
HAL Id: hal-01205874
https://hal.science/hal-01205874v1

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Frequency Assignment Using Cooperative
Self-Organization

Gauthier Picard, Marie-Pierre Gleizes, Pierre Glize

To cite this version:
Gauthier Picard, Marie-Pierre Gleizes, Pierre Glize. Distributed Frequency Assignment Using Coop-
erative Self-Organization. 1st International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2007), Jul 2007, Cambridge, MA, United States. pp.183-192, �10.1109/SASO.2007.18�. �hal-
01205874�

https://hal.science/hal-01205874v1
https://hal.archives-ouvertes.fr

Distributed Frequency Assignment Using Cooperative
Self-Organization

Gauthier Picard, Marie-Pierre Gleizes and Pierre Glize
IRIT - Université de Toulouse III

118, route de Narbonne, F-31062 Toulouse cedex 9 FRANCE
{picard, gleizes, glize}@irit.fr

Abstract

This paper presents an approach using self-organizing
multi-agent systems to solve distributed constraint satisfac-
tion problems (DCSP), which concerns distribution among
agents which task is to assign personal variables to val-
ues with respect with known constraints. Agents only know
their variables and the constraints affecting them, and have
to negotiate to find a collective solution. The proposed ap-
proach defines cooperative self-organization as the process
leading the collective to the solution: agents can change the
organization by their own decision to improve the state of
the system. This work is illustrated on distributed frequency
assignment, a classical constraint-based problem.

1. Introduction

Multi-agent systems are a design paradigm to tackle
distributed and difficult problems such as autonomic com-
puting, ad-hoc networks, manufacturing control or supply
chaining [10, 4]. Once plunged in dynamic environments,
such systems have to respond to changes and pressure.
Since centralized methods can no longer provide answers
for really distributed and huge problems, the adaptive multi-
agent system (AMAS) approach considers that decision to
change the function of the system is owned by the parts
of the system (the agents). These agents are then able to
change the organization of the system to modify the behav-
ior of the whole system [1].

For agents, the trigger to decide when to change the orga-
nization locally is cooperation. Cooperation is considered
as the boundary between two kinds of behaviors: "less al-
truistic as possible" and "less selfish as possible" [12]. Once
an agent is no more cooperative (conflict, uselessness, con-
currency, etc.) it modifies the organization of the system by
changing its position within the environment and the other
agents it knows. This approach, called cooperative self-

organization, has already been applied to difficult problems
such as distributed university time tabling [11, 12].

This paper presents a new solution for distributed cons-
traint-based problems using cooperative self-organization.
This work is close to well-known ABT (Asynchronous
Back-Tracking), ADOPT (Algorithm for Distributed Con-
straint Optimization) or AWC (Asynchronous Weak Com-
mitment) algorithms [14, 9], but does not require a total or-
der among agents, and is comparable to local search-based
algorithms such as tabu search. The AMAS approach is
here applied to a distributed frequency assignment with po-
larization problem (FAPP) which is a distributed version of
the classical frequency assignment problem [2].

This document is structured as follows. First, the exist-
ing multi-agent-based approaches to tackle distributed con-
straint satisfaction and optimization problems are presented.
In section 3, the FAPP is formally described. The proposed
approach and algorithms are then presented in sections 4
and 5, and some results are shown in section 6 and dis-
cussed in section 7. Finally, section 8 concludes the paper
and draws some perspectives to this work.

2. Multi-Agent Constraint Solving

Many decision problems can be expressed as constraint
satisfaction problems (CSP). A problem is there expressed
as a set of variables (the objectives) which can be assigned
to values in given domains with respect to a set of con-
straints. A CSP is a triplet 〈X,D,C〉 such that: X =

{x1, . . . , xn} is a finite set of variables to assign values to,
D = {D1, . . . ,Dn} is a finite set of domains for each vari-
able, C = {c1, . . . , cm} is a finite set of constraints on the
values of variables. Domains Di can be finite or infinite, and
discrete or continuous. Moreover constraints from C can be
expressed as tuples of impossible values or as predicates
on several variables. This implies several way to model a
problem into a CSP, and therefore several kinds of solvers
to support them.

A distributed constraint satisfaction problem (DCSP) is
a quintuplet 〈A, X,D,C, f 〉 such that: 〈X,D,C〉 is a CSP, A
is a finite set of agents, f : A× X �→ {true, f alse} is a predi-
cate which assigns variables to agents. Solving a DCSP re-
quires providing agents with behavior as to negotiate to find
a solution. In fact, agents do not know the whole problem
and must interact to get some information useful for solving
their constraints. DCSP framework was firstly introduced
by Yokoo et al. who propose asynchronous algorithms in-
spired from non-distributed search algorithms [14]. ABT
(Asynchronous Back-Tracking) is an asynchronous version
of a backtrack algorithm with a predefined order on agents
to ensure consistency and exchange of nogoods. AWC
(Asynchronous Weak Commitment) is an enhancement of
ABT with two main extensions: min-conflict heuristic and
dynamic agent ordering depending on agents’ nogoods and
their neighborhood. AWC is faster than ABT to find a solu-
tion, but ABT is faster to prove a solution is not satisfiable.
These two algorithms are complete. Other works inspired
from on DCSP are based on more local view for agents, but
are not complete such as DynDBA (Dynamic Distributed
Breakout Algorithm) [8].

There exist problems for which no solution is satisfi-
able. But, by defining a cost function for each constraint,
the problem becomes an optimization problem in which the
objective function to optimize (maximize or minimize) is
a combination of the cost functions, such as the sum or
a weighted sum, for example. These problems, once dis-
tributed among agents, are called distributed constraint op-
timization problems (DCOP). The most popular multi-agent
algorithms to solve such optimization problems are ADOPT
(Algorithm for Distributed Constraint Optimization) [9] and
its successors, and the ERA (Environment, Reactive rules,
and Agents) approach [6], in which agents evolve within
the domains of their variables and follow different stochas-
tic behaviors to converge towards a solution.

In this paper, only the satisfaction part of the frequency
assignment problem with polarization is expounded, within
a potential dynamic environment. Still, ERA is kept in mind
for their approach by positioning.

3. Frequency Assignment Problem

3.1. Presentation

The frequency assignment with polarization problem
(FAPP) consists in finding frequency allocation within a
hertzian telecommunication network, which is composed of
several transmitter and/or receiver sites [2]. A hertzian con-
nection can be constituted of one or more radioelectrical
unidirectional paths between antennas of distinct geograph-
ical sites. Each path is characterized by its frequency and

its polarization, which can get values within predefined do-
mains.

Let T be the set of paths. Let F0, F1, ..., Fn be the n
domains of frequencies. Let P−1 = {−1}, P1 = {1}, P0 =

{−1, 1}, the three possible domains of polarization. At each
i ∈ T , we associate (fi, pi) such that fi ∈ Fϕ(i) and pi ∈ Pπ(i),
where ϕ(i) and π(i) indicate respectively the frequency and
polarization domain numbers of i.

There exist two types of constraints on these networks.
Physical constraints related to the proximity or, at the con-
trary, to the geographical distance. These interference con-
straints are called electromagnetic constraints (CEM), and
are soft constraints. The difference of polarization is a
technical means to diminish interference problems between
frequencies caused by these constraints. The second type
of constraints are imperative technological hard constraints
(CI), which impose a distance between the frequencies of
two paths. In matrix form, the constraints are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(CEM) | fi − f j| ≥ |pi+p j |
2 γ

(k)
i j +

|pi−p j |
2 δ

(k)
i j

with k = 0 to 10
(C2) | fi − f j| = εi j

(C3) | fi − f j| � εi j

(C4) fi = f j

(C5) fi � f j

(C6) pi = p j

(C7) pi � p j

where γi j and δi j indicate required frequency distance as a
function of polarization.

A feasible solution corresponds to the assignment of a
frequency and a polarization to each path by satisfying the
set of given constraints. The problem being often over con-
strained, CEM can be relaxed over 11 levels (from 0 for
satisfaction to 10). The objective is therefore twofold:

1. to satisfy the constraints C2, C3, C4, C5, C6 and C7,

2. to minimize a cost function, which is not described
here, since the paper only addresses the satisfaction
part of the FAPP. More details on this function are
available in [2].

Halfway between real problems and case studies (such
as graph coloring or n queens problems), the study of FAPP
represents an interesting step towards the resolution of real
constraint-based problems. The heterogeneity of the con-
straints and the large sizes (up to 3,000 paths) make the
FAPP be an interesting challenge. Nevertheless, two char-
acteristics make its study easier: finite and discrete domains
and binary constraints. The originality of the FAPP also lies
in the melting of hard and soft constraints. The question is
both a constraint satisfaction problem and an optimization
one. Therefore, this implies modeling and implementing

bivalent algorithms to necessarily process a set of hard con-
straints and next to possibly improve the global state by fo-
cusing on soft constraints. This paper only focuses on the
first objective.

3.2. Towards the Distribution of FAPP

There exist several efficient solutions to tackle the FAPP:
local search and tabu search [3], lower bounding and tabu
search procedures [5], or arc-consistency and tabu search
[13]. All these approaches are based on tabu search and are
not distributed, nor adaptive. These algorithms are central-
ized and manage all the network. If a change occurs during
the solving process, all the process must be relaunched. For
example, if a site disappears (transmitter/receiver dysfunc-
tion), these systems are not able to respond by providing a
new assignment from the current one.

Several constraints naturally appear when using the a-
gent paradigm, from the viewpoint of dynamic and dis-
tributed problems solving. First, the absence of global con-
trol makes difficult the separation into phases, as it appears
in the three previously quoted algorithms. Second, the dy-
namical aspects, i.e. the capability to add or remove con-
straints or paths in a FAPP during the solving process, pre-
vents using arc-consistency pre-processing.

However, several concepts can be reused at the agent
level:

• the concept of penalty on values used by [13] to force
exploring the domain of a path,

• the concept of criticity of a variable or a value, used
by [3] to favor, at the contrary, some values or to make
some agents have priority,

• the concept of pairs of paths linked by C2 or C4 con-
straints (cf. 3.1) used by [5], which can be imple-
mented as a dialog between agents,

• the concept of tabu, in general, and forbidding some
paths to modify their values, in particular, can be trans-
posed at the agent level.

Besides the fact that tabu approaches are outstanding to
solve the FAPP, this approach can be reused at the agent
level, at the contrary of methods using variable neighbor-
hood on the search space. The multi-agent approach pre-
sented in the next sections, based on AMAS, brings a novel
point of view, different from the previous approaches, since
agents self-organize to find a solution.

4. Self-Organizing Multi-Agent Modeling

In this section, a multi-agent system to solve the FAPP,
by using cooperative self-organization, is described.

4.1. Problem Specification

To describe the MAS, here are some characteristic data
of the FAPP:

• T , the set of paths,

• ∀t ∈ T , Ft the frequency domain associated to t,

• ∀t ∈ T , Pt the polarization domain associated to t,

• C, the set of constraints,

• CI, the set of hard constraints,

• CEM, the set of soft constraints (CEM),

• ∀t ∈ T , Ct = CIt∪CEMt, the set of constraints of path
t,

• ∀c ∈ C, t1(c) and t2(c), the two paths linked by the
constraint c,

• ∀t, u ∈ T , v(t, u) ≡ ∃c ∈ (Ct ∩Cu), the neighborhood
relation between two paths,

• ∀t ∈ T , Vt = {u ∈ T | v(t, u) = true}, the set of neigh-
bors of the path t, called neighborhood.

The system to model includes a set of autonomous
agents, which are homogeneous concerning their represen-
tations and behaviors. A distinct agent is associated with
each path (or variable). Let A be the set of agents of the
system and let T be the set of paths. For all agent x ∈ A,
we note tx ∈ T the path associated to the agent. So,
f (x, tx) = true, by using the notation of DCSP in section 2.
An agent x is the neighbor of an agent y if and only if their
paths are neighboring (they share a constraint). The neigh-
borhood of an agent, i.e. the social environment, is defined
as the set of its neighbors:

∀x, y ∈ A, v(x, y) ≡ v(tx, ty)
∀x, y ∈ A, y ∈ Vx ≡ ty ∈ Vtx

An agent has the same frequency domain than the vari-
able its represents:

∀x ∈ A, Fx = Ftx

∀x ∈ A, Px = Ptx

Hard constraints and CEM are known by each agent the
variable depends on. Let Cx be the set of constraints known
by an agent:

∀x ∈ A, Cx = Ctx

A satisfied constraint c ∈ CIx is noted c = true.
As this paper only deals with hard constraints, CEM are

not formally presented here.

A1

A2

A3

A4

| f1 − f2| = 1

| f3 − f2| = 3 | f4 − f3| = 2

| f1 − f4| = 4

Figure 1. Simple example with 4 agents and 4
hard constraints

In the example of fig. 1, A = {A1, A2, A3, A4}. The agents
have the same domains Df = {1, 2, 3, 4, 5, 6} and Dp = {1}.
The problem is simplified by putting aside the polarization.
There are only two types of constraints: C2 and C4, i.e. dis-
tance constraints. For example, a constraint exists between
A1 and A2: | f1 − f2| = 1. It is easy to find solutions for
this FAPP, which are, for (fA1 , fA2 , fA3 , fA4): (2, 1, 4, 6) and
(5, 6, 3, 1).

Therefore, the problem of frequency assignment can be
viewed as a positioning problem in which agents represent
frequencies, as viewed in ERA [6]. Each agent must find
a right position (value) within their domain, by following
a self-organizing process. At the beginning of the process,
agents are randomly positioned, as follows, for example,
with a shared domain:

| | | | | |

1 2 3 4 5 6

A3,A4 A2 A1

One possible solution is therefore:

| | | | | |

1 2 3 4 5 6

A1A2 A3 A4

To pass form the initial state to the solution, we propose
to use self-organization and negotiation between agents.
Each agent aims at finding the right place within the or-
ganization by using only local interactions with its neigh-
bors (agents linked by constraints) and deciding by itself to
move from one position to another. Local criteria, inspired
by cooperation, are embedded in agents to implement their
decision making. This notion is here more than sharing re-
sources or skills to perform a common task, but it also en-
capsulates the capability to anticipate conflicts and to act to
repair or to remove non cooperative situations, such con-
flicts.

4.2. Cooperative Agents’ Characteristics

Agents are the only active entities of the system, which
interact to cooperatively solve the FAPP. Two main data
characterize an agent, except its environment: its value and

its difficulty. The value of an agent x is the current pair
(f , p)x with f ∈ Fx and p ∈ Px. The difficulty dx of an
agent x is a quantitative measure which take into account
the current environment and value of an agent. The higher
it is, the more the agent believes it is far from a solution, as
a heuristic does. This measure is the basis for cooperative
mechanisms. For an agent, the difficulty is its own and is
more detailed in section 5.

In addition to these two values, the agent has a view on
its environment. This view is partial. An agent only knows
the value and the difficulty of each of its neighbor, but does
not know constraints, views, nor domains. The communi-
cation between agents is implemented with messages.

Each agent evolves within an own physical environment
which consists in the domains of frequency and polariza-
tion. These domains, even if possibly identical, are not
shared. In the same manner, each constraint is duplicated
for each agent knowing it.

The coherence between an agent’s view and its con-
straints is always ensured. Every changes of the view im-
plies changes of the state of the constraints (satisfied or
not satisfied). However, the global coherence between the
views of different agents is not guaranteed since messages
still flow. In fact, the view of a neighbor on an agent can
differ from the current state of the agent. Therefore, con-
straints between two agents can be in different state. To en-
sure the global coherence once the system is stopped, some
hypothesis, raised by Yokoo et al. for DCSP solving, must
be assumed [14]:

1. messages are received in a finite time,

2. messages are not lost or changed during transmission,

3. messages are always processed by the agent receiving
it.

To avoid ambiguity concerning the views of agents:

• let cx ∈ Cx be the constraint c from the point of view
of x,

• let dy
x be the difficulty of x from the point of view of y,

• let (f , p)y
x be the current value of x from the point of

view of y.

4.3. Cooperative Agents’ Behavior

The behavior of the cooperative agent is composed of 4
steps, as shown in fig. 2. This algorithm is common to all
the agents which run it concurrently.

Initialization consists in choosing (randomly, for exam-
ple) a value within the domains (line 1) and informing the
neighborhood that the agent is running (line 2).

As communication is implemented with messages, each
agent owns a mailbox it checks eventually. Messages are

// Step 1: Initialization
selectValue;1
sendValuesToNeighbourhood;2

while isRunningSystem do3
// Step 2: Check
checkMessages;4

// Step 3: Decision
if receivedAllValues then5
evalDifficulty;6
if isDifficultyChange then7
sendValuesToNeighbourhood;8

end9
if receivedAllDifficulties then10

if mostDifficult then11
// Step 4: Assignment
assignment;12

end13

end14

end15

end16

Figure 2. The 4-step behavior of an agent

processed consequently to the check from the oldest to the
newest. This phase ends when the mailbox is empty (line 4).

Decision leads to choose the agent that will act to change
the global solution by assigning a new value (line 11), in
a given neighborhood. An agent decides only if it knows
the difficulties of its neighborhood (line 10). Moreover, an
agent can only calculate its difficulty (line 6) if it knows the
values of its neighbors (line 5). These are not blocking con-
ditions since agents communicate data as soon as they get
them (cf. section 4.4). From its point of view, if an agent has
the highest difficulty, for a given neighborhood1, it is elected
as the agent that have to act for the neighborhood. With
equal maximum difficulties, the agent is randomly elected.

For x ∈ A, we define e(x) the fact that x is eligible:

∀x ∈ A, e(x) ≡ ∀y ∈ Vx, dx
x ≥ dx

y

Therefore, this is the agent that has the highest diffi-
culty which will try to improve the current situation. This
approach is preferred to an approach considering this is a
neighbor of the agent with the maximum difficulty that is
chosen. In fact, a neighbor has only a limited number of
constraint with an agent, and therefore is not well placed to
help it. This phase underlines a first aspect of the cooper-
ation notion: agents let neighbors with more difficulty than
themselves act. It is a self-organized process.

Assignment is only accessible to elected agents. The
elected selects, for its current value in its domain, a value
it believes being the best one for itself and its neighbor-
hood. There is no way for an agent to force other agents to
change their values. If more than one value seems correct,
the final value is randomly chosen. At the end of the assign-
ment phase, the agent disables itself (only for decision): it

1Therefore, there may be several elected agents within the system.

informs its neighborhood that it will not participate to the
next elections until another agent is elected. This is an egal-
itarian policy that allows other agents to act. A disabled
agent can however be invited to an assignment session (cf
4.4). The state (enable/disable) of an agent is known by its
neighbors and can be interpreted as a local tabu.

Once the system is running, all the agents follow the
check-decision-assignment cycle without being able to stop
the process by themselves.

4.4. Communication Protocol

An agent only communicates with its neighbors, by
using direct messages containing the view (i.e. the dis-
played values) of the sender, the view of the receiver, and
the assignment session if necessary (cf. next paragraphs).
Moreover, an agent systematically informs its neighbors if
changes of value or difficulty occur, not to distort the views
and the decisions of its neighbors.

Not to overload the communication network, here are the
triggers to send messages:

• after initialization,

• during check, at each message reception:

– either the value of the neighbor has changed,
therefore the difficulty must be calculated,

– or the neighbor is disabled, therefore the view of
the state must be changed,

– or the difficulty of the neighbor has changed or it
is enabled.

• at the end of the check step, the agent sends a mes-
sage to its neighborhood only if a change of difficulty
occurred consequently to the change of a value of a
neighbor or if it changed its state (lines 7-8).

• at the end of the assignment step, the agent disables
itself and informs its neighbor of the change of values,
state or difficulty.

To prevent deadlocks, it is necessary to introduce a syn-
chronization point during the assignment. This is imple-
mented by using the notion of assignment session. For a
given neighborhood, an elected agent first creates an as-
signment session, which is a synchronized object (monitor
or equivalent). Then, it sends invitations to its neighbors,
with its last value, state and difficulty. A neighbor can then
accept or reject the invitation if either it is already within
an assignment session for which the elected is more in dif-
ficulty or it has itself a higher difficulty than the elected.
Once the elected has received all the answers, it begins the
assignment. Once finished, it informs its invited neighbors

that the session is correctly ended by sending its new value.
Until the session is not ended, the invited agents do not pro-
cess the messages coming from the elected agent.

5. Cooperative Criteria for Hard Constraints

5.1. Difficulty Measurement

Difficulty is the decision criterion for electing an agent.
It is a sorted tuple of sub-criteria. The difficulty for an agent
x ∈ A viewed by an agent y ∈ A is noted:

dy
x = [Imy

x, Poy
x,NS y

x, Agy
x]

The improvement (or Im), of an agent is the best possible
improvement for this agent considering the current situation
by counting the number of unsatisfied hard constraints. For
all x ∈ A, for all (f , p) ∈ Fx × Px, NS x(f , p) is the number
of unsatisfied hard constraints with the value (f , p). With
NS x ≡ NS x(f , p)x, we note:

∀x ∈ A,
Imx = NS x − min{NS x(f , p), (f , p) ∈ F(x) × P(x) \ (f , p)x}

and
∀x ∈ A,∀y ∈ Vx,

Imx
x > Imx

y ⇒ dx
x > dx

y

The cost to calculate this criterion is |Fx × Px − 1| since
the current value is not included. The idea of this criterion
is to consider that the agents, that know they can strictly
improve their local situation, know they are not well po-
sitioned. This requirement of projecting forward, even if
costly, significantly improves the search for solutions.

Contrary to Im, the next criteria are not based on do-
mains but on constraints. For all x ∈ A, for all cx ∈ CIx, let
FPS (cx) be the set of pairs (f , p) ∈ Fx × Px which satisfy cx

from the current view of x.
The second criterion, possibilities (or Po), expresses the

fact that a constraint is difficult if there only exist few pos-
sible assignments that satisfy the constraint:

∀x ∈ A,
Pox = min{|FPS (cx)|, cx ∈ CIx and cx = f alse}

and in case of equality of the previous criterion (Im):

∀x ∈ A, ∀y ∈ Vx,
s.t. Imx

x = Imx
y ,

Pox
x < Pox

y ⇒ dx
x > dx

y

The third criterion is the number of unsatisfied hard con-
straints (or NS x). This criterion assumes that an agent hav-
ing more unsatisfied constraints has more difficulties, in
case of equality of the previous criteria (Im then Po):

∀x ∈ A, ∀y ∈ Vx,
s.t. Imx

x = Imx
y and Pox

x = Pox
y ,

NS x
x > NS x

y ⇒ dx
x > dx

y

Finally, the last criterion to measure the difficulty is the
oldness (or Ol). For all x ∈ A and for all cx ∈ CIx, let
T Ix(cx) be the number of assignments performed by x or
its neighborhood since the last satisfaction it knows. This
represents the oldness of constraints and we set:

∀x ∈ A, Olx = max{ T Ix(cx, cx ∈ CIx|)}
The agent having the oldest constraint is in the more dif-

ficulty, in case of equality of the previous criteria:

∀x ∈ A,∀y ∈ Vx,
s.t. Imx

x = Imx
y and Pox

x = Pox
y and NS x

x = NS x
y ,

Olx
x > Olx

y ⇒ dx > dy

5.2. Other Decision Criteria

Besides the difficulty notion, there exist two other cri-
teria to elect agents. First, an agent will try to be elected
if and only if it owns unsatisfied constraints, not to elect
agents that will not change the current state of the system:

∀x ∈ A, solved(x) ≡ ∀y ∈ Vx ∪ {x}, NS x
y = 0

If two agents have the same difficulty at this time of the
comparison, an agent is randomly chosen (Eq).

The last criterion is the fact that an agent which is the
only active agent for a given neighborhood is automatically
elected (De).

5.3. Choosing Values

The key idea for choosing values in a cooperative man-
ner is that an agent will select the value to assign as a func-
tion of the criterion that trigger its election. This crite-
rion, called discriminant criterion, that discriminates agent
x from agent y, is noted cdx

y . The criterion for x to select
the action to perform is called selection criterion and noted
csx:

∀x ∈ A, csx = min{cdx
y , y ∈ Vx}

A different manner of choosing possible values is asso-
ciated to each decision criterion:

• csx = Im: select the values that maximize the improve-
ment,

• csx = Po: select the set of constraints with the mini-
mum of possibilities,

• csx = NS : select the set of constraints with the maxi-
mum of possibilities,

• csx = Ol: select the oldest constraints,

• csx = Eq: select the constraints shared with the agents
having a difficulty equal to the agent’s difficulty,

• csx = De: select the set of all the constraints for the
agent.

Let VElx be the set of values chosen by x.
Nevertheless, there is a drawback to make this choice

using the sets of constraints: all the constraints can be un-
satisfiable in the situation and therefore, all the values are
possible except the current one. It implies implementing
some dialog capabilities between an elected and the invited
agents.

5.4. Dialog with Invited Agents During a Session

An assignment is useful for a neighbor in two situations:

• this assignment improves immediately the situation of
the neighbor,

• this assignment improves possibly the situation of the
neighbor, by leading it, for example, to assign a value
that decreases its number of unsatisfied constraints, if
the neighbor is elected in the future.

Let S x(f , p) be the number of satisfied hard constraints
of the agent x with the value (f , p). The exchanged data to
represent the utility of a value (fx, px) of an elected agent x
for a neighbor y is:

uy
x(fx, px) =

max{|S y(fy, py)|, (fy, py) ∈ Fy × Py and (f , p)y
x = (fx, px)}

The cost of this calculus is initially high: for each value
of the elected, a matrix of the number of constraints satisfied
must be calculated. But once calculated a first time, it only
requires updates.

With this utility for each value and each neighbor, the
elected agent x selects the values that maximize the sum of
the utilities of its neighbors:

VNex = max{
∑

y∈Vx

uy
x(f , p) | (f , p) ∈ VElx}

If there still exist several equivalent values, x does the
same process by only selecting values in VNex. This last se-
lection is possible because it appends after the choice of val-
ues relatively to the selection criterion and before the partic-
ipation of its neighbors: the agent has achieved its tasks, has
requested its neighbors’ proposals and thus it can satisfy its
own needs. This represents the equilibrium between altru-
ism and selfishness that defines the notion of cooperation,
as presented in [12].

Finally, if there still exist equivalent values after this se-
lection, one of them is chosen randomly.

Table 1. Solving trace for the FAPP of fig. 1

5.5. Example

Table 1 shows an example of solving trace for the FAPP
presented in fig. 1. (fA1 , fA2 , fA3 , fA4) = (3, 3, 3, 3) is the
initial state. Three steps are required to achieve a solution.
Since all the agents are in a same neighborhood, there is no
concurrent solving, contrary to larger problems.

For each step, data are presented as follows. A deci-
sion part (sub-column at left of each step), for each agent,
is composed of the frequency, followed by the difficulty
vector, and for each constraint (noted as Ax − Ay) a vec-
tor [possibility, age] followed by the frequencies that can
satisfy the constraint. For example, at the beginning, A1’s
frequency is 3, its difficulty is [1, 0, 2, 1], and the constraint
A1 −A2 from A1’s viewpoint has two possibilities which are
(2, 4) and its age is 1.

An invitation part (sub-column at right of each step)
for the elected agent shows the frequencies it believes as
being possible. Its neighbors send, for each of these fre-
quencies, the sum of possible improvement and the imme-
diate improvement, with the frequency that implies this im-
provement (if any). For example, at step 1, A1 is elected
(frequency in italics) and presents the set of possible fre-
quencies VElA1 = {1, 2, 4, 5, 6} to its neighbors. A2 sends
{0, 0, 0, 1(6), 0} to A1, in order to inform that if A1 chooses
the frequency 5 then A2 has a possible improvement of 1 by
choosing the frequency 6. At step 2, A1 is disabled (gray
background) because it just assigns a new value.

At step 1, two agents are equivalent: A1 and A4. A1 is
randomly chosen and his discriminant criterion is therefore
csA1 = Eq. A1 looks at the constraint it shares with A4:
A1 − A4. As there is no possibility to satisfy this constraint,
A1 is not able to choose a good value, and it selects the
whole domain except its current value: {1, 2, 4, 5, 6}. The
answer of its neighbors is that the best choice is 5. That lets
only one possible assignment for A2 to 6 and for A4 to 1.

Table 2. Experimental setup

FAPP Instance 01 11 22 33 38

Agents 200 1000 1750 650 2500
CI 168 978 1799 578 3112
Runs 400 400 67 400 48
Time limit (s) 60 160 1000 150 1400

Table 3. Percentage of unsatisfied CI

FAPP Instance 01 11 22 33 38

CI 168 978 1799 578 3112
% Unsatisfied 0 0,015 3,49 0,004 6,82

Table 4. Assignments

FAPP Instance 01 11 22 33 38

Assign. 107.24 547.02 964.81 338.35 1146.18
Assign./CI 0.64 0.56 0.54 0.59 0.37
Assign./Time(s) 17.87 3.42 0.96 2.26 0.82
σ 5.33% 6.89% 5.36% 2.28% 3.88%

At step 2, A1 is disabled and A2 and A4 are elected with
the criterion Im. Since agents can only be invited at one
session at a same time, A1, for example, rejects the invita-
tion of A4, which will wait until the assignment session of
A2 ends, to send another invitation. A2 performs the assign-
ment, for the criterion Im, and it looks at the values that im-
ply the highest improvement, i.e. 6 which satisfies the two
constraints of A2. The dialog with its neighbors is useless
since there is only one possible value: 6.

At step 3, A4 is elected despite the difficulty changes for
A1 and A3, and it reasons as A2 did by choosing the value 1
that satisfies its two constraints. Once the assignment done,
all the agents are solved: a solution has been found.

6. Results and Analysis

The different instances referred in this paper come from
the ROADEF challenge 20012, have been ran on one com-
puter several times, with specific time limits shown in ta-
ble 2.

6.1. Convergence

The convergence towards solutions is shown in fig. 3.
The important initial decreasing is due to the fact that some
constraints are satisfied as soon as the random initialization
is done. These constraints are often C3 or C5 constraints,
since they are easier to satisfy. The decreasing appearing
once the time limit is reached corresponds to the termina-
tion of agents that process their remaining messages before
ending, without beginning new assignment sessions: they

2http://uma.ensta.fr/conf/roadef-2001-challenge/index_main.html

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 u

ns
at

is
fie

d
ha

rd
 c

on
st

ra
in

ts

Time (s)

FAPP38
FAPP33
FAPP22
FAPP11
FAPP01

Figure 3. Convergence to solutions

reached a stable situation. But results for FAPP22 shows a
stagnation: a local minimum is reached, and it remains, on
average, 3.49% of unsatisfied constraints, as shown in ta-
ble 3. Another problem is the time to solve a non complete
problem (there is no CEM), which depends on the number
of agents. Therefore, even if performing on small instances
(200 agents), the approach does not manage to find solu-
tions systematically.

6.2. Assignments and Messages Traffic

Table 4 shows there is only few assignments. Consider-
ing the size of the search space, the exploration is limited.
In fact, the main idea behind the notion of cooperation is
to make the good choices upstream to ensure a quick con-
vergence, instead of exhaustively explore the search space:
cooperation is here a meta-heuristic, in the sense criteria are
not problem-specific. The small ratio between the number
of assignments and the number of hard constraints confirms
the process is strongly guided. The standard deviation σ is
small too, in the order of 5%, which emphasizes the adap-
tation capability of the algorithm, independantly of the ini-
tial situation, and therefore adaptation to changes during the
solving process.

However, the speed of assignment is low, and this ratio
decreases with a great number of agents. But, at each time,
there is more than one assignment session, and since the
behavior is completely concurrent, the time, on distributed
environment is far better, even by taking into account the
message traffic, shown in table 5: there are few messages
sent by agents. Moreover, there are few situations of con-
flict (assignment session canceling), as shown in table 6.

6.3. Decision Criteria Relevance

Among the criteria presented in section 5, fig. 4 shows
which ones are used by the agents during the solving pro-
cess. The value for the criterion De (when neighbors are al-
ready elected) is very small. But, the criterion NS (number

Table 5. Message traffic

FAPP Instance 01 11 22 33 38

Agents 200 1,000 1,750 650 2,500
Total Messages 2,335 15,841 33,247 8,348 48,727
Messages/Agent 11.7 15.8 19 12.8 19.5

Table 6. Percentage of canceling messages

FAPP Instance 01 11 22 33 38

% canceling 4.21 6.02 13.56 5.22 10.28

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

U
sa

ge
 (

%
)

Time (s)

Im
Po
NS
Ol
Eq
De

Figure 4. Distribution of the discriminant cri-
teria for the instance FAPP11

of unsatisfied constraints) is not frequently triggered, con-
trary to Ol, Im and Po which are eventually used. Finally,
average 30% of agents evaluate one of their neighbors as
equal (Eq).

7. Discussion

7.1. Communication

Although there are few sent messages by agent, infor-
mation updates can be limited even more outside of the as-
signment sessions. It is possible to only keep necessary up-
dates (e.g. during initialization) and let the agents share
and commit their views during assignment sessions dur-
ing which canceling messages are more numerous: the sys-
tem will become more synchronous. On the other side, to
obtain more flexibility, invitations to assignment sessions
which are blocking points may be limited too. But, with-
out this synchronization point, the system is unable to stabi-
lize since views constantly change. However, modifications
can be considered: either reducing the time an invitation re-
quires, because once the dialog is done it is no more needed
to wait; or, limiting the number of invited neighbors, by
using some preference measure and memory. Another ap-
proach can also be to allow agents to participate to more

than one session at a time, while keeping them still blocked.
In fact, there are only few sessions at a time.

7.2. Difficulty Evaluation

A first observation is that the criteria are generic: they
are not relative to FAPP, even if Po is close to the FAPP
notions. Moreover, the concept of pair of paths, introduced
by [3] to manage particular cases of paths sharing C2 or
C4 constraints, does not appear in the decision, even if it
partially impacts on Po.

Second, sorting the criteria is one remaining open ques-
tion, which validity is more complex to observe. Even if it
seems relevant to position Im at the head (by analyzing the
results of section 6.3), the other criteria can be discussed
and experimented more precisely.

7.3. Soft Constraints and Optimization

Tackling CEM soft constraints is one perspective of this
work. These constraints are far more numerous and increase
the neighborhoods, and will put the communication proto-
col on the spot by imposing a great number of invited during
sessions. To solve this problem, a possible track is to con-
sider two kinds of neighborhoods: CI and CEM.

Afterwards, another problem is to include soft con-
straints in the difficulty measure. If it seems relevant to
position them after the criteria for hard constraints to dis-
criminates the numerous equality cases, as emphasized in
section 6.3, it must not corrupt the solutions for CI. For that,
new criteria must be modeled and new relative actions must
be implemented.

7.4. Dynamic Problems

Introducing dynamics within the system, by adding or
removing agents and constraints during the solving process
is another interesting point to discuss and may be the easier
one. This is possible thanks to the self-organization mech-
anisms, which are implemented as local and asynchronous,
among agents. This algorithm can easily adapt to chang-
ing environments. The only point to warn is the assignment
session: deleting agents which invited in sessions must be
carefully studied. Results on the standard deviation (cf. sec-
tion 6.3) comfort this idea.

Nevertheless, a drawback is the fact that the solving
process relies on communication of information between
agents, relatively to the assumptions of section 4.2. What if
the communication network breaks down? By now, the sys-
tem is robust because the problem can change in runtime,
but it is not robust if the communication network is not re-
liable. One solution is to manage uncertainty on neighbor’s

information to tackle the approximative rightness of infor-
mation, for example. This subject will be prospected in fu-
ture works.

7.5. Comparison to Other Approaches

Contrary to APO [7] or ABT [14] algorithms, there is
no addition of new virtual neighborhood links and therefore
new virtual neighbors during the process to solve a static
problem, which forbids increasing the link density and then
harms the notion of locality.

The termination criteria is only a time limit. This is due
to the fact that agents are unable to terminate by themselves
because of their limited view, and because of the absence of
hierarchy, contrary to ADOPT algorithm [9], but similarly
to ERA approach [6].

Because this work only addresses the hard constraints of
the FAPP, it is not possible to directly compare our algo-
rithm to existing ones, in terms of performance. But, to val-
idate our approach, several comparisons have been done by
translating graph-coloring problems into FAPP, as ADOPT
presents some results for these problems [9]. Results are not
really good (up to 2 times less efficient), even if these two
kinds of problems are CSP, because they are slightly dif-
ferent. First, instances for graph-coloring involve domains
with only 3 values, when domains of FAPP contains to 100
times more values. Moreover, in graph-coloring, there are
few variables/agents (some tens), when FAPP requires at
least 200 agents. Finally, and this is the most important
difference, graph-coloring is more constrained (even over
constrained) than FAPP. There are numerous constraints per
agent. Therefore, the order on criteria we used may be not
adapted to this kind of problems.

8. Conclusion

In this paper, a multi-agent system, using self-organi-
zation mechanisms, has been developed to tackle a fre-
quency assignment problem (FAPP). The local algorithm
we present is based on cooperation between agents which
elect and negotiate during assignment sessions to improve
the global satisfaction, by reasoning on their difficulties.
The main outcome is to produce adaptive systems able to
respond to environmental changes. The systems find solu-
tions for large FAPP, even if the performance are not high,
compared to other algorithms. Two major perspectives are
emphasized. First, improving the global behavior by study-
ing other decision criteria and sorting them within the dif-
ficulty measure. Second, enhancing the system to take into
account soft constraints such CEM for the FAPP.

Acknowledgments

We would like to thank Florian Cornet for his contribu-
tion to the development of the solver, and Gérard Verfaillie
for his enlightened advices.

References

[1] D. Capera, J. Georgé, M.-P. Gleizes, and P. Glize. The
AMAS theory for complex problem solving based on self-
organizing cooperative agents. In 1st Int. TAPOCS Workshop
at 12th IEEE WETICE, pages 383–388. IEEE, 2003.

[2] T. Defaix. FAPP: Frequency Assignment with Polarization
Problem - ROADEF Challenge 2001. Technical Report Re-
vision 2, CELAR/TCOM, 2000.

[3] P. Galinier, M. Gendreau, and P. Soriano. Solving the
Frequency Assignment Problem with Polarization by Local
Search and Tabu. 4OR, 3(1):59–78, 2005.

[4] K. H., P. Valckenaers, B. Saint-Germain, P. Verstraete, C. B.
Zamfirescu, and H. Van Brussek. Emergent Forecasting
Using Stigmergy Approach in Manufacturing Coordination
and Control. In Engineering Self-Organizing Applications
(ESOA’04), pages 210–226. Springer, 2004.

[5] A. Hertz, D. Schindl, and N. Zufferey. Lower bounding and
tabu search procedures for the frequency assignment prob-
lem with polarization constraints. 4OR, 3(2):139–161, 2005.

[6] J. Liu, H. Jing, and Y. Y. Tang. Multi-agent Oriented Con-
straint Satisfaction. Artificial Intelligence, 136(1):101–144,
2002.

[7] R. Mailler. Using Cooperative Mediation to Solve Dis-
tributed Constraint Satisfaction Problems. In AAMAS’04,
pages 446–453. ACM, 2004.

[8] R. Mailler. Comparing two approaches to dynamic, dis-
tributed constraint satisfaction. AAMAS’05, 2005.

[9] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous Distributed Constraint Optimization with
Quality Guarantees. Artificial Intelligence, 161(2):149–180,
2005.

[10] P. Peeters, P. Valckenaers, J. Syns, and S. Brueckner. Man-
ufacturing Control Algorithm and Architecture. In 2nd In-
ternational Workshop on Intelligent Manufacturing Systems,
pages 877–888, 1999.

[11] G. Picard, C. Bernon, and M.-P. Gleizes. ETTO : Emergent
Timetabling by Cooperative Self-Organization. In Engineer-
ing Self-Organizing Applications (ESOA’05), pages 31–45.
Springer, 2005.

[12] G. Picard and P. Glize. Model and Analysis of Local De-
cision Based on Cooperative Self-Organization for Problem
Solving. Multiagent and Grid Systems (MAGS), 2(3):253–
265, 2006.

[13] M. Vasquez. Arc-consistency and tabu search for the fre-
quency assignment problem with polarization. In CP-AI-
OR’02, pages 359–372, 2002.

[14] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
Distributed Constraint Satisfaction Problem : Formalization
and Algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

