

Wasserstein distance has some good properties. In contrast

to KL divergence, Wasserstein distance is a symmetric

metric and provides information even if the distributions

do not overlap.

Now we describe how MaER uses the Wasserstein

distance to facilitate meta-knowledge fusion in continual

learning. When learning task i, we have a teacher model

ft that has learned the previous i − 1 tasks and a student

model fs responsible for learning task i. For a sample x, we

use Φs(x; θ) to denote the knowledge representation of fs
for that sample, where Φs denotes the feature extractor for

fs. Our objective is for the student model fs to effectively

learn task i. To achieve this, we train fs on samples from

task i using the cross-entropy loss function for classification.

Concurrently, it is imperative that fs retains the knowledge

acquired from previous tasks. During training, we replay

samples from the memory buffer M, and in addition to

learning to classify these samples accurately, we aim to

minimize the Wasserstein distance between the knowledge

representation learned by fs and that of the teacher model

ft. Taking these considerations into account, the new loss

function is defined as:

L =E(x,y)∼Dt
[ℓ(fs(x; θ), y)]

+ E(x,y)∼M[ℓ(fs(x; θ), y) +Wp(Φs(x; θ),Φt(x; θ))],
(5)

where ℓ is the cross-entropy function in classification tasks.

For ease of computation, we use the Wasserstein distance

with p = 2 and assume that meta-knowledge is equally im-

portant. In MaER, the calculation of W2 can be simplified

to the following form:

W2(P,Q) = (
1

n

n
∑

i

d(x, y)2)1/2, (6)

where d is the distance function in metric space M , which

can be Euclidean distance or geodesic distance.

B. How to Manage Memory

We now turn to the second problem: how to sample

such that a small number of meta-knowledge can represent

the knowledge manifold of the entire task as much as

possible. We assume that the meta-knowledge is uniformly

distributed over this knowledge manifold. We can only

Algorithm 1 Manifold Expansion Sampling

Input: Φs, Dt,M,mem size, n

Output: M
j ← 0
for (x, y) in Dt do

if |M| < mem size then

M.append(x, y)

else

feature M← Φs(M)
C, diameter← CentroidAndDiameter(feature M)
feature x← Φs(x)
if distance(C, feature x) > diameter then

i← randint(0, |M|)
M[i]← (x, y)

else

i← randint(0, n+ j)
if i < mem size then

M[i]← (x, y)
end if

end if

end if

j ← j + 1
end for

n← n+ j

Return M

sample a small fraction of meta-knowledge to represent the

whole manifold. Intuitively, our sampling method needs to

account for two aspects: (1) sample as uniformly as possible

to maintain the geometric properties, (2) the sampled meta-

knowledge should span the entire knowledge manifold as

much as possible, avoiding bias towards new knowledge

and preventing forgetting during learning. To address this

problem, MaER employs a greedy strategy that incremen-

tally enlarges the diameter of the manifold during the

sampling process. First, the sampling process is stochastic.

When a new sample arrives, if M is already full, then

each sample in M has an equal chance of being replaced.

Stochastic sampling preserves the consistency of the data

distribution in M and the original distribution. Second,

MaER’s sampling strategy guarantees that samples that can

augment the diameter of the manifold are always collected.

For other samples, MaER will collect them with a certain

probability. The criterion for determining whether a sample

can augment the diameter of the manifold is essential

for understanding MaER’s sampling strategy. We begin by

introducing the concepts of the centroid and diameter of

a manifold. The Fréchet mean is a natural generalization

of the centroid and can be applied to any manifold. For a

metric space X = (X, d, µ), its Fréchet mean is defined as:

argmin
x∈X

∫

X

d2(x, y)dµ(y). (7)

With the manifold centroid C, we can estimate the diameter

of the manifold in a simple and efficient way. We define the



diameter as the largest distance from the centroid C to the

sample x. Having defined these concepts, we can describe

the sampling process for MaER, as shown in Algorithm 1.

V. EXPERIMENTS

We apply MaER to different sequential tasks for con-

tinual learning and compare it with state-of-the-art replay

methods, and then we empirically analyze the proposed

algorithm.

A. Experimental Setting

Here, we begin by describing the continual learning

benchmarks, implementation details, and compared meth-

ods.

Benchmarks. We conducted experiments on several con-

tinual learning datasets: Permuted MNIST, Rotated MNIST,

Split CIFAR10, Split CIFAR100 and Split TinyImageNet.

Permuted MNIST is derived from applying a random

permutation to the pixels. Rotated MNIST is derived from

rotating the image at a random angle. Split CIFAR10, Split

CIFAR100, and Split TinyImageNet are derived from split-

ting CIFAR10, CIFAR100, and miniImageNet, respectively,

such that the classes in the different tasks are disjoint.

Split CIFAR10 consists of 5 tasks, while the other datasets

consist of 20 tasks each.

Implementation details. In the network architecture, we

utilized a three-layer MLP with 256 neurons in the hidden

layer for MNIST and a standard resnet18 for CIFAR10,

CIFAR100 and TinyImageNet. We optimize the parameters

during training using SGD. The learning rate is set to 0.01

for MNIST and 0.003 for others. The batch size is set to

16 for all experiments. We trained the model for 10 epochs

on MNIST, 5 epochs on Split CIFAR100 and 20 epochs on

others.

Compared methods. We compare MaER with several

baseline methods. The rehearsal-based baselines include

iCaRL [14], ER [30], ER-RING [31], ER-RESERVOIR

[31], A-GEM [32], HAL [33], DER [34], and SNCL [35],

with DER and SNCL being the strongest baselines. We

also compare with other strategy-based methods, including

SI [10], EWC [11], oEWC [36], LwF [19], and PNN [12].

Additionally, we compare with two non-continual learning

methods, JOINT and SGD, as upper and lower bounds.

B. Main Results

Table I shows the results of our method using a tiny

buffer on Split CIFAR10, Split TinyImagNet, Permuted

MNIST, and Rotated MNIST. On Split CIFAR10 and

Rotated MNIST, our method achieved competitive results,

differing from state-of-the-art replay methods by 0.5% ∼
0.73%. On Permuted MNIST and Split TinyImageNet, our

method achieves state-of-the-art performance, significantly

outperforming baseline methods. On Split TinyImageNet,

MaER surpassed SNCL by 1.80% ∼ 3.33% in average

accuracy when taking different buffer sizes. On Permuted

P-MNIST, this gap was even more pronounced, with our

method leading SNCL by 3.81% in average accuracy when

taking different buffer sizes. On Split CIFAR10 and Rotated

MNIST, most baselines achieved considerable results. How-

ever, on Permuted MNIST and Split TinyImageNet, the gap

between different methods became more pronounced. These

results indicate that Permuted MNIST and Split TinyIma-

geNet are more challenging when using a tiny buffer. MaER

can work well in challenging scenarios and achieves state-

of-the-art in average accuracy. On Split CIFAR100, we also

compared MaER with more replay strategies. In Table II,

our method surpassed all baselines when taking different

buffer sizes, leading the baseline by 0.9% ∼ 7.64% in

average accuracy. As the buffer size increased, MaER was

able to perform correspondingly better. Table III shows the

ablation study results of different components of MaER.

Here, LWD . represents the Wasserstein distance loss. Com-

pared to the naive replay, both the replay strategy and

memory management in MaER achieve certain performance

improvements.

VI. CONCLUSION

In this paper, we propose a new replay strategy called

MaER. MaER employs knowledge distillation techniques

and introduces the Wasserstein distance between the fea-

tures of the teacher and student models as a distillation loss

to integrate old and new knowledge better. Intuitively, when

integrating two imbalanced knowledge manifolds, the larger

manifold will receive more bias, leading to catastrophic

forgetting. MaER addresses this issue through manifold

expansion sampling. Samples that can expand the manifold

diameter are deterministically sampled, while those within

the diameter range are randomly sampled. Our extensive

experiments demonstrate that MaER performs well with

tiny buffers and achieves state-of-the-art performance.

Limitation. To calculate the Wasserstein distance, MaER

must compute the features of both the teacher and student

models. This requires performing inference on the data

twice, adding a certain computational burden. In mem-

ory management, manifold expansion sampling relies on

calculating manifold diameters. Although we simplify the

calculation of diameters, the cost of these calculations

increases as the number of samples grows. When using

large buffers, these computational overheads can make

MaER slower to train than other methods.
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