
HAL Id: lirmm-00548837
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548837v1

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Providing Better Multi-Processor Systems-on-Chip
Resources Utilization by Means of Using a Control-Loop

Feedback Mechanism
Gabriel Marchesan Almeida, Remi Busseuil, Sameer Varyani, Nicolas Hébert,

Gilles Sassatelli, Pascal Benoit, Lionel Torres, Michel Robert

To cite this version:
Gabriel Marchesan Almeida, Remi Busseuil, Sameer Varyani, Nicolas Hébert, Gilles Sassatelli, et al..
Providing Better Multi-Processor Systems-on-Chip Resources Utilization by Means of Using a Control-
Loop Feedback Mechanism. ReConFig 2010 - International Conference on ReConFigurable Computing
and FPGAs, Dec 2010, Cancun, Mexico. pp.382-387, �10.1109/ReConFig.2010.17�. �lirmm-00548837�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00548837v1
https://hal.archives-ouvertes.fr

Providing Better Multi-Processor Systems-on-Chip Resources Utilization by Means
of Using a Control-Loop Feedback Mechanism

Gabriel Marchesan Almeida, Sameer Varyani, Rémi Busseuil, Nicolas Hebert,
Gilles Sassatelli, Pascal Benoit, Lionel Torres, Michel Robert

Laboratory of Informatics, Robotics and Microelectronics of Montpellier (LIRMM)
Department of Microelectronics
161 Rue Ada, Cedex 5, 34095

Montpellier, France
{marchesan, varyani, busseuil, hebert, sassatelli, benoit, torres, robert}@lirmm.fr

Abstract—In this paper we propose a strategy for better ex-
ploiting Multi-Processor Systems-on-Chip resources utilization
by means of using a control-loop feedback mechanism. We
apply the proposed techniques in a purely distributed memory
MPSoC architecture that is composed of a frequency scaling
module responsible for tuning the frequency of processors at
run-time. Results show very promising in terms of adaptation
capabilities for system with dynamic workload. Performance
results demonstrate the effectiveness of the proposed approach
when workload requirements for applications may vary, af-
fecting the overall performance of the system. For validating
the proposed approach we have implemented a multi-thread
MJPEG decoder application and created an architecture model
with/without perturbations in the system.

Keywords-MPSoC, homogeneous, adaptive, NoC, distributed
memory, RTOS

I. INTRODUCTION

Over the years scientists in all domains have put huge ef-
forts for better exploiting and optimizing available resources.
In massively parallel systems, especially in Multi-Processor
Systems-on-Chip (MPSoC) resource management is mostly
modeled targeting power optimization, performance and
fault-tolerance strategies in such systems.

Since this work targets massively parallel on-chip multi-
processor systems, adaptability is a major concern in the
approach. In the direction of scalable systems we have devel-
oped an homogeneous MPSoC architecture with distributed
memory making use of a message passing programming
model. Given the large variety of possible use cases that
these platforms must support and the resulting workload
variability, offline approaches are no longer sufficient as
application mapping paradigms, because they do not allow
coping with time changing workloads. Furthermore, the
large number of parameters that play a role on the platform
performance makes it difficult to estimate the best system
response at design time.

In [1] we have proposed an adaptive strategy that is
responsible for making decisions at run-time. Decisions are
taken by processors in a distributed fashion and relate mostly
to application performance.

This paper goes into the direction of adaptive strategies for
homogeneous MPSoC architectures. We propose a strategy
for better exploiting architecture resources utilization by
means of using a control-loop feedback mechanism and
mostly addresses both the benefits brought by this technique
as well as the associated optimization. The new architec-
ture relies on a Real-Time Operating System (RTOS) with
support for semaphores, mutexes and task priority based
scheduling algorithm. Moreover, a tiny implementation of
a communication stack comprising UDP TCP/IP protocols
is used aimed at providing important concepts such as
ports and enabling advanced features such as reordering, re-
routing, error detection, etc. [2].

The rest of the paper is organized as follows. The next
section presents related works. Section III describes the
proposed architecture. Section IV discusses the proposed
controller while experimental evaluations are presented in
Section V. Finally some conclusions are drawn in Section
VI.

II. RELATED WORKS

A. Adaptation in MPSoCs Architectures

Recently, researchers have put focus on adaptation tech-
niques in order to handle with dynamic and unpredictable
behaviors that can appear in nowadays embedded systems.
This section presents some works that have been conducted
in this direction using techniques as such as task migration
mechanisms and dynamic voltage and frequency scaling.

1) Task Migration Mechanisms: A number of work in
the literature based on distributed memory systems has
been using shared memory as a mean for enabling task
migration [3][4][5]. In [4] each core runs a single operating
system instance in its logical private memory. Processor
cores execute tasks from their private memory and explicitly
communicate with each other by means of shared memory.
The target platform uses a shared bus as interconnect. In
[6] authors propose to implement a scalable shared memory
many-cores architecture with global cache coherence. The
architecture is built around 4096 cores which makes use of

2010 International Conference on Reconfigurable Computing

a logically shared memory but physically distributed, with
cache coherence enforced by hardware, using a directory-
based protocol.

In the case of distributed memory MPSoCs, in [1] we have
proposed an adaptive strategy that is responsible for making
decisions at run-time. Decisions are taken by processors
in a distributed fashion and relate mostly to application
performance. In [2] authors address both the benefits brought
by task migration mechanisms as well as the associated
performance penalty in a purely distributed homogeneous
MPSoC architecture.

Taking into account the future homogeneous MPSoC sys-
tems, scalable architectures with purely distributed memory
system are suitable. To the best of our knowledge, our
architecture is the only one with a purely distributed memory
system in which does not rely on using shared memory for
enabling task migration [2]. Instead, it uses the NoC as a
communication link where the tasks are transmitted during
the migration process.

2) Dynamic Voltage and Frequency Scaling (DVFS):
DVFS has been a widely applied technique for reducing
power consumption in many domains, especially those con-
cerning micro-architectures such as embedded systems. In
[7] authors show a technique for minimizing the total power
consumption of a Chip Multiprocessor (CMP) while main-
taining a target average throughput. The proposed solution
relies on a hierarchical framework, which employs core
consolidation, coarse-grain dynamic voltage and frequency
scaling (DVFS). The problem of optimally assigning depen-
dent tasks in multiprocessor system has not been addressed
in their paper.

In this paper we propose a novel solution targe-
ting both intra/extra-communication between tasks. Intra-
communications are handled by means of using local FIFOs,
while extra-communication makes use of a communication
stack. The model is based on Message Passing Interface
(MPI) and tasks communicate with each other by exchanging
messages over a Network-on-Chip (NoC) [8].

Adaptability has been explored under a number of aspects
in embedded systems, ranging from adaptive modulation
used in the future 3GPP-LTE standard (SDR for software de-
fined radio) [9] to adaptive cores instantiation in dynamically
reconfigurable FPGAs [10]. Two of the foremost popular
techniques are here discussed.

This paper presents two major contributions:
1) Propose a novel and purely distributed memory archi-

tecture with adaptation capabilities by means of using
a Proportional Integral Derivative (PID) controller;

2) Analyze and discuss the benefits of using such strategy
for better exploiting architecture resources;

We demonstrate how soft-real time application require-
ments in homogeneous MPSoC architectures can be handled
by better exploiting architecture resources using a PID
controller and how we can obtain a model for the system that

is essential to determine the PID controller parameters. The
proposed strategy is validated by scenarios where proces-
sors frequency can be tuned (reducing/increasing) without
violating soft-real time constraints.

III. SHOP ARCHITECTURE

The key motivations of our approach are scalability and
adaptability; the system presented in the rest of this pa-
per is built around a distributed memory/message passing
system that provides efficient support for task migration.
For these reasons the architecture is named SHoP (Self-
adaptive Homogeneous Platform). This system aims at
achieving continuous, transparent, and decentralized run-
time task placement on an array of processors for optimizing
application mapping according to various potentially time-
changing criteria. Figure 1 presents a structural view of the
SHoP architecture. The architecture is made of a homoge-
neous array of Processing Elements (PEs) communicating
through a packet-switching network. For this reason, the PE
is called Network Processing Unit (NPU).

Figure 1. Structural View of the SHoP Architecture

The NPU is built of two main layers, the network layer
and the processing layer. The network layer is essentially a
compact routing engine based on the Hamiltonian Routing
Algorithm [11]. The Network-on-Chip (NoC) used in this
work was proposed in [8].

The processing layer is based on a simple and compact
RISC microprocessor, its static memory, and a few periphe-
rals (one timer, one interrupt controller, one UART). The
processor used has a compact instruction set comparable
to a MIPS-1 [12]. It has 3 pipelines stages, no cache,
no Memory Management Unit (MMU), and no memory
protection support in order to keep it as small as possible.
A multitasking tiny Real-Time Operating System (RTOS)
implements the support for time-multiplexed execution of
multiple tasks. The original version of the RTOS as well the
RTL description of the processor used as part of this work
are available at [13].

IV. PID CONTROLLER

A Proportional Integral Derivative (PID) controller is a
generic control loop feedback mechanism widely used in
industrial control systems. A PID controller calculates an
error value as the difference between a measured process
variable and a desired setpoint. The controller attempts to
minimize the error by adjusting the process control inputs.
In the absence of knowledge of the underlying process, a
PID controller is the optimal controller [14]. However, for
best performance, the PID parameters used in the calculation
must be tuned according to the nature of the system while
the design is generic, the parameters depend on the specific
system.

In this paper we propose the usage of a PID controller
for adjusting the appropriated frequency of the processors
at the same time as deadline miss ratio is reduced. Figure 2
summarizes a traditional PID controller.

Figure 2. PID Controller

The PID controller algorithm involves three-term control:
the Proportional, the Integral and Derivative values. The
proportional value determines the reaction to the current
error, the integral value resolves the reaction based on the
sum of recent errors, and the derivative value sets the
reaction based on the rate at which the error has been
changing [14]. Heuristically, these values can be interpreted
in terms of time: P depends on the present error, I on the
accumulation of past errors, and D is a prediction of future
errors, based on current rate of change.

The proportional, integral, and derivative terms are
summed to calculate the output of the PID controller. Defin-
ing u(t) as the controller output, the final form of the PID
algorithm is:

u(t) =MV (t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (1)

where:
Proportional gain, Kp: larger values typically mean faster

response since the larger the error, the larger the proportional
term compensation. An excessively large proportional gain
will lead to process instability and oscillation.

Integral gain, Ki: larger values imply steady state errors
are eliminated more quickly. The trade-off is larger over-
shoot: any negative error integrated during transient response

must be integrated away by positive error before reaching
steady state.

Derivative gain, Kd: larger values decrease overshoot, but
slow down transient response and may lead to instability
due to signal noise amplification in the differentiation of the
error.

V. CASE STUDY AND RESULTS

A. Introduction

In order to demonstrate the efficiency of our approach we
have performed our experiments based on an implemented
MJPEG decoder algorithm mapped onto the SHoP platform.
The application is basically composed of four main tasks:
the sender (T1), responsible for feeding the application with
the input stream and three additional tasks which belong
to the MJPEG application (IVLC (T2), IQ (T3) and IDCT
(T4)). The initial application mapping is the following: T1
is mapped onto NPU1 while T2, T3 and T4 are hosted in
NPU2. Figure 3 shows the MJPEG application task graph
and its initial mapping.

SENDER	
	

IVLC	
	

IQUANT	
	

IDCT	
	

NPU	 0	 NPU	 1	

NPU	 2	 NPU	 3	

IDCT	

IVLC	

SENDER	

IQUANT	

CTRL	

TASK	 1	

TASK	 2	

TASK	 3	

TASK	 4	 CTRL	 =	 PID	 Controller	

Figure 3. MJPEG Task Graph and Initial Mapping

B. System Characterization

In order to ensure optimized PID control loop, the process
characterization has been performed. It has to be either linear
or pseudo-linear and the dynamic response of the process has
to be evaluated.

The proposed PID controller is modeled as a service
provided by the RTOS and it is available in each NPU of
the architecture in a distributed fashion. We will consider the
process as a black box where input is the current processor
frequency and output the application throughput. Aiming
to validate its linearity, a scenario composed of steps in
frequency, changing from 55 to 355MHz has been used. The
observing window is consisted of the time interval between
two frequencies changes. By applying this method we can
consider the process at a steady state before performing a
state changing.

Figure 4 shows a linear interpolation of the process ac-
cording to the MJPEG performance vs processor frequency.
Marks in blue represent obtained throughput during the
time considered as steady state. The standard deviation is
approximately 150KB/s, which is less than 12% of the ave-
rage throughput. The linearity consideration of the proposed
process can be assumed.

50 100 150 200 250 300 350 400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FREQUENCY (MHz)

TH
R

O
U

G
H

PU
T

(M
B/

s)

EXPERIMENTAL MEASURE
LINEAR APPROXIMATION

Figure 4. MJPEG Application Performance

The dynamic response of the process has been evaluated
by changing the frequency from 55MHz to 355MHz. Figure
5 shows the process reactiveness when changing processor
frequency. The rise time of the process is calculated in
approximately 400ms (from 0.49s to 0.53s). This value can
be explained by the average necessary to reject noises due
to burst of incoming frames.

Indeed, as three tasks of the MJPEG are mapped onto
the same NPU, the computation power utilized by T2, T3

and T4 is shared. This creates a considerable delay with no
processed frames in the output.

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53
0

0.5

1

1.5

2

2.5

TIME (s)

TH
R

O
U

G
H

PU
T

(M
B/

s)

EXPERIMENTAL MEASURE
FREQUENCY

Figure 5. System Reactiveness

C. Task Migration

One of the purpose of the feedback controller is to be able
to adapt the processor frequency when a perturbation occurs
in the system, and in particular a task migration. To prove the
efficiency of the controller, a scenario using a task migration
has been created. In this scenario, two tasks communicating
with each other have been mapped onto NPU3. Later, one
of those two tasks is migrated to the NPU2, generating an
overhead in the application performance of the NPU2. Figure
6 shows the throughput variation due to this migration. The
NPU frequency has been maintained at 55MHz. The task is
migrated at 1.86s, represented by the dashed line.

1.7 1.8 1.9 2 2.1 2.2 2.3

0

0.5

1

1.5

2

2.5

3

3.5

TIME (s)

TH
R

O
U

G
H

PU
T

(M
B/

s)

EXPERIMENTAL MEASURE
MIGRATION TIME

Figure 6. Migration Cost Without PID Controller Regulation

The throughput goes from 3.15MB/s down to 0.45MB/s,
reducing the performance of the system. This behavior
can be considered as instantaneous and it is model as
perturbation. For such scenarios we are capable of measuring
the cost in terms of reaction time for having a dynamic
response generated by the PID controller. Hence, tuning the
PID controller to reject the perturbation will be the same as
tuning it for the dynamic response of the process.

D. PID Controller Tuning

Using the Takahashi method [15], we can optimize the
controller only using the dynamic response as shown in
Figure 5. The principle of the Takahashi method is to use the
step response of a process to compute the PID coefficient,
Kp, Ki and Kd. It takes into account the latency of the
process and the rise time to compute the coefficient which
minimize the overall error:∑

k≥0

|εk|

where εk is the error at sampled time k.

We demonstrate in the next section how the controller
regulates the throughput of the MJPEG application in two

different scenarios: in the first one the process is constant
and no perturbation is modeled. In the second scenario a task
migration is performed in order to generate a perturbation
in the system and the behavior of the controller is analyzed.

E. Regulation Without Perturbation
The PID controller has been implemented as a task in

the architecture. Thanks to an absolute timer not affected
by the frequency scaling, the controller function is executed
at fixed time slots. The information about packets arrival is
sent to the controller by the last task of the application.

In the first scenario we have modeled a MJPEG decoder
which requires a minimum throughput of 1MB/s. This
specification is used as a setpoint for the PID controller.
A set of 400 frames is computed by the MJPEG application
and the controller is responsible for adjusting the frequency
of the processor at run-time. The system has to ensure a
minimum throughput of the application according to the
setpoint. Figure 7 shows the frequency regulation and the
obtained throughput.

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14

2

4

6

8

10

x 106

TIME (s)

TH
R

O
U

G
H

PU
T

(M
B/

s)

EXPERIMENTAL MEASURE
SET POINT

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14
40

60

80

100

120

140

160

TIME (s)

FR
EQ

U
EN

C
Y

(M
H

z)

OBTAINED FREQUENCY
EXPECTED FREQUENCY

Figure 7. Frequency Regulation

We can observe a big overshoot at the beginning of
the regulation. This phenomenon can be explained by two
factors. First, there is a burst of incoming packets induced
by the internal organization of the system that reports
to the controller instantaneous information of the system.
Second, traditional PID controllers produce this kind of error
which is minimized at the time. These two phenomena lead
to a snowball effect: as no packet arrives, the controller
increases the processor frequency, which results to a faster
computation of frames by the IVLC and IQUANT tasks,
generating a burst of packets to the input of the last task
(IDCT) of the application.

This overshoot should occurs only at the beginning of
the computation, or in scenarios with huge variations of set-
points values, which can be considered as scarce phenomena.

F. Regulation With Perturbation

In order to validate the adaptability of our proposed
strategy, a different scenario has been modeled with pertur-
bations that are triggered at run-time. The scenario is similar
to the one presented in the previous section. The difference is
that a task migration to NPU2 is performed in the middle of
the regulation. Figure 8 shows the behavior of the proposed
controller in a scenario with system perturbation. In this
scenario, task migration is triggered at 1.9s.

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98

0.5

1

1.5

2

2.5

3

TH
R

O
U

G
H

PU
T

(M
B/

s)

TIME (s)

EXPERIMENTAL MEASURE
SET POINT
MIGRATION TIME

1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98
50

100

150

200

250

TIME (s)

FR
EQ

U
EN

C
Y

(M
H

z)

OBTAINED FREQUENCY
EXPECTED FREQUENCY

Figure 8. Frequency Regulation with System Perturbation

We can observe the efficiency of the regulation: the cost in
terms of performance due to the migration process is rapidly
amortized by the process: after approximately 250ms the ap-
plication setpoint is again guaranteed by applying changes in
the frequency. The maximum overshoot is around 330KB/s,
which is coherent with the value obtained for the sce-
nario without regulation. The different between obtained
frequency and the expected frequency is due the fact that
values are rounded to the closest available frequency in the
architecture (55, 105, 155, 205, 255, 305 and 355MHz).

VI. CONCLUSIONS

In this paper we have proposed a strategy for better
exploiting architecture resources utilization in a purely dis-
tributed memory homogeneous MPSoC architecture. Results
show very promising regarding to the adaptability of the
system in scenarios with dynamic workload changing.

We have demonstrated the efficiency of the proposed PID
controller by presenting two different scenarios with/without
perturbations. For validating our approach we have imple-
mented a multi-thread version of the MJPEG decoder which
utilizes a model based on message passing interface.

Results shown that by using the proposed strategy ob-
tained throughput is very close to the expected throughput
in scenarios where perturbations are not considered. In

scenarios where perturbations are taken into account, we
have shown that the system is capable of reacting to the
throughput dropping by means of using a frequency scaling
module proposed in the architecture.

As perspectives we plan to investigate the behavior of
the system for different types of regulators i.e non-linear
regulators. We also aim to scale the system by adding more
NPUs and analyze the efficiency of the proposed approach
for applications with different processing requirements.

REFERENCES

[1] G. Marchesan Almeida, G. Sassatelli, P. Benoit, N. Saint-
Jean, S. Varyani, L. Torres, and M. Robert. An adaptive
message passing mpsoc framework. International Journal of
Reconfigurable Computing, Volume October, 2009.

[2] G. M. Almeida, S. Varyani, R. Busseuil, G. Sassatelli,
L. Torres, E. A. Carara, and F. G. Moraes. Evaluating the
impact of task migration in multi-processor systems-on-chip
(full paper). In 23rd Symposium on Integrated Circuits and
Systems Design (SBCCI’2010), Sao Paulo, Brazil, September
2010.

[3] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali.
Supporting task migration in multi-processor systems-on-
chip: A feasibility study. In Design, Automation and Test
in Europe, 2006. DATE ’06. Proceedings, volume 1, pages
1–6, 2006.

[4] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. As-
sessing task migration impact on embedded soft real-time
streaming multimedia applications. EURASIP J. Embedded
Syst., 2008:1–15, 2008.

[5] M. Pittau, A. Alimonda, S. Carta, and A. Acquaviva. Im-
pact of task migration on streaming multimedia for embed-
ded multiprocessors: A quantitative evaluation. In Samarjit
Chakraborty and Petru Eles, editors, ESTImedia, pages 59–
64. IEEE, 2007.

[6] Alain Greiner. Tsar: a scalable, shared memory, many-cores
architecture with global cache coherence. In 9th International
Forum on Embedded MPSoC and Multicore (MPSoC’09),
Savannah, Georgia, USA, 2009. IEEE Press.

[7] Mohammad Ghasemazar, Ehsan Pakbaznia, and Massoud
Pedram. Minimizing the power consumption of a chip mul-
tiprocessor under an average throughput constraint. In Inter-
national Symposium on Quality Electronic Design (ISQED).
IEEE, 2010.

[8] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost.
Hermes: an infrastructure for low area overhead packet-
switching networks on chip. Integration, the VLSI Journal,
38(1):69–93, 2004.

[9] Fabien Clermidy, Romain Lemaire, Xavier Popon, Dimitri
Ktenas, and Yvain Thonnart. An open and reconfigurable
platform for 4g telecommunication: Concepts and application.
In DSD ’09: Proceedings of the 2009 12th Euromicro Confer-
ence on Digital System Design, Architectures, Methods and
Tools, pages 449–456, Washington, DC, USA, 2009. IEEE
Computer Society.

[10] Diego Puschini, Fabien Clermidy, Pascal Benoit, Gilles Sas-
satelli, and Lionel Torres. Dynamic and Distributed Fre-
quency Assignment for Energy and Latency Constrained MP-
SoC. In DATE’09: Design Automation and Test in Europe,
pages 1564–1567, Nice, France, 04 2009.

[11] X. Lin, P. K. McKinley, and L. M. Ni. Deadlock-free
multicast wormhole routing in 2-d mesh multicomputers.
IEEE Trans. Parallel Distrib. Syst., 5(8):793–804, 1994.

[12] MIPS Corp. Mips technologies (http://www.mips.com).

[13] S. Rhoads. Plasma - most mips i(tm)
(http://www.opencores.org/project,plasma).

[14] Stuart Bennett. A History of Control Engineering, 1800-1930.
Institution of Electrical Engineers, Stevenage, UK, UK, 1979.

[15] S. Takahashi and al. Method of designing control system
based on a partial knowledge of control object. Transactions
of the Society of Instrument ans Control Engineers, 5(4),
1979.

