
Mesh Traversal and Sorting for Efficient Memory Usage in Scientific Codes

Pablo Barrio, Carlos Carreras

Dpto. Ingenierı́a Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid

Ciudad Universitaria s/n, Madrid, Spain

{pbarrio, carreras}@die.upm.es

Abstract

Applications that operate on meshes are very popular

in High Performance Computing (HPC) environments. In

the past, many techniques have been developed in order to

optimize the memory accesses for these datasets. Different

loop transformations and domain decompositions are com-

monly used for structured meshes. However, unstructured

grids are more challenging. The memory accesses, based

on the mesh connectivity, do not map well to the usual lin-

ear memory model. This work presents a method to improve

the memory performance which is suitable for HPC codes

that operate on meshes. We develop a method to adjust the

sequence in which the data are used inside the algorithm, by

means of traversing and sorting the mesh. This sorted mesh

can be transferred sequentially to the lower memory levels

and allows for minimum data transfer requirements. The

method also reduces the lower memory requirements dra-

matically: up to 63% of the L1 cache misses are removed in

a traditional cache system. We have obtained speedups of

up to 2.58 on memory operations as measured in a general-

purpose CPU. An improvement is also observed with se-

quential access memories, where we have observed reduc-

tions of up to 99% in the required low-level memory size.

1. Introduction

Working with large datasets is a common requirement in

HPC codes. Since the stress put at the memory increases

with the size of the dataset, memory traffic is a major con-

cern when porting codes to HPC systems. Modern CPUs

include a complex hierarchy with many levels of caches,

which has the effect of hiding the latency of the upper mem-

ory levels and preventing processor stalls to some extent.

However, although certainly making life easier to the

programmer, cache mechanisms are not an efficient solu-

tion for every code, but a fairly good one that works for all.

Caches do not account for access sequences specific to each

code, but assume a benevolent time and space locality. In

addition, novel devices used as accelerators, such as GPUs

or FPGAs, are typically best suited to sequential memory

access rather than cache-like random access. Unfortunately,

the vast majority of the codes require random access.

This work targets the memory performance optimization

in codes that operate on meshes. A mesh is a type of graph

that organizes its vertices and edges around the concept of

polygonal or polyhedral elements. Meshes are very pop-

ular in simulation environments as models to solve Partial

Differential Equations (PDEs), such as some Computational

Fluid Dynamics (CFD) or weather forecasting codes.

The data dependencies of a vertex mainly depend on that

vertex and its neighbours. To a lesser extent, they may also

access data from the neighbours of these first-level neigh-

bours and consecutive neighbourhood levels. In a classical

unoptimized access scheme, when a vertex Vo is processed,

its data will be loaded to the computing element together

with all of its neighbours V1 to VN . Every time that a ver-

tex Vi, i ∈ [1, N] is loaded, V0 will also be requested, since

it belongs to the neighbourhood of Vi. Hence, the scheme

forces the transfer of each vertex as many times as its num-

ber of neighbours plus one.

We reduce memory traffic by rearranging the dataset so

that the neighbours are kept close to each other in memory.

The new vertex sequence affects the memory performance

in the following scenarios:

• With random access as offered by traditional cache

systems, the computing element takes advantage of

implicit prefetching each time that a cache line is re-

quested, minimizing or even supressing cache misses.

• When random access to the main memory is expen-

sive or not available, as for some hardware accelera-

tor boards, the dataset can be sequentially transferred

between memory levels. The lowest-level memory

must allow random access from the computing ele-

ment, and it must be large enough to store the subset

of the dataset being used at any given time during the

mesh processing.

While the first of the above scenarios is easily under-

stood, we will explain the second with an example. Figure

1 shows the high-level architecture of a system with one

FPGA and one external memory, where random access to

such memory is very expensive. Therefore, the vertices of

the input mesh have been previously sorted. The serialized

mesh is fed into the FPGA and each vertex is kept inside un-

til all the computations involving its data are finished. Here,

the fast on-chip memory is being used as a custom cache for

the slower on-board memory. It is easy to see that the time

lapse that a vertex can be kept inside the FPGA is limited

by the size of the on-chip memory.

ON-CHIP MEM

(∼ 2 MB)

RANDOM IF

SEQUENTIAL IF

Figure 1. Example of a target system with one
FPGA and one external memory

Although the access to the main memory is sequential,

the algorithm may require random accesses, as Figure 1

shows. This is possible as long as the accesses are con-

strained to a vertex interval, which we refer to as vertex win-

dow. We define the window of a vertex as the portion of the

mesh that is processed between the processing of the first

neighbour of the vertex or itself —whatever comes first in

the sequence— and its last neighbour. The maximum win-

dow size of a mesh must fit in the low-level memory. With

a cache mechanism, failing to do so implies a time penalty

for requesting the missing data to the higher level. In the ex-

ample of Figure 1, there is no cache and thus missing data

imply that the computational engine will stall indefinitely.

Consequently, the size of the low-level memory imposes a

limit to the size of the meshes that may be processed.

We propose a vertex sorting algorithm based on breadth-

first traversing the mesh. This minimizes the maximum ver-

tex window with respect to the original sequence, reducing

the time lapse where the vertices must reside in low-level

memory and consequently the required memory size.

The remainder of this paper is structured as follows. Sec-

tion 2 reviews previous works related to mesh sorting and

memory optimization. Section 3 presents a breadth-first

method to sort the dataset for sequential memory access.

Section 4 discusses the challenge of seed selection and its

impact on the sorting quality. Finally, Section 5 summarizes

the outcome of our research and further work to be done.

2. Related work

Mesh sorting has been widely proposed in other fields.

In computer graphics, the data transfers between the CPU

and the Graphics Processing Unit (GPU) are minimized.

A common approach for triangular meshes is to divide it

into triangle strips[1] that determine a particular vertex se-

quence, which is then sequentially fetched into the graphics

pipeline. Strip processing greatly reduces bus traffic to the

GPU compared to a random triangle-by-triangle approach,

since the vertices are reused inside the GPU. OpenGL na-

tively supports triangle strip formation since 1992.

Mitra and Chiueh [2][3] present an efficient mesh repre-

sentation based on a breadth-first traversal. With the same

motivation as the triangle strips, they exploit a different

traversal method in order to maximize the usage of each

vertex in several triangles. The breadth-first approach gen-

erates strips, although these wrap around the initial element.

Hence, the vertices belong to more than two triangles inside

the strip, allowing a wider use of the vertices in the future.

This improvement comes at the cost of a larger buffer capa-

ble of storing more reusable vertices.

Graph traversal is intensively used in other computing

disciplines such as artificial intelligence. Korf [4] analyzes

the behaviour of several graph traversal algorithms with re-

spect to memory. Zhou and Hansen [5] observe the growing

size and shape of the frontier, concluding that BFS is more

memory-aware than other popular graph search algorithms

such as A* search.

Finally, modifying the sequence in which data are pro-

cessed is suggested by Isenburg et al. [6] in their process-

ing sequences. This work suggests traversing the dataset

to limit the amount of stored data to the algorithm require-

ments. Implementing this idea requires that the target algo-

rithm can be adapted to a fixed processing sequence; fortu-

nately, mesh processing with nearest-neighbour dependen-

cies falls into such category of algorithms.

3. Breadth-first processing order

Our breadth-first algorithm, BFsort for convenience, tra-

verses the mesh starting from a seed vertex and building a

spanning tree level by level. The neighbours of the seed

form the first level, the second-generation neighbours will

be the second level, and so forth. When a vertex is discov-

ered, only two levels are being processed: the level that the

vertex in process belongs to, and the next level with some of

2

its neighbours. Any lower level is completely processed by

the algorithm, and successive levels are not yet started. We

take advantage of this property to reduce vertex windows.

1: for every vertex do {Initialize}
2: stat(vertex)← UNDISCOV ERED
3: end for

4: seq ← 0
5: seed← select seed()

6: queue← insert(seed)

7:

{Loop over the mesh}
8: while queue 6= empty do

9: central← extract(queue)

10: order(central)← seq
11: seq ← seq + 1
12:

{Insert neighbors in the queue}
13: while at least one neighbor is not visited do

14: neighbor ← select neighbor(central)
15: if stat(neighbor) = UNDISCOVERED then

16: queue← insert(neighbor)

17: stat(neighbor)← V ISITED
18: end if

19: end while

20:

21: stat(central)← FINISHED

22: end while

Figure 2. Customizable BFsort

A comprehensive explanation of breadth-first algorithms

can be found in [7]. In short, the algorithm starts from a

seed, visiting all of its neighbours. Once the seed is finished,

the algorithm takes the first processed neighbour and looks

for neighbouring vertices that are not yet added. These are

the second-level neighbours of the seed. The algorithm

continues visiting and discovering vertices until the com-

plete graph is traversed. As a guideline, Figure 2 shows the

pseudo-code of our custom BFsort. Two functions serve us

as customization points: select seed() in line 5 and

select neighbor() in line 14. Seed selection is cov-

ered in Section 4. Neighbour selection, also called tie res-

olution, occurs when many vertices can be selected as the

next in the sequence. We have found that different tie res-

olution strategies do not have an effect on vertex window

sizes, but some of them improve differential compression

schemes [8] suitable for particular target applications.

Figure 3 shows the evolution of the element-based traver-

sal, as proposed by Mitra et al. [2][3], and the vertex-based

breadth-first traversal as we propose. In short, the element-

based scheme takes an initial triangle and adds its vertices to

the sequence. Here we follow a clockwise vertex selection

to choose the vertex priority inside a triangle. Subsequently,

further neighbour triangles are chosen and continue filling

the sequence with new vertices.

Similarly, the vertex-based scheme proceeds as follows.

At each step, we define the central vertex as the one that

triggers unvisited neighbours to be added to the sequence.

We also define the seed as the first central vertex in the

traversal, which is also the first vertex to be added to the

sequence. We arbitrarily select vertex 0 as the seed. Start-

ing from vertex 0, all of its neighbours are visited next and

added to the sequence. We follow a clockwise tie resolution

for clarity, but a random strategy would also be effective.

Next, the first neighbour is selected –for example, vertex 6–

and proceeds as the new central. This process iterates until

every vertex is visited, resulting in the sequence 0-6-1-2-3-

4-5-17-18-7-8-10-11-12-13-14-15-16-19.

The element-based approach is used by Mitra et al. to

improve vertex reuse inside graphics pipelines. Nonethe-

less, we propose the second as being more efficient for sci-

entific codes. The evolution of the sequence shows the step

at which each vertex is eligible for deletion. This point is

reached earlier for the vertex-based traversal; the element-

based algorithm still requires processing five triangles (6-

18-7, 7-8-1, 1-8-2, 2-3-0 and 0-3-4) to mark the first ver-

tex, 0, as removable. Despite both being breadth-first based,

they lead to different behaviours in terms of sorting.

When vertex 6 is selected as central, vertex 0 has finished

its computations. Hence, it is not needed by the algorithm

and can be discarded or written back to upper-level memo-

ries, freeing space in low-level memory. Generally, vertices

are removed in the same sequence as they are discovered.

As said, only the level in process and the next level must be

visible from the processing element.

If the mesh is transferred sequentially, a random order

will face the storage of the complete mesh in the worst case.

This is, if the first and last vertices are neighbours, they will

be brought together to the low-level memory, and the last

will not be eligible for deletion until the end of the traver-

sal. With BFsort, at any point, the open frontier is a small

percentage of the complete mesh.

3.1. Window size results

Figure 4 presents the quality results of applying three

sorting methods —original, element-based breadth-first and

vertex-based breadth-first— to six test meshes. These are

measured in terms of the maximum window length, which

sets a lower bound on the required size of the memories.

The data for the original sorting yields two significant

results. Firstly, sequential access to some meshes with the

original order, as parsed from the mesh file, would require

to store 99.9% of the mesh on-chip. Secondly, the window

size and the mesh size do not behave similarly, which in

turn makes difficult to set upper bounds for the sizes of the

input meshes. Breadth-first achieves smaller frontier sizes

than the original order, reducing the window by a factor of

5 and reaching in some cases a factor of 20.

Additionally, the vertex-based approach obtains smaller

windows than the element-based one, as figure 3 predicted.

3

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0

1

2
3

4

5

6

7

8

10
11

12

13

14

15

16
17

18

19

0 0 6 1 2 3 4 5 0 6 1 2 3 4 5 17 18 7

0 6 1 0 6 1 5 7 2 0 6 1 5 7 2 4 17

Figure 3. Breadth-first evolution by elements (upper line) and by vertices (lower line), together with

the FIFO queues used to build the order. The lightly coloured vertices and elements must be stored in
low-level memory, as well as the last dark-colored vertex. Previous vertices are eligible for deletion.

Figure 4. Maximum vertex window with differ-
ent sorting methods, measured in number of

vertices and percentage of the mesh size.

Both vertex- and element-based algorithms work well com-

pared to the original sequence; however, the first one im-

proves the results of the second by 1% to 25% of the mesh

size. Hence, if the computational engine does not make use

of elements such as triangles or tetrahedrals, a vertex-based

sequence is more memory-efficient.

3.2. Performance on a traditional CPU

A detailed profiling has been carried out with traditional

time analysis on a CPU and Cachegrind [9]. A simple test

application converts the mesh into three arrays, each stor-

ing one coordinate of the vertices, and one adjacency array,

storing the connections between vertices. The computation

involves, for each vertex, adding up all of its coordinates

and also the coordinates of its neighbours. Similarly to

many common scientific codes, this computation generates

nearest-neighbour dependencies.

Two instances of the program have been run. While the

first instance computes the vertices in the original sequence,

the second instance BF-traverses the data structures. Sub-

sequently, the processing sequence is changed, and also the

whole data structures are sorted in memory to guarantee that

the cache block mechanisms behave well.

Table 1 shows the timings for both codes on an Intel

Core2 Quad Q8400 at 2.66 GHz. The speedup on the mem-

4

Execution time (s)

Mesh # vertices Original Vertex BF S (%)

NACA1 3070 0.011 0.010 10.9

NACA2 7908 0.054 0.053 0.9

NACA3 25651 0.224 0.218 3.1

HILIFT 54165 0.501 0.467 7.4

PLANE3D 275561 5.936 3.716 59.76

VFINE 494128 5.682 5.092 11.6

Table 1. Real timings and speedups of the
test code with two vertex sequences

% D-L1 misses % L2 misses

Mesh # accesses Orig. BF Orig. BF

NACA1 1, 1× 108 5.2 4.9 0.0 0.0

NACA2 2, 8× 108 5.3 4.0 0.0 0.0

NACA3 7, 4× 108 7.9 7.7 5.3 4.9

HILIFT 1, 7× 109 11.9 7.2 5.2 4.9

PLANE3D 7, 0× 1010 4.4 1.6 1.5 1.1

VFINE 6, 3× 109 8.1 1.8 5.2 3.5

Table 2. Percentage of Data-L1 and L2 cache

misses among all memory references. The

sizes of the L1 and L2 caches are, respec-
tively, 32 KB and 2 MB, 8-way associative

with a block size of 64 B.

ory performance is set at around 10%, with two excep-

tions. While the NACA2 mesh obtains very poor speedups,

PLANE3D, the only 3D mesh in the test set, runs 60% faster

with the sorted mesh.

Unlike L1 misses (penalty ∼10 cycles), L2 misses are

decisive in performance optimization (penalty >100 cy-

cles). However, an interesting effect is observed in the ta-

bles. While PLANE3D shows the highest speedup, it is

VFINE that achieves best results on cache miss removal.

This is likely caused by the different ratio of computation

to memory. Specifically, the computational load depends

on the number of vertices, where VFINE beats PLANE3D,

although the number of accesses to memory is one order

of magnitude higher in the PLANE3D mesh. The reason

is that the vertices of 3D meshes, such as PLANE3D, often

have a higher number of neighbours, which implies a higher

number of data dependencies. This fact also explains why

VFINE, having such a high improvement on the cache per-

formance, does not have an equivalent speedup.

4. Seed selection

The main disadvantage of sequentially accessing the

mesh instead of using a cache mechanism is that the size

of the memories imposes an upper bound to the maximum

mesh size. Because the mesh is being transferred sequen-

tially, the vertices belonging to a vertex window must be

fully loaded onto the on-chip memory when that vertex is

processed. If the memory size does not have enough capac-

ity, the computational engine will stall indefinitely, as it has

no means of requesting absent vertices to the upper memory

level. Therefore, any technique that reduces the maximum

vertex window allows for bigger meshes without requiring

further costly techniques such as mesh partitioning.

Seed selection involves finding the vertex that will be

used as the starting point for the BFsort algorithm. Seed

selection is a separate problem itself; the BF algorithm

will work regardless of the seed selection algorithm cho-

sen. However, choosing specific seeds has proven to re-

duce the maximum vertex window. Previous work [10] has

reported performance variations in a BFS-based algorithm

due to different seed selections. However, to our knowl-

edge, this is the first work that considers seed selection as a

means to minimize the memory footprint of a breadth-first-

sorted mesh.

In order to compare the possible variations between dif-

ferent seeds, we applied brute-force BFsort to all possible

seeds, and measured the maximum vertex window obtained

for each. Applying brute force to select the best seed gives

best results but is not realistic. For small test meshes such

as the NACA1 and HILIFT, the time to find the best seed

is higher than the computing time of our test algorithm. As

the number of vertices grows, the time to compute all the

seeds grows exponentially. On the other hand, selecting the

wrong seed may increase the memory usage by a factor of

two. Hence, a low cost heuristic is needed.

For all test meshes, brute force has helped us identify

where the good and bad seeds are located. These are un-

structured meshes and, as such, they show regions with dif-

ferent concentrations of the vertices, making up a represen-

tative general test set. An appropriate seed selection is less

important for structured meshes, since the maximum win-

dow sizes are similar for all seeds.

As an example, Figure 5 shows the meshed profile of an

airplane wing, where the longest frontiers are marked for

the cases where the best and worst seed have been used. The

frontier obtained with the best seed gives a good idea of how

the size of the maximum vertex window can be diminished:

1. Some areas of the mesh show higher concentration

points. These areas, specifically the left and right sides

of the wing, must be reached early in the traversal,

since the frontier will be small at that point. As an

example, the figure shows that the best seed is located

near the concentration point to the right of the image.

2. The best seed is displaced to the left in order to

start with one concentration point early in the execu-

tion. Besides, the maximum frontier occurs immedi-

ately after the right branch of the frontier has passed

through that concentration point, but right before the

5

left branch passes through another concentration point.

The conclusion is that dealing with various concentra-

tion areas simultaneously may result in an early growth

of the frontier, which is not desirable.

Figure 5. Maximum frontiers obtained with
the best seed (top) and worst seed (bottom).

The region of interest is shown in the main
figures, whereas the boxed figures show the

complete mesh.

On the opposite, the worst seed reaches the concentration

areas at the end of the BF process. Furthermore, both areas

are reached simultaneously, generating a frontier which is

twice the size of the frontier for the best seed. The next

paragraphs propose a few methods to select a seed for BF-

sort. We measure the quality of these methods in terms of

two metrics: the execution time and the quality of the seed

compared to the best and worst seeds.

4.1. Center of mass (CM)

This approach is based on the vertex coordinates, taking

its name from the calculation of the center of mass for a dis-

crete solid body. The center of mass is calculated assuming

that the weight of each vertex is 1. Equation 1 calculates the

center of mass ~CM based on the position vector ~r of each

vertex. Since the coordinates of the CM may not match up

with any of the vertices, the closest vertex to the CM, using

the Euclidean distance, is selected as seed.

~CM =

∑
N

i=1
~ri

N
(1)

Some improvements are observed when the weight of

each vertex varies according to a given property. In particu-

lar, a vertex can be assigned a high weight if its neighbours

are close to it, thus giving more overall weight to the con-

centration areas. The individual weight of a vertex receives

the name of vertex mass. The calculation of the center of

mass with variable vertex mass is given by Equation 2.

~CM =

∑N

i=1
mi~ri

∑
N

i=1
mi

(2)

CM works well for simple meshes with no more than two

concentration areas. The CM method will force the seed to

be close to these areas, allowing them to be reached early in

the BF-traversal process. Additionally, the CM will be dis-

placed to the most concentrated area, which will be com-

puted first. More complex meshes cause the CM method

to fail, particularly when the vertices do not concentrate

around points such as the wing front and rear in Figure 5,

but around lines or curves. In addition, CM requires that

each vertex has a position vector or coordinates, which is

not mandatory for the general case of a mesh.

4.2. Bipartition and N-partition

Bipartition seed selection is based on the bipartition al-

gorihm used to search in an ordered array. Figure 6 gener-

ates a temporary sequence and applies bipartition, searching

through the vertex sequence for an appropriate seed.

A general bipartition search algorithm must operate on

ordered sequences, since it is based on key comparisons of

type “greater than” or “less than” to decide where to look

next, to the right or to the left of the sequence. Likewise, the

bipartition seed selection algorithm requires an initial tem-

porary sort, as shown in line 2 of the algorithm. The key

to be found is always the minimum value of the maximum

window, and can only be known by computing its BF traver-

sal, which is very costly. The bipartition algorithm reduces

the number of required traversals from M to log2(M), with

M being the number of vertices in the mesh.

Figure 7 shows different stages of the partitioning algo-

rithm on two meshes. The starting search interval is initial-

ized to the entire mesh, taking points 1, 2, and 3 as probes.

The first iteration executes a complete breadth-first traversal

at each probe, measuring the maximum vertex window. Be-

cause point 1 obtains better results than point 2, the interval

between point 1 and 3 is selected. A new search is started

6

1: seed← random(size(mesh))

2: ordMesh← BF order(seed)

3: startP t← 0

4: endP t← size(ordMesh)

5:

6: while startP t < endP t do

7: midP t← (startP t + endP t)/2
8:

{Get max window for start and end points as seed}
9: ordMeshAux← BF order(startP t)

10: startWindow ← get window(ordMeshAux)

11: ordMeshAux← BF order(midP t)
12: endWindow← get window(ordMeshAux)

13:

{Pick new interval to look for seed}
14: if startWindow < endWindow then

15: endP t← midP t
16: else

17: startP t← midP t
18: end if

19: end while

20: return startP t

Figure 6. Bipartition seed selection

with points 1, 3 and the middle point 4 as the probe set. The

process continues until the search interval comprises only

one point, which is selected as the best seed.

The lower figure shows a zoom into the last stages of

a bipartition. As the search intervals get smaller, the ver-

tex windows between neighbours become closer. At these

stages, it is easier for the algorithm to make the right de-

cisions, since the information is very local. The slope is

easy to follow, and bipartition will make downhill move-

ments until it finds a local minimum. On the contrary, dur-

ing the first stages of the algorithm it is easy to make wrong

choices, as the probe points are not close to each other thus

not taking information of the vicinity into account.

Because the quality of the temporary sequence is very

low, as shown in Figure 7, bipartition occasionally selects

bad seeds. In order to minimize the chances to select a bad

seed, an N-partition scheme may be used. Instead of parti-

tioning the initial order in two, the N-partition algorithm di-

vides it up into N chunks. As there are more probing points

where the maximum window is calculated, the seed will be

selected with better knowledge of the search space. How-

ever, N-partition requires to execute logN(M) BF traver-

sals. Since logN(M) > logN ′(M) ∀N > N ′, we conclude

that a high N in a N-partition scheme gives more accuracy

than a low N at the cost of a higher computing time.

Finally, it is possible to save calculations at the start of

the seed selection. In figure 7, we can identify a pattern

that repeats periodically. If we choose the search interval as

small as the period of that pattern, the search space is re-

duced compared with the complete mesh. In addition, the

N-partition algorithm will be guided correctly to the best

local seed. Furthermore, as the local minima do not vary

Figure 7. Execution of the bipartition algo-
rithm. Overall view of the NACA3 mesh and a

detailed view of mesh NACA2.

greatly along the mesh (Figure 7), the selection of the par-

ticular interval among the complete mesh is unimportant as

long as it covers the identified pattern period.

4.3. Seed selection performance results

Figure 8 compares several approaches to seed selec-

tion. Obviously, brute force always finds the best seed,

but it takes several orders of magnitude longer than the CM

method to execute. On the other hand, selecting a default

seed such as vertex 0 gives potentially bad values and the

maximum window size is not predictable.

The CM method, while keeping the execution time low,

selects a good seed compared to the optimal selection, and

constraints the maximum window size to a small percentage

of the complete mesh. However, its correctness depends on

the type of mesh: if several point concentration areas are

present, or if they cluster around a line or more complex

7

 0

 500

 1000

 1500

 2000

 2500

 3000

Worst Seed 0 CM 10-part Brute f. Best

M
ax

im
um

 w
in

do
w

 s
iz

e
(n

um
. n

od
es

)

Autoseed method

NACA1
NACA2
NACA3
HILIFT

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

Seed 0 CM 10-part Brute force

E
xe

cu
tio

n
tim

e
(s

.)

Autoseed method

NACA1
NACA2
NACA3
HILIFT

Figure 8. Comparison of the performance of

seed selection methods

shapes, CM will not perform well.

N-partition finds better solutions than CM and, because

it does not rely on the geometry of the mesh, it works for

all meshes. However, greater computing times are required,

since the calculation of maximum vertex windows requires

to execute graph traversals for each probe point. Generally,

we would consider N-partition only if the following pro-

cessing stage is long. Also, if the mesh sorting application

is independent of the HPC code, it will be possible to sort

the mesh once and process it several times.

5. Conclusions

This work has presented a sorting method for meshes

that is aimed at optimizing memory usage. The reduced

memory footprint obtained allows us to remove cache

misses. Our experiments show that this method can reduce

the memory usage to a small percentage of the mesh, as

opposed to the unpredictable behaviour of the traditional

memory-oblivious computing sequences. We support that

any algorithm that operates on meshes will benefit from a

BF-sorted mesh, as long as the dependencies between ver-

tices are similar to nearest-neighbour.

The effect of changing the processing sequence and the

order of the mesh in memory has been presented together

with the BFsort algorithm. Although cache-based systems

may take advantage of the approach, we anticipate that an

FPGA-based system will take even more advantage, as effi-

cient sequential access to the high-level memory is possible.

Finally, we have identified seed selection as a problem

that is worth solving in order to optimize memory perfor-

mance. We approach the problem through CM, which of-

fers a fast seed selection, and N-partition, which gives more

accurate results, particularly with complex meshes.

Acknowledgments

This work has been funded in part by Airbus SAS under

contract A8213093G and by the spanish Ministry of Sci-

ence & Innovation under project TEC2009-14219-C03-02.

References

[1] F. Evans et al. Optimizing triangle strips for fast ren-

dering. Proc. Visualization ’96, pages 319–326, 1996.

[2] T. Mitra and T. Chiueh. A breadth-first approach to

efficient mesh traversal. 1998 SIGGRAPH Workshop,

pages 31–38, 1998.

[3] T. Mitra and T. Chiueh. An FPGA implementation of

triangle mesh decompression. Proc. FCCM ’02, pages

22–31, 2002.

[4] R. Korf. Space-efficient search algorithms. ACM

CSUR, 27(3):337–339, 1995.

[5] R. Zhou and E. Hansen. A breadth-first approach to

memory-efficient graph search. Proc. national conf.

AI, 21(2):1695–1699, 2006.

[6] M. Isenburg et al. Large mesh simplification using

processing sequences. Proc. IEEE Visualization ’03,

pages 465–472, 2003.

[7] J. Gross and J. Yellen. Graph Theory and its Applica-

tions. Chapman & Hall/CRC, 2006.

[8] C. Gotsman et al. Simplification and compression of

3D meshes. Europ. Summ. School Princ. Multiresol.

Geom. Model., 2001.

[9] Cachegrind: a cache and branch-prediction pro-

filer. http://valgrind.org/docs/manual/

cg-manual.html.

[10] M. Holzer et al. Algorithms – ESA 2005, chapter Engi-

neering Planar Separator Algorithms, pages 628–639.

Lect. Notes in Comp. Science. Springer, 2005.

[11] N. Nethercote. Dynamic Binary Analysis and Instru-

mentation. PhD thesis, 2004.

[12] M. Herbordt et al. Computing models for FPGA-based

accelerators. Comput. Sci. Eng., 10(6):35–45, 2008.

[13] A. DeHon and J. Adams. Design patterns for reconfig-

urable computing. In Proc. FCCM ’04, pages 13–23,

2004.

8

