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Abstract—This paper introduces a non-variational quantum
algorithm designed to solve a wide range of combinatorial
optimisation problems, including constrained and non-binary
problems. The algorithm leverages an engineered interference
process achieved through repeated application of two unitaries;
one inducing phase-shifts dependent on objective function values,
and the other mixing phase-shifted probability amplitudes via a
continuous-time quantum walk (CTQW) on a problem-specific
graph. The algorithm’s versatility is demonstrated through its
application to various problems, namely those for which solutions
are characterised by either a vector of binary variables, a vector
of non-binary integer variables, or permutations (a vector of
integer variables without repetition). An efficient quantum circuit
implementation of the CTQW for each of these problem types
is also discussed. A penalty function approach for constrained
problems is also introduced, including a method for optimising
the penalty function. The algorithm’s performance is demon-
strated through numerical simulation for randomly generated
instances of the following problems (and problem sizes): weighted
maxcut (18 vertices), maximum independent set (18 vertices), k-
means clustering (12 datapoints, 3 clusters), capacitated facility
location (12 customers, 3 facility locations), and the quadratic
assignment problem (9 locations). For each problem instance, the
algorithm finds a globally optimal solution with a small number
of iterations.

Index Terms—quantum computing, quantum algorithm, opti-
misation

I. INTRODUCTION

In 1996 Grover introduced his landmark quantum search
algorithm, addressing the problem of unstructured search [1].
Grover’s algorithm leverages quantum superposition, entan-
glement and interference to return a target element from an
unstructured search space with a quadratic speedup relative to
exhaustive search (O(

√
N) vs. O(N)). Since then, the ampli-

tude amplification process at the heart of Grover’s algorithm
has formed an important sub-process within many quantum
algorithms, delivering a similar quadratic speedup [2]–[5].

Soon after, amplitude amplification was also applied to
combinatorial optimisation. The Grover adaptive search treats
the space of feasible solutions to a combinatorial optimisation
problem as an unstructured database, where solutions are
differentiated from each other only by their associated objec-
tive function values [6], [7]. However, with only a quadratic
speedup relative to an exhaustive search, this technique does

not yield a significant advantage over classical techniques
which instead take advantage of problem structures.

A more promising candidate for combinatorial optimisation,
the quantum approximate optimisation algorithm (QAOA) [8],
inspired by quantum annealing and the adiabatic theorem [9]–
[11], makes use of a variational approach. The algorithm
sees the repeated application of two Hamiltonians where
the application times are classically controlled parameters.
These parameters would typically be initialised randomly,
and subsequently tuned via a classical optimisation process.
The QAOA is not the only variational algorithm for solving
combinatorial optimisation problems; the variational quantum
eigensolver and related algorithms [12], [13] involve the
application of parameterised quantum circuits for which the
parameters must be similarly tuned. A major challenge with
these variational algorithms is finding a set of parameters that
performs well and returns an optimal or near-optimal solution.
While gradient based methods can be used to improve a set
of parameters, the resulting performance is highly sensitive to
initialised parameter values. With the space of possible initial
parameter values growing exponentially in parameter count,
without some method of generating an effective set of initial
parameters, variational algorithms aim to solve a hard problem,
while presenting another in its place.

Besides the challenge of producing a good set of parameters,
without a clear understanding of the mechanism by which
variational quantum circuits increase the measurement proba-
bility of optimal solutions, it is also not clear how to design
or select an effective circuit ansatz. For example, the QAOA
relies on parameterized applications of a particular (transverse-
field) Hamiltonian, yet there exist many other efficiently im-
plementable Hamiltonians that could potentially be used in its
place. While the transverse-field Hamiltonian is effective with
binary variable problems, such as maxcut, it does not perform
as well in non-binary problems. In the absence of a more
adaptable approach, many studies opt to embed intrinsically
non-binary problems into a quadratic unconstrained binary op-
timisation (QUBO) framework, introducing additional problem
constraints (via a penalised objective function) to enforce the
original problem structure [14], [15].

The quantum walk-based optimisation algorithm (QWOA)
is another variational algorithm which is particularly relevant
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to this discussion, due to its close connection with the non-
variational algorithm of this paper. The QWOA is a generali-
sation of the QAOA, where the application of the transverse-
field Hamiltonian is replaced by a continuous-time quantum
walk (CTQW) [16] on a graph that connects basis states
encoding the feasible solutions to a combinatorial optimisation
problem [17]–[20]. The other Hamiltonian remains unchanged,
acting to phase-shift basis states depending on their associated
objective function values. Within this framework, QAOA’s
transverse-field Hamiltonian is equivalent to a CTQW on a
hypercube, connecting computational basis states which differ
by a single bit-flip.

Grover’s algorithm can also be described within the QWOA
framework: Grover’s diffusion transform is equivalent to a
CTQW on a complete graph for time π

N , while Grover’s
other unitary is implementable with π phase-shifts applied
with a binary objective function. The complete graph CTQW
distributes phase-shifted probability amplitudes across the
connected basis states, producing a well-designed interference
process, where probability amplitudes arriving at target basis
states constructively interfere, amplifying the associated mea-
surement probability. Grover’s algorithm cannot exploit prob-
lem structure as the complete graph connects any particular
basis state to all others, ignoring any relationship that may be
present between them. The binary phase rotation also erases
much of the structure that may have been present across an
optimisation landscape consisting of various objective function
values.

On the other hand, performing the CTQW over a graph
that incorporates the underlying problem structure enables
exploitation of this structure, leading to speedups significantly
larger than that of Grover’s algorithm. This paper introduces an
algorithm that does exactly that, the non-variational quantum
walk-based optimisation algorithm (non-variational QWOA).
By closely analysing the CTQW and studying the statistics of
objective function values as distributed over the mixing graph,
it is possible to understand and design the algorithm’s inter-
ference process. This understanding helps with the intelligent
selection of parameters, namely those that control the walk
times and magnitudes of applied phase-shifts, thus removing
the need for a computationally expensive variational proce-
dure. In addition, a clear understanding of the interference
process informs the design of the mixing graph, allowing
for generalisation to problems with diverse and non-binary
structures. Effective penalty functions can also be designed to
embed problem constraints where necessary, further improving
versatility.

This paper formally introduces the non-variational QWOA
and focuses on its application to various combinatorial optimi-
sation problems. Efficient circuit implementations of CTQWs
for binary, non-binary and permutation problems are dis-
cussed, after which the algorithm’s performance is analysed
via numerical simulation results. Detailed benchmarking will
form part of future work and a more detailed analysis of the
algorithm, particularly the general interference process, and
the problem specific CTQWs is included in a separate paper

[21].

II. THE ALGORITHM (NON-VARIATIONAL QWOA)

A. Definitions

Consider a combinatorial optimisation problem with
a solution space S containing N feasible solutions
x = (x1, x2, ..., xn) each composed of n decision variables,
xj ∈ {0, 1, ..., k − 1}. The solution space may contain all
possible solutions of this form, of which there are N = kn.
Alternatively, it may be restricted to solutions which satisfy
some constraint, such as in the case of permutation-based
problems where k = n and N = n!. The solutions to the
problem can be encoded in the computational basis states of a
quantum computer by allocating to each variable a sub-register
such that x is represented by the solution state,

|x⟩ =
n∏

j=1

|xj⟩ , (1)

where |xj⟩ is the computational basis state of the jth sub-
register which directly encodes the decision variable xj . If
using a binary encoding, each sub-register will be assigned
⌈log2 k⌉ qubits, whereas a one-hot encoding will use k qubits.
The binary encoding is more space efficient and lends itself
to a more efficient implementation of the mixing unitary.
However, the one-hot encoding may enable a more efficient
implementation of the phase-separation unitary.

The state of the allocated qubits is initialised in the equal
superposition state, with equal probability amplitude assigned
to each solution state,

|s⟩ = 1√
N

∑
x∈S

|x⟩ . (2)

The preparation of this equal superposition state is discussed
in Section III.

The non-variational QWOA is designed to find optimal
or near-optimal solutions to the combinatorial optimisation
problem, with respect to optimisation of an objective function
f(x). The interference process responsible for amplifying the
measurement probability of optimal and near-optimal solution
states is driven by repeated applications of two unitary oper-
ations. The first of these is the phase-separation unitary,

UQ(γ) = e−iγQ, (3)

where Q is a diagonal operator such that Q |x⟩ = f(x) |x⟩.
This unitary applies a phase shift to each solution state,
proportional to the associated objective function value,

UQ(γ) |x⟩ = e−iγf(x) |x⟩ . (4)

The second unitary performs a continuous-time quantum
walk for time t on the mixing graph which connects feasible
solution states,

UM (t) = e−itA, (5)

where A is the adjacency matrix which defines the mixing
graph’s structure. This unitary is referred to as the mixing



unitary, or mixer for short, since it acts to distribute probability
amplitudes between the solution states. The mixing graph is
customised to suit the underlying structure of the problem to be
solved. The efficient implementation of this mixer is discussed
in Section III.

B. The Mixing Graph

The adjacency matrix A is formed by connecting solution
states associated with solutions that are nearest neighbours. For
the mixing graphs presented in this paper, nearest neighbour
solutions are defined as those separated by a minimum non-
zero Hamming distance, where the Hamming distance between
any two solutions counts the number of mismatched decision
variables between them. This generally corresponds with a
Hamming distance of 1, though not necessarily, as in the
case of permutations, where the smallest possible Hamming
distance between two different permutations is 2.

More generally, we specify a set of d moves (polynomial in
problem size), each of which modifies any feasible solution to
return a different feasible solution with similar configuration.
Given a particular solution, its nearest neighbours are those
that can be generated with a single move from the set of
available moves. Distance on the mixing graph therefore acts
as a measure of similarity, with the distance between any two
vertices counting the minimum number of moves required to
transform between the associated solutions. In addition, since
the nearest neighbours of each solution are generated by the
same set of d moves, the graph is vertex transitive with degree
d.

The mixing graph defined by the adjacency matrix should
have a diameter D which scales linearly in the size of the
problem instance. For effective performance the mixer should
also satisfy two important conditions, but before describing
these, it is useful to first define distance-based subsets of
vertices on the graph. For any two vertices, u and v, we define
dist(u,v) as the distance on the graph between these vertices.
For any vertex u and distance h, we define a subset of vertices,

hu = {v : dist(u,v) = h}, (6)

i.e. hu is the subset of vertices which are a distance h from u
on the graph. Fig. 1 provides an illustration of the partitioning
of a mixing graph into these distance based subsets for a
particular choice of vertex u.

It may often be the case where the mixing unitary is applied
over a quantum register with a Hilbert space larger than
the feasible solution space (as in the mixer corresponding
with Fig. 1 where the Hilbert space of each sub-register has
dimension larger than k = 3). In this case, the adjacency
matrix defines a disconnected graph with several components
(isolated subgraphs). The relevant subgraph connecting just the
feasible solution states, which we refer to as the mixing graph,
is just one of the components, where the others can be ignored.
This is because the continuous-time quantum walk distributes
probability amplitude only between connected vertices/states,
such that the feasible solution states form an invariant subspace
of the mixer.

(0,0,0)

(0,0,1)

(0,0,2)
(0,1,0) (0,2,0) (1,0,0) (2,0,0)

(2,2,0)

(1,2,0)
(2,1,0)

(1,1,0)

(0,2,2)
(0,1,2)

(2,0,2)(1,0,2)

(0,2,1)(0,1,1)
(2,0,1)

(1,0,1)

(1,1,1)
(1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,1,2) (2,2,1)

(2,2,2)

u 0u

1u

2u

3u

Fig. 1. Example mixing graph connecting solutions to an integer variable
problem, for n = 3, k = 3. Solution u = (0, 0, 0) is selected, and the graph
is partitioned into subsets hu for h = 0, 1, 2, 3.

C. Necessary Conditions

Here we impose two conditions under which the algorithm
is expected to work well. These conditions are satisfied within
a surprisingly wide range of problems, as demonstrated in
Sections III and IV. The first condition, which relates to
selecting a neighbourhood and designing a mixing graph, is
that the action of the resulting mixer on an arbitrary solution
state |u⟩, must be as follows:

UM (t) |u⟩ =
D∑

h=0

(
e−ihϕ(t)

∑
x∈hu

rx(t) |x⟩

)
, (7)

where D is the diameter of the graph and (for sufficiently small
t) rx and ϕ are positive real-valued functions, also 0 < ϕ(t) <
π. In other words, probability amplitude from an initial vertex
is distributed to other vertices such that the complex phase of
the distributed probability amplitudes is proportional to their
distance from the initial vertex.

The second condition relates to the tendency for solutions
with similar configurations to possess similar objective func-
tion values, and manifests due to the mixing graph clustering
solutions with similar configurations. Firstly, the following
relationship should be at least approximately satisfied,

(µhx − f(x)) ≈ −αh (f(x)− µ) , (8)

where µhx is defined as the mean objective function value of
solutions contained in hx, µ is the mean objective function
value of all solutions in S, and αh is a positive constant.
Secondly, the constant of proportionality αh should increase
monotonically with increasing h (up to a distance which is a
considerable fraction of the graph’s diameter D). Examples of
this relationship are plotted in section IV (Fig. 3, 6, 9, 11, 14).

D. The Amplified State

Having established the phase-separation and mixing uni-
taries, and given a pre-selected number p of iterations (which



should be polynomial in the size of the problem instance), we
define the amplified state,

|γ, t, β⟩ =

[
p−1∏
i=0

UM (ti)UQ

(
±γi
σ

)]
|s⟩ , (9)

where γ, t and β are classically controlled positive-valued
parameters that determine the applied phase separations and
the mixing times for each iteration. Specifically, the values of
γi and ti are given by explicit formulae, such that γi increase
linearly over the domain [βγ, γ], while the mixing times ti
decrease linearly over the domain [βt, t], where 0 < β < 1.
These increasing and decreasing profiles are reminiscent of the
annealing protocols for the adiabatic algorithm, though they
are independently motivated. Here, ± accounts for whether
the goal is maximisation (+) or minimisation (−), and σ is
the standard deviation of objective function values, controlling
for variation across problems and problem instances such that
appropriate values of γ are consistently of order γ ≈ 1. An
approximate value for σ is sufficient (acquired through random
sampling, for instance).

E. Repeated State Preparation and Measurement

Subject to the conditions described above, and allowing a
sufficient number of iterations (polynomial in problem size),
a wide range of appropriate values for γ, t and β significantly
increase the measurement probability of globally optimal and
near-optimal solutions within the amplified state |γ, t, β⟩, such
that a globally optimal or near-optimal solution is exceedingly
likely to be measured following repeated state preparation and
measurement of |γ, t, β⟩.

The total number of state preparations should be fixed,
regardless of iteration count p or problem size. The best
solution measured during the process of repeated state prepa-
ration and measurement is taken as the solution, either exact
or approximate, to the optimisation problem. Optionally, at
regular intervals during the repeated state preparation and
measurement, the values of γ, t and β can be updated in
order to improve the amplification of optimal and near-optimal
solutions, as indicated by improvement in approximated values
of either the expectation value of the objective function, or a
related measure, such as the Conditional Value at Risk (CVaR)
[22].

The reason that the algorithm remains effective while con-
strained to a fixed total number of state-preparations and
measurements, and the reason it is best characterised as non-
variational, is because the optimal set of parameters can be
determined via a fixed complexity 3-dimensional optimisation
which seeks only a local extremum (that closest to the origin).
In any case, even sub-optimal parameter values significantly
amplify optimal and near-optimal solutions, such that the
improvement/optimisation of parameters is optional.

F. Constrained Problems

There are two ways that problem constraints can be dealt
with in this framework. The first approach is to restrict the
space of feasible solutions S to include just those solutions

which are valid (do not violate the constraints). This approach
is only viable if the space of valid solutions can be charac-
terised independently of the problem instance, if it is possible
to efficiently implement a mixer that connects only valid
solutions and if the mixer satisfies the necessary condition
in (7). An example of this approach is demonstrated in IV-E
for the quadratic assignment problem.

The other approach is to include both valid and invalid solu-
tions and for the constraints to manifest as additional terms in
the objective function, which act to penalise invalid solutions.
This approach is often necessary, as it is frequently the case
that the space of valid solutions cannot be predetermined, in
which case it is not possible to design a mixing graph which
isolates and mixes between only valid solutions.

We introduce three kinds of penalty terms, the first two
are designed to ensure that invalid solutions are sufficiently
penalised, so that the penalised objective function is optimised
by valid solutions. The first of these is a variable term which
scales with the extent to which a constraint has been violated.
The second is a fixed term which ensures that solutions which
violate a constraint by only a small amount remain sufficiently
penalised. The introduction of these first two penalty terms
may adversely effect algorithm performance, due to the intro-
duction of bimodality in the distribution of objective function
values, which adversely effects conformance with condition
(8). The third penalty term is introduced to correct for this
bimodality and improve algorithm performance, while leaving
near-optimal invalid solutions adequately penalised.

The influence of each penalty term is controlled by a
positive-valued parameter, such that the penalty can be ad-
justed to improve performance. The penalised objective func-
tion is therefore expressed as f(x)λ, where λ = (λ1, λ2, ...)
are the coefficients for each of the terms in the penalty
function. Similar to the γ, t and β parameters, appropriate
penalty parameters λ may be known from prior experience.
In any case, the penalty parameters can be tuned during
the repeated state preparation and measurement process. The
general approach is summarised as follows:

1) Design the penalty terms and select fixed penalty param-
eters λF which adequately penalise the invalid solutions,
such that the globally optimal values of f(x)λF

belong
to valid solutions.

2) Using the same penalty terms, define a second objective
function, parameterised by tunable penalty parameters
λT . This objective function f(x)λT

is used within the
phase-separation unitary.

3) Through repeated state preparation and measurement
of the amplified state, use a classical optimistion
procedure to tune the parameters {γ, t, β,λT } (ini-
tialised with λT = λF ) so as to optimise the ex-
pectation value of f(x)λF

. In other words, optimise
λT

⟨γ, t, β| f̂λF
|γ, t, β⟩λT

, where |γ, t, β⟩λT
is the am-

plified state prepared using f(x)λT
.



G. The Interference Process

The interference process can be understood loosely by
referring to the two necessary conditions (7) and (8). When
the mixing unitary distributes probability amplitude from one
solution state to another, it induces a phase-shift proportional
to the distance between the respective vertices on the mixing
graph. Due to the nature of the CTQW, for a sufficient walk
time, any particular solution state |u⟩ receives probability am-
plitudes from all other solution states. This exponentially large
number of individually contributing probability amplitudes
is capable of producing significant constructive interference.
However, under the action of the mixer alone, the probability
amplitudes largely destructively interfere, due to the distance
dependent phase rotations applied to the contributions from
each subset hu.

Application of the phase-separation unitary rotates the
phases of all contributions dependent on their associated
objective function values. Due to the monotonically varying
mean objective function values in each subset hu, the phase-
separation unitary rotates the resultant probability amplitude
from each subset differently, dependent on distance h. The
distance-dependent relative phases induced by the phase-
separation unitary are able to offset those induced by the
mixing unitary, so as to bring the contributing probability
amplitudes more or less in-phase, producing constructive or
destructive interference. A closer analysis in [21] reveals why
the phase separations should start small and increase, and why
the mixing times should decrease, but the general interference
process remains consistent throughout the iterations.

III. A FEW IMPORTANT MIXERS

This section addresses the mixing unitary and its efficient
implementation for three cases: binary problems (k = 2),
integer problems (k > 2) and permutation problems (k = n,
no repetition). The action of each of these mixers on an
arbitrary solution state can be shown to satisfy the necessary
condition in (7).

A. Binary Mixer (Hypercube Graph)

Consider a combinatorial problem consisting of n binary de-
cision variables xj ∈ {0, 1}, where solutions are characterised
by vectors x = (x1, x2, ..., xn) and the space of feasible
solutions S contains all such vectors, such that N = 2n.
Each binary variable is naturally encoded in the computational
basis state of a single qubit (where the binary and one-hot
encodings are equivalent), so that the solution states are the
computational basis states of an n qubit register. The equal
superposition is efficiently prepared,

|s⟩ = H⊗n |0⟩⊗n
=

1√
2n

∑
x∈S

|x⟩ . (10)

The set of n bit-flips generate nearest neighbour solutions,
so the set of n Pauli X operators σx generate nearest neigh-

bour solution states. The adjacency matrix can therefore be
expressed as,

A =

n∑
j=1

1⊗j−1 ⊗ σx ⊗ 1⊗n−j , (11)

which is the adjacency matrix for an n-dimensional hypercube.
The continuous-time quantum walk on the hypercube, and
hence the mixing unitary, can be expressed as,

UM (t) = e−itA =

n∏
j=1

e−itσx , (12)

which is identical to the transverse-field Hamiltonian from
the QAOA, and is efficiently implementable with single qubit
rotations.

B. Integer Mixer (Hamming Graph)

Consider a combinatorial problem consisting of n integer
decision variables xj ∈ {0, 1, ..., k − 1}, where solutions are
characterised by vectors x = (x1, x2, ..., xn) and the space
of feasible solutions S contains all such vectors, such that
N = kn. Each integer variable can be encoded in the compu-
tational basis state of a sub-register of m = ⌈log2 k⌉ qubits
for a binary encoding or m = k qubits for a one-hot encoding.
The equal superposition state is efficiently prepared over an
nm qubit register containing n sub-registers,

|s⟩ =
(
Uk |0⟩⊗m

)⊗n

= |k⟩⊗n
=

1√
kn

∑
x∈S

|x⟩ , (13)

where |k⟩ is the equal superposition over the k utilized com-
putational basis states of a sub-register (those which directly
encode each of the possible decision variable values). Each
circuit implementation (one-hot and binary) of the unitary Uk

which prepares |k⟩ is described in [21].
When modifying a particular solution to return a nearest

neighbour, any one of the decision variables can be modified,
and there are (k − 1) values which could replace each of
them. As such, there are n(k − 1) moves which generate the
nearest neighbours. The adjacency matrix of the mixing graph
which connects these nearest neighbour solution states can be
expressed as,

A =

n∑
j=1

1⊗j−1 ⊗Kk ⊗ 1⊗n−j , (14)

where Kk is the adjacency matrix of a complete graph con-
necting the k utilized computational basis states within a sub-
register, Kk = k |k⟩⟨k| − 1. This mixing graph (the subgraph
connecting feasible solutions) is also known as a Hamming
graph H(n, k), and is the Cartesian product of n complete
graphs Kk.

As the individual terms in the adjacency matrix are com-
muting, the mixer can be implemented by applying a CTQW
on the complete graph Kk within each sub-register,

UM (t) = e−inte−itA = e−int
n∏

j=1

e−itKk , (15)



where a global phase has been introduced in order that the
expression simplifies,

UM (t) =

n∏
j=1

(
e−ikt |k⟩⟨k|+ (1 − |k⟩⟨k|)

)
. (16)

A quantum circuit implementation of the mixer can be
achieved by applying the circuit in Fig. 2 within each of the
sub-registers.

U†
k

X P (−kt) X

Uk...
...

Fig. 2. Quantum circuit implementation of the CTQW on a complete graph
(e−ikt |k⟩⟨k|+ (1 − |k⟩⟨k|)) to be applied within each of the m-qubit sub-
registers. P (ϕ) is the phase gate which maps computational basis states
|0⟩ 7→ |0⟩ and |1⟩ 7→ eiϕ |1⟩.

C. Permutation Mixer (Transposition Graph)

Consider a combinatorial problem consisting of n integer
decision variables xj ∈ {0, 1, ..., n− 1}, where solutions are
characterised by vectors x = (x1, x2, ..., xn) and the space of
feasible solutions S contains all such vectors without repeating
elements, such that N = n!. As with the integer problems,
each integer variable can be encoded in the computational
basis state of a sub-register of m = ⌈log2 n⌉ or m = k qubits.
A recursive method for generating the equal superposition over
feasible solution states is presented in [21], which has gate
complexity of order n3, and works for both the binary and
one-hot encodings. An alternative method is presented in [23],
effective for just the one-hot encoding.

The set of 1
2n(n− 1) possible transpositions (the swapping

of two elements of the vector x) generates nearest neighbour
solutions. As such, the set of all possible sub-register SWAP
operations generates nearest neighbour solution states, so the
adjacency matrix of the mixing graph can be expressed as,

A =

n−2∑
i=0

n−1∑
j=i+1

SWAPi,j , (17)

where SWAPi,j is defined as the permutation matrix associated
with swapping the states of the ith and jth sub-registers (apply-
ing identity to the remaining sub-registers). This mixing graph
(the subgraph connecting feasible solutions) is a transposition
graph.

Unlike the terms in (11) and (14), the individual SWAPi,j

operators composing this adjacency matrix do not commute.
As such, the application of this mixer is not as trivial. However
it can be efficiently implemented via Hamiltonian simulation.
For example, Berry et al. [24] present a truncated Taylor series
method to implement e−iHt where H is a linear combination
of implementable unitary matrices, which is exactly satisfied
in this case with H = A and SWAPi,j playing the role of the

individual unitary matrices which are efficiently implemented
with regular 2-qubit SWAP gates.

IV. SIMULATION RESULTS

This section introduces several problems and provides sim-
ulation results for the non-variational QWOA applied to each
of them. For this purpose, a single random problem instance
has been generated for each, with the details provided in
[21]. In addition, each of the generated problems are shown
to satisfy the necessary condition in (8), where the result is
derived analytically for weighted maxcut, and is demonstrated
via statistical sampling for the other problems.

During physical implementation, derivative-free optimisa-
tion methods such as Bayesian optimisation or CMA-ES, are
likely to be more effective than gradient-based methods, as
they are robust to uncertainties in the approximated values
of the function to be optimised. This allows them to be
effective with limited shots (repeated state-preparation and
measurements). However, for the following results, parameter
values have all been determined via the BFGS algorithm, to
optimise for expectation value of f(x), initialised with γ = 1,
t = 0.1 and β = 1

p (and λT = λF where relevant).
Note that the approximation ratio, defined as,

Approximation Ratio =
f(x)

optimal{f(x) : x ∈ S}
, (18)

is used for some of the figures, providing clarity, as regardless
of the problem or problem instance, an optimal solution has
approximation ratio equal to 1.

A. Weighted Maxcut

A weighted maxcut problem of size n is characterised by
an n vertex weighted graph G(V,E,W ), where the aim is
to find a partitioning of the graph’s vertices into two subsets
such that the total weight of edges passing between the two
subsets is maximised. As such, solutions to the problem can be
characterised as a vector of binary decision variables, where
each decision variable assigns a vertex to one subset or the
other. The objective function can then be expressed,

f(x) =
∑

(i,j)∈E

wij(xi − xj)
2, (19)

which satisfies the condition in (8) when solutions are dis-
tributed over the binary mixing graph (hypercube), as illus-
trated in Fig. 3.

With the binary mixer and p = 10, the optimal amplified
state |γ, t, β⟩ for an n = 18 problem instance is given by
γ = 2.4340, t = 0.4517 and β = 0.2844 and is analysed
in Fig. 4 and Fig. 5, demonstrating that the non-variational
QWOA solves this particular instance.

B. Maximum Independent Set

A maximum independent set problem of size n is charac-
terised by an n vertex graph G(V,E), where the aim is to
find one or all of the subsets of the graph’s vertices which
include the maximum number of vertices without including
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Fig. 3. Maxcut: An analysis of objective function values, as distributed over
the binary/hypercube mixing graph.
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Fig. 4. Maxcut: Measurement probability of the optimal solution throughout
the 10 iterations preparing the amplified state |γ, t⟩.
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Fig. 5. Maxcut: Distributions for approximation ratio as measured from the
initial equal superposition state, |s⟩, and the amplified state |γ, t⟩.

any pairs of connected vertices. Solutions to the problem
can be characterised by a length n vector of binary decision
variables, one for each of the vertices of the graph, encoding
whether or not each vertex is included in the subset. The
penalised objective function (to be maximised) can then be
expressed,

f(x)λ =

 n∑
j=1

xj

− λ1P1(x)− λ2P2(x), (20)

where P1 counts the number of connected pairs in the subset,

P1(x) =
∑

(i,j)∈E

xixj , (21)

and P2(x) flags whether the solution violates the constraint,

P2(x) =

0, if
∑

(i,j)∈E xixj = 0

1, otherwise
. (22)

Fig. 6 shows that the objective function satisfies the necessary
condition in (8), for solutions distributed over the binary
mixing graph.
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Fig. 6. Maximum independent set: An analysis of objective function values
with λF = {1.5, 0}, as distributed over the binary/hypercube mixing graph.
The points and shading show the mean and ± a single standard deviation
from 200 equally spaced bins (where the bins were not empty).

With the binary mixer, p = 10 and λF = {1.5, 0}, the opti-
mal amplified state |γ, t, β⟩λT

for an n = 18 problem instance
is given by parameter values, γ = 3.0098, t = 0.5724, β =
0.1722 and λT = (1.0370, 0.5235) and is analysed in Fig. 7
and Fig. 8, demonstrating that the non-variational QWOA
solves this particular instance, preferentially amplifying the
measurement probability of the two maximum independent
sets.

In a recent study focused on quantum optimisation for
constrained problems, Saleem et al. [25] focus specifically
on the maximum independent set problem and introduce an
alternative variational approach, which was demonstrated on
a randomly generated 14 vertex graph. While it is difficult
to make direct comparison, we note that the non-variational
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Fig. 7. Maximum independent set: Measurement probability of the two
optimal solutions throughout the 10 iterations preparing the amplified state
|γ, t, β⟩λT
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QWOA solves this particular problem instance, producing a
measurement probability for the 8 maximum independent sets
of 0.16 for p = 2 iterations, and 0.36 for p = 3 iterations.

C. k-means Clustering

Cluster analysis involves dividing a set of data-points into
clusters based on similarity. k-means clustering measures the
quality of a clustering by the degree to which it minimises
the sum of squared euclidean distance between each data-
point and its respective cluster’s centroid. That is, k-means
clustering seeks a partitioning of n multi-dimensional real
vectors (data-points) vj into k clusters which minimises the
objective function,

f(x) =

k−1∑
i=0

1

|Ci(x)|
∑

a,b∈Ci(x)

∥a− b∥2,

where Ci(x) = {vj : xj = i} is cluster i and ∥a− b∥ is
the euclidean distance between data points a and b which are
contained in Ci.

An additional adjustment is made to the objective function
to improve its adherence to the condition in (8),

f(x) −→ f(x)− (µc(x) − µk),

where c(x) is the number of non-empty clusters in solution
x, and µj is defined as the mean objective function value of
solutions with j non-empty clusters. As can be seen in Fig. 9,
this modified objective function, for solutions distributed over
the vertices of the integer mixing graph, conforms well with
the necessary condition in (8).
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Fig. 9. k-means clustering: An analysis of objective function values, as
distributed over the integer mixing graph. The points and shading show the
mean and ± a single standard deviation from 200 equally spaced bins (where
the bins were not empty).

With the integer mixer and p = 10, the optimal amplified
state |γ, t, β⟩ for an n = 12, k = 3 problem instance is
given by parameter values γ = 1.5345, t = 0.2483 and
β = 0.3441 and is analysed in Fig. 10, demonstrating that
the non-variational QWOA solves this particular instance.
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Fig. 10. k-means clustering: Measurement probability of the optimal solution
throughout the 10 iterations preparing the amplified state |γ, t⟩.

D. The Capacitated Facility Location Problem

The facility location problem involves the servicing of n
customers via some number of facilities located amongst k



candidate locations. A solution to the problem is a selection
of candidate locations at which to install a facility, and the
assignment of each customer to a facility. As such each
solution to the problem can be characterised by a vector,
x = (x1, x2, ..., xn), where xj ∈ {0, 1, ..., k − 1} specifies the
allocation of customer j to a facility at candidate location xj .

There are a few parameters which define a particular prob-
lem instance. Fi is the cost associated with opening a facility
at candidate location i, and Lj,i measures the transport cost
between customer j and facility location i. We consider a
variant of the problem where each customer is serviced by
only a single facility. In addition, we consider the capacitated
variant, where customer j requires a number of resources Rj ,
and a facility at candidate location i has a maximum capacity
Ci with regards to total supplied resources.

Prior to embedding the capacity constraint via penalty terms,
the objective function to be minimised is given by,

f(x) =

n∑
j=1

RjLj,xj
+

k−1∑
i=0

Fi, if i ∈ x

0, otherwise
, (23)

where the first sum accounts for the transportation cost of
resources and the second sum accounts for the total cost of
opening facilities. Introducing facility capacities, the penalised
objective function can be expressed as,

f(x)λ = g(x)λ −

0, if x is valid

λ3 [g(x)λ − g(y)λ] , otherwise
(24)

where y is the solution (or at least an approximate solution)
to the unconstrained variant and,

g(x)λ = f(x) +

k∑
i=1

0, if
∑

j:xj=i Rj ≤ Ci

λ1Pi,1(x) + λ2Pi,2(x), otherwise
.

(25)
Pi,1(x) and λ1 apply a penalty when the capacity of facility
i is exceeded,

Pi,1(x) =

1

k

k∑
j=1

Fj


(∑

j:xj=i Rj

)
− Ci

Ci

 , (26)

which is proportional to the average facility opening cost.
Pi,2(x) and λ2 provide a penalty proportional to the number
of excess resources at facility i,

Pi,2(x) =

 1

nk

n∑
j=1

k∑
l=1

Lj,l

 ∑
j:xj=i

Rj

− Ci

 , (27)

which scales with the average facility-customer distance. The
purpose of (24) and hence the role of λ3 is to correct for
bimodality which is introduced by the penalties in g(x)λ.
Fig. 11 shows that the penalised objective function conforms
well with the condition in (8), which is generated for a random
n = 12, k = 3 problem and is shown with the tuned penalty
parameters.
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Fig. 11. Capacitated facility location problem: An analysis of objective
function values f(x)λT

as distributed over the integer mixing graph. The
points and shading show the mean and ± a single standard deviation from
200 equally spaced bins (where the bins were not empty).

With the integer mixer, p = 20 and λF = (1, 1, 0), the op-
timal amplified state |γ, t, β⟩λT

for an n = 12, k = 3 problem
instance is given by γ = 2.5732, t = 0.2756, β = 0.0593 and
λT = (0.8966, 0.4996, 0.1732) and is analysed in Fig. 12 and
Fig. 13, demonstrating that the non-variational QWOA solves
this particular instance.
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Fig. 12. Capacitated facility location problem: Measurement probability of
the optimal solution throughout the 20 iterations preparing the amplified state
|γ, t⟩λT

.

E. The Quadratic Assignment Problem

The quadratic assignment problem (QAP) is an extremely
challenging combinatorial optimisation problem [26] which
makes the problem an interesting candidate for the study of
quantum algorithms. Consider some set of facilities between
which materials must be transported. A QAP can be charac-
terised as the problem of assigning each of these facilities
to a location, where the number of candidate locations is
equal to the number of facilities. Each problem instance can
be fully characterised by the distances (or costs associated
with transport) between candidate locations and the amount
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.

of material flowing between facilities. We define Li,j as the
distance or transport-cost between location i and location j.
Likewise, Fi,j quantifies the material flowing between facility
i and facility j. Consider a solution to a QAP of size n to
be characterised by a vector, x = (x0, x1, ..., xn−1), where
xj ∈ {0, 1, ..., n− 1} specifies the allocation of a facility j
to location xj . Only one facility can be assigned to each
location, so we define the space of valid solutions S to contain
all N = n! permutations, or in other words, all x such that
there is no repetition in xj . Given a particular solution x, the
objective function (to be minimised) can be expressed as,

f(x) =
∑
i,j

Fi,jLxi,xj
. (28)

The objective function for the randomly generated n = 9
problem instance satisfies the condition in (8) when solutions
are distributed over the permutation mixing graph, as illus-
trated in Fig. 14.
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Fig. 14. The quadratic assignment problem: An analysis of objective function
values f(x) as distributed over the permutation mixing graph. The points and
shading show the mean and ± a single standard deviation from 200 equally
spaced bins (where the bins were not empty).

With the permutation mixer and p = 20, the optimal
amplified state |γ, t, β⟩ for an n = 9 problem instance is given
by γ = 1.2636, t = 0.1219 and β = 0.4167 and is analysed in
Fig. 15, demonstrating that the non-variational QWOA solves
this particular instance.
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Fig. 15. The quadratic assignment problem: Measurement probability of the
optimal solution throughout the 20 iterations preparing the amplified state
|γ, t⟩.

V. CONCLUSION

This paper presents a strong case for algorithm development
motivated from first principles. The typical variational ap-
proach for quantum combinatorial optimisation offloads much
of the heavy lifting to parameterised black boxes, whose
inner workings we often don’t understand. By interpreting
the mixing unitary as a continuous time quantum walk and
analysing the statistics of objective function values distributed
over a mixing graph, we can understand the interference
process produced via the alternating application of a phase-
separation and a mixing unitary. This theoretical framework
is at the heart of the non-variational QWOA and enables its
generalisation and application to a wide range of practically
important and intractable optimisation problems, as we have
demonstrated.

We characterise the algorithm as non-variational because,
given a number of iterations p, the amplified state is deter-
mined by a small set of parameters {σ, β, γ, t}. The number of
iterations necessary for a particular problem and problem size
can be determined via benchmarking, or may be limited by
achievable circuit depths for a particular quantum computing
device. The approximate standard deviation σ of f(x) can
be easily determined via small scale random sampling. The
user-specified parameters γ, t and β, produce significant
amplification of optimal and near-optimal solutions across
a wide range of values. In addition, the optimal values are
relatively consistent across problem instances, and can also be
found (or improved) via 3-dimensional local optimisation.

The number of state-preparation and measurements required
to perform this local optimisation is fixed, independent of
iteration count or problem size. Hence, one important compo-
nent of future work will involve the deployment of gradient-



free optimisation methods, such as Bayesian optimisation and
CMA-ES, in order to demonstrate the ability to find/improve
parameter values within a fixed and small number of total state
preparations/measurements (< 10000).

In order to quantify the algorithm’s average-case perfor-
mance, and demonstrate advantage relative to classical heuris-
tics, such as local search based methods, another important
future area of research will involve detailed and large scale
benchmarking for various problems.

We also plan to demonstrate that the use of CTQWs
on problem specific graphs provides significant advantage
for non-binary problems, such as the quadratic assign-
ment problem, over the alternative approach of converting
these to QUBO problems and making use of the standard
QAOA/binary mixer.
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