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Abstract
 We propose a checkpoint store compression method for

coarse-grain giga-scale checkpoint/restore. This mechanism
can be useful for debugging, post-mortem analysis and error
recovery. Our compression method exploits value locality in
the memory data and address streams. Our compressors
require few resources, can be easily pipelined and can process
a full cache block per processor cycle. We study two
applications of our compressors for post-mortem analysis:
(1) Using them alone, and (2) using them in-series with a
dictionary-based compressor. When used alone they offer
competitive compression rates in most cases. When combined
with dictionary compressors, they significantly reducing on-
chip buffer requirements. 

1.  Introduction
A checkpoint/restore or CR mechanism allows us to roll-

back execution. In principle, CR allows us to take a
complete machine state snapshot at any point during
execution, continue to execute instructions, and then if
necessary roll-back the machine’s state to what it was
when the checkpoint was taken. While originally proposed
for supporting precise exception handling [19], similar
mechanisms are now used to facilitate performance
improvements via speculative execution [10,20].

Current CR mechanisms are fine-grain and relatively
small-scale. A fine-grain CR mechanism facilitates
restoring at very fine execution intervals, possibly at every
instruction. The reorder buffer [19] and the alias table
checkpoint FIFO used in MIPS R10000 [27] are examples
of fine-grain CR mechanisms. The first allows recovery at
every instruction while the second on speculated branches.
Existing CR mechanisms are also small-scale since
checkpoints are held only for instructions within the
narrow execution windows of today’s processors (e.g.,
around 100 or so instructions). CR mechanisms for larger
windows in the range of a few thousand instructions were
recently proposed [7, 11].

Recently, there have been several proposals for
exploiting CR for other purposes such as online software
invariant checking to aid debugging and runtime
checking [17], to recover from hardware errors [18, 21]
and post-mortem analysis [25] where checkpoints taken
during runtime are used after a crash to replay the
program’s actions and determine what caused the crash.
Common amongst these new CR applications is the need
for checkpoints over large execution intervals. CR over a

few seconds of real execution time is desired for post-
mortem analysis, error recovery and debugging. With
today’s processing speeds this translates to several
hundred millions or even billions of instructions. We will
use the term giga-scale for CR mechanisms of this scope.
While fine-grain, giga-scale CR mechanisms are in-
principle possible, coarse-grain CR mechanisms appear
more practical as they require a lot less storage (see
Section 2). 

We propose high-performance giga-scale, coarse-grain
CR mechanisms that require significantly less resources
than existing proposals. We focus on post-mortem
analysis, however, the techniques we propose should be
applicable to other CR uses. In giga-scale CR the key
issues are: (1) the amount of storage required for
checkpointing, and (2) the performance impact of taking
checkpoints. We show that several megabytes are
typically needed per checkpoint. Storing this amount of
data on-chip is not possible today. Even if it was, it would
not be the best allocation of on-chip resources. Saving
checkpoints off chip impacts performance and cost in two
ways. First, the checkpoint traffic can negatively impact
performance because it increases pressure on the off-chip
interconnect. Second, unless checkpoint data can be
written immediately to off-chip storage, on-chip buffering
is needed. The amount of on-chip buffering places an
artificial limit on performance since execution must be
stalled while the buffer is full and additional checkpoint
data must be saved.

An obvious way of reducing off-chip bandwidth and
storage demand is via on-line compression. Previous work
focused on identifying what information should be
checkpointed (program data and race outcomes) [18, 25].
Naturally, the question of how to best reduce the
checkpoint size was a secondary issue and thus previous
work relied on existing hardware dictionary-based
compressors [29]. Such compressors require several
millions of transistors and are comparatively slow [22]. As
we show in Section 5, even under optimistic assumptions
about their speed, large on-chip buffers are needed to
avoid a significant performance hit.

In this work, we propose improved checkpoint
mechanisms that require fewer on-chip resources while
maintaining high-performance. We propose three
hardware, value-predictor-based compressors that require
very few resources and that can operate at the same
frequency as the processor’s core. We consider two ways
of using these compressors: (1) Used alone as a low cost
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on-chip compressors, and (2) used in-series with
previously proposed hardware dictionary-based
compressors. We demonstrate that when used alone our
compressors offer competitive compression ratios when
compared to the much more expensive dictionary-based
compressors. However, a key result of our work is that
combining our compressors with a slower dictionary-
based compressor is always (for the programs we studied)
better performance-, compression- and resource-wise than
using a stand-alone dictionary-based compressor. 

Our contributions are: (1) We study the checkpoint
resource and performance overheads of typical programs
for various checkpoint intervals. (2) We propose cost-
effective, high-performance hardware compressors that
exploit value predictability. (3) We analyze the
performance and resource overheads of giga-scale
checkpointing for dictionary- and value-predictor-based
compressors. (4) We compare with the frequent value
compressor, a state-of-the-art complexity-effective
memory compressor [2,3]. To the best of our knowledge
this is the first work (an initial investigation of the ideas
presented in this work appears in [15]) that: (1) takes a
detailed look at the hardware/performance overheads of
checkpoint compression for giga-scale checkpointing, and
(2) proposes hardware, value-predictor-based compressors
for checkpoint storage reduction. 

We show that with an on-chip buffer of just 1K bytes a
combination of our compressor with a dictionary-based
compressor results into an overall average performance
slowdown of just 1.6%. Moreover, this combination reduces
checkpoints to 34% of their original size. Even when used
with a 64Kbyte on-chip buffer, the dictionary-based
compressor alone incurs an overall performance slowdown of
3.7% and reduces checkpoints to 38% of their original size.
The worst performance slowdown is 4.4% for our compressor
and 11% for the dictionary-based compressor alone. When
used alone, our compressor reduces checkpoint storage to
52% of its original size. While not as good as dictionary-
compression this reduction is possible with very few resources
(a dictionary-based compressor requires millions of
transistors while our compressor a few thousand). All
aforementioned results are for a checkpoint interval of 256
million instructions. 

Burtscher and Jeeradit proposed software value-
prediction-based compressors for programs traces [6]. In
Section 4 we explain that vastly different cost, time and
complexity trade-offs apply in our target application for
two key reasons: (1) we are interested in hardware
compressors, and (2) the input data in our case is only a
subset of the whole program trace hence there is no
guarantee to observe high levels of value locality.

The rest of this paper is organized as follows: In Section
2, we explain the resource and performance trade-offs that
apply to giga-scale CR. In Section 3, we explain the
principle of operation of three high-performance, value-
prediction-based compressors. In Section 4 we review
related work. In Section 5, we present our experimental
analysis. We first look at the resource requirements of

giga-scale CR. We then analyze the performance and
resource requirements of dictionary- and value-predictor-
based compressors. We summarize our work in Section 6.

2.  Giga-Scale Checkpoint/Restore
Figure 1 shows an example of CR at work. At some

point during execution the checkpoint mechanism is
invoked and a new checkpoint is created. Execution then
continues. At some later point, we decide that execution
should be rolled back to the checkpoint. Using the
checkpoint the machine state is restored to the values it
had at the time the checkpoint was taken. The machine
state comprises the register file and memory values, plus
any internal state for the other system devices. In this
work, we focus only on registers and memory because no
standard semantics exist for device reads and writes. For
some devices it may not be possible to do CR as some
side-effects may be irreversible. We believe that the most
meaningful approach to providing CR for devices is to
define a clear set of APIs that convey information about
the action taken and if and how it can be reversed when
need. This investigation is beyond the scope of this paper.

Being able to restore the machine state at every
instruction while possible in-principle is not very practical
for giga-scale CR. Doing so would require storage
proportional to the number of instructions executed.
Accordingly, we restrict our attention to coarse-grain CR
mechanisms. In giga-scale CR, the space required for
saving the complete register file contents is negligible
compared to that required for storing memory state. For
this reason, we save a complete image of the register file
with every checkpoint. 

Lets take a closer look at what is required to checkpoint
memory state. We can observe that at any given point the
complete memory state is available. Hence, a possible
solution to rolling-back memory state would be to keep
track of the changes done to memory (this is equivalent to
the history file method for fine-grain, small-scale CR
[19]). Only the first write to each memory location needs
to be checkpointed. This is because we do not care to
rollback to any intermediate execution point. Another
important consideration is the storage granularity at which
checkpoints are taken. Memory writes can be of varying
granularity. In most modern processors, a memory write
can update a byte or up to eight bytes. If we wanted to
keep a precise record of all updates we would then need to
keep records at the smallest possible granularity. This
would impose a high storage overhead. Instead, it is
practical to keep records at a much larger granularity.

Figure 1: What Checkpoint/Restore does (see text). 
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Using a cache block is convenient, since the contents of
cache blocks are readily available on-chip and could be
read or written simultaneously (we assume one sense amp
per bitline pair). Because of spatial locality, chances are
that most data saved this way will indeed be updated later
on. In this work, we assume a cache block of 64 bytes
without loss of generality. We also assume four byte
words. Restoring machine state is fairly straightforward.
We use the register file image to restore register file
contents and the records of memory updates to restore
memory values. For post-mortem analysis restoring can
also be done in software. Accordingly, we do not consider
decompression latency further. There are applications,
however, such as debugging where decompression latency
is important. Our compressors offer a simple and fast
decompression path.

2.1.  A Checkpoint/Restore Architecture

Because the checkpoints are large (several megabytes is
typical) on-chip storage is presently either not an option or
not a good one. An obvious choice is to use main memory
to hold the checkpoints. Compressing the checkpoint
stream on-chip reduces off-chip bandwidth and memory
footprint overheads. Figure 2(a) shows a complete
checkpointing architecture. A checkpointed cache block is
first placed into an internal buffer (in-buffer). This buffer
feeds an on-chip compression engine. Compressed records
are placed on another buffer (out-buffer) where they
compete with regular program accesses for main memory
bandwidth and storage. 

2.2.  Performance, Resources and Complexity 

Several performance and resource considerations exist
with giga-scale CR mechanisms: (1) The on-chip
compression engine and the associated buffers represent a
resource overhead. (2) Whenever the in-buffer is full and a
new block has to be checkpointed we have to stall the
processor. Thus the on-chip buffers and the speed with
which the compression engine can process checkpoint data
can artificially reduce performance. (3) The compression
ratio achieved also impacts performance since it is directly
related to the demand placed on the main memory
interconnect. 

Complexity considerations also exist and they can
impact performance. The compressor’s output stream is
placed on the “out-buffer” for writing into memory. Using
the storage of the “out-buffer” effectively requires
aligning the compressed data into a continuous stream.
Writing to memory requires forming reasonably sized
blocks of data. It follows that between the compressors
and the “out-buffer” there should be an alignment network
whose purpose is to shift the compressed data into place
just after the previously written block within the “out-
buffer”. Thus it is preferable to use compressors that
reduce the number of possible alignments. For example,
from this perspective, a compressor that always writes at
least a word is preferable over a compressor that may
produce fewer bits and hence higher compression.

2.2.1.  Hardware Dictionary-Based Compression. Previous
work in giga-scale CR assumes an on-chip LZ77-like
dictionary-based compression engine [25]. Such
compression engines offer high compression and have
been already built in hardware. However, they are
relatively expensive and slow. To avoid stalling the
processor it will be necessary to use larger buffers and
hence there is an indirect increase in overall resource cost.
There have been several hardware implementations of
dictionary-based compressors. The most relevant for our
purposes is IBM’s MXT memory compressor [22] which
has been implemented using a 0.25 micrometer process
into a chipset operating with a 133Mhz clock [23]. It
utilizes about one million gates and it is capable of
processing four bytes per cycle. This implementation
would require 17 cycles to process a checkpoint record for
a 64 byte cache block assuming 37 bit physical addresses.
As we show in Section 5.6, even with a 64K on-chip
buffer a performance hit in excess of 10% is incurred even
with a twice as fast compressor. 

Two ways of improving dictionary-based compression
speed would be to process more bytes in parallel or to use
a higher frequency. Franaszek et al., have shown that it is
possible to process more bytes in parallel by splitting the
dictionary [9]. To avoid an abrupt decrease in compression
rates it is necessary to update all parts of the dictionary
with all bytes that are processed simultaneously. In
general, to process N bytes simultaneously they split the
dictionary into N equal parts, where each part is
implemented as a CAM with one lookup port and N write

Figure 2: (a) A checkpoint/restore architecture with an on-chip 
compressor. We show only the checkpoint path since restoring is 
trivial. Cache blocks are placed into a buffer before the first write 

occurs. The compressor processes blocks and places its output into 
another buffer. Whenever possible, the compressed blocks are 

written to main memory. (b) We study two different organizations that 
use a value-prediction-based compressor. The first uses the 

compressor alone as in part (a). In the second, the value-prediction-
based compressor is placed in-series with a dictionary-based 

compressor. A buffer in front of the value-prediction-based 
compressor is not needed since we are capable of processing a full 

cache block per cycle. 
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(a) A on-chip CR compression architecture

(b) Combining value-predictor-based and dictionary-based compressors
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ports. In addition, processing more bytes in parallel
requires a more complex shuffling network at the
compressor’s output in order to align the outputs of all
sub-parts into a continuous record. The MXT
implementation relies on four 256-entry CAMs operating
in tandem [23]. Every cycle, each one sees a probe, plus
four updates (one from itself and three from the other
CAMs). It would be challenging to operate this
compressor at several Ghz or to pipeline it.

In this work we ask the following questions: (1) Can we
get most of the compression benefits with a much simpler
compressor? (2) Can we have a compressor that is fast
enough to avoid stalling the processor while requiring
little on-chip buffering?

3.  Simplifying Compression Hardware
 It is well known that many programs exhibit value

locality in their memory stream. While this property has
been demonstrated for streams that consist of all memory
accesses, As we demonstrate in Section 5.3 this property
holds also for the first updates to each memory block after
arbitrary chosen points during execution. Exploiting this
property and rather than storing memory blocks verbatim
we propose hardware, value-prediction-based
compression. In this technique we opt for a two-level
representation for checkpointed cache blocks. For each
four byte word (could have been some other quantity) we
first record whether it can be successfully predicted by a
preselected predictor. Then, we store only those words
that could not be predicted. 

We have experimented with various prediction
structures and present three alternatives. Figure 3
illustrates the simplest alternative where 16 single-entry
value predictors are used for block data and a single-entry
stride predictor for block addresses. This way all 16 words
within a 64 byte block can be processed in parallel. Each
cache word is processed by a different predictor and the
mapping of words to predictors is static. As explained in
Figure 4, the final representation (checkpoint record) of a
block consists of a header, and possibly an address and up
to 16 words. Whenever a new checkpoint starts, all
predictor entries are zeroed out to avoiding having to
checkpoint the predictor’s state. Restoring the machine’s
state is straightforward as long as the checkpoint records
are processed in the order they were saved. We simply
pass them through the predictor and use the data they
contain or the value provided by the predictor as instructed
by the headers. Figure 5 shows an example of how
compression works.      

In order to save the checkpoint record into memory we
need to align the header and any words that follow into a
continuous block. This is straightforward via a barrel
shifter. Since there are 16 words, four stages should be
sufficient to place all words in order. The header and the
single byte header for the address are always saved, hence
we need to also make room for the address in case this is
needed. It follows that we should be able to form the
continuous checkpoint block in five stages. More

importantly, this process can be pipelined thus
maintaining high performance. A simple alignment
network will also be needed to align the continuous block
into position for writing it into the on-chip buffers (this is
required for any compressor). We expect this compressor
to operate at the same frequency as the processor core
since: (1) all cache words are processed simultaneously,
(2) there are no intra-block dependences, and
(3) prediction amounts to a few simple operations (e.g.,
comparison, selecting the output value and updating a
single-entry predictor). Overall, our compressor requires
few resources: For the value predictors we need 16 word
entries and 16 comparators; For the address predictor we
need two words, an adder, a subtractor and a comparator;
We also need a five stage barrel shifter capable of
handling about 18 words in total plus a control unit.

3.1.  Combined Value-Predictor-Based 
Compressors

We have experimented with other predictors that offer a
trade-off between cost and compression ratio. We discuss

Figure 3: Last-outcome based compressor. Each of the 16 words 
of the cache block are passed to a different single-entry last-outcome 
value predictor. A 16-bit header vector identifies the words that are 
predicted correctly. Incorrectly predicted words are stored explicitly. 
Similarly, a single-entry stride predictor is used for recording block 

addresses. Only if the address is not predicted correctly we need to 
save it. Instead of using an additional bit to record whether the 

address is predicted or not we use a full byte to reduce the possible 
alignments for the final checkpoint block. A pipelined shuffle network 
is used to place the word that were not predicted into place so that 
the header and the data words appear as a continuous block. Since 
there are 16 words in the block four stages should be sufficient for 

the shuffle network. An additional stage is needed to align the 
address into place.

Figure 4: Checkpoint record format. “AH” or address header is a 
single byte which is non zero if the address can be predicted. “DH” or 

data header is a 16-bit vector with one bit per word in the original 
cache block. A bit value of 1 indicates that the corresponding word 
can be predicted. The optional “ADDRESS” field exists only when 
the address cannot be predicted. Each bit indicates whether the 

corresponding word was predicted correctly. “WORD i” optional fields 
contain the values of those words that cannot be predicted. Having 

all header bits first allows easy decoding of the record during 
decompression.
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two of these predictors that performed fairly well and that
attempt to exploit common data patterns. We use two
header bits per cache word so that we can encode four
possibilities. The “00” combination is used for “not
predicted”, the “01” for “predicted via last-outcome”, and
the “10” for “predicted by a previous-to-last-outcome
predictor” (i.e., we use a predictor with history depth of
two). In the combined neighbor predictor a “11” header
value indicates that the word value matches that of the
immediately preceding word within the cache block. For
the first word within a cache block we do not use this
prediction mode to avoiding losing information1. The
motivation for this compressor comes from data that
represents physical quantities such as pixel values for
images. It is common for adjacent pixels to hold the same
value. There are other reasons why adjacent memory
values are often equal. The neighbor predictor attempts to
exploit locality within cache blocks in addition to locality
across blocks that is captured by its last-outcome
component. In the combined stride predictor the “11”
combination indicates that the value can be predicted by a
stride predictor. It is well known that many data values
exhibit this behavior. The neighbor predictor requires
three times as many comparators compared to the last
outcome predictor and a bypass network for
communicating values within the block. The latter can be
easily pipelined. The combined stride predictor has
considerable additional cost as it requires an additional
subtractor, adder and comparator per predictor entry. 
3.2.  Support Mechanisms

A mechanism is needed for identifying the first update
to each memory block. An impractical yet easy to
understand solution would be to have a large bit vector
with a bit per memory block to remember whether this
block was checkpointed. When we want to take a new
checkpoint we reset all bits. A practical implementation

splits the vector into chunks so that they can be saved in
the page table. This way the appropriate vector chunk will
be readily available any time a write occurs (the TLB miss
would bring in the vector chunk too). Assuming 4K pages
and 64 byte blocks, a 64 bit vector per page is sufficient.
Even then, clearing all bit vectors every time a new
checkpoint starts would be expensive. A simple solution
introduces an additional 64 bit tag per page table entry and
a global checkpoint counter. Every time we take a new
checkpoint we increase the global checkpoint counter.
Every time we update a page table vector chunk we set its
64 bit tag to the current value of the global checkpoint
counter. A vector chunk is valid only when its tag matches
the global checkpoint counter. Using 64-bit counters and
even if we assume 1K checkpoints per second,
approximately 571 million years will be needed for the
counter to wrap around. Other alternatives exist, e.g.,
using smaller counters and clearing the vectors every
couple of hours or using bloom filters but their
investigation is beyond the scope of this paper. Second,
since checkpoints are stored in main memory, a
mechanism is needed to allocate the appropriate space. For
this purpose we can leverage the existing virtual memory
API. In this case, checkpoint store appears as part of the
application’s memory space and we have to ensure that

Figure 5: An example of value-predictor-based compression. In the interest of space and without a loss in generality we assume four word 
cache blocks where addresses and words are all 16 bits long. (a) Initially, the predictors are zeroed out. The first write to block 0x1000 occurs. 

Since no value is predicted correctly, the resulting checkpoint record contains all words plus the header. 
(b) The value and address predictors now have the values calculated while predicting the previous cache block. The next write is to block 0x2000. 

The address and some words are predicted correctly. The checkpoint block now contains the header and only those words that were not 
predicted correctly.

0x1000

0x1234
0x5678
0x9abc
0xdef0

0x0000

0x0000
0x0000
0x0000
0x0000

0x0000

0x1000
0x1234
0x5678
0x9abc
0xdef0

0000
0

cache block data 

address predictor

checkpoint
record

address not predicted
no word predicted

address
word

(a) First cache block: address and words not predicted.

predictor

0x2000

0x1234
0x0000
0x9abc
0x0000

0x1000 0x1000

0x5678
0xdef0

1010
1

cache block data 

address predictor

checkpoint
record

address predicted
some words predicted

first not predicted word
word

0x1234
0x5678
0x9abc
0xdef0

predictor

(b) Second cache block: address and some

words predicted and not saved

1 Think of a cache block where all words have the same value. In this case, all
words match the one preceding them. However, we need to save the value in
order to be able to recreate the block. By disabling this prediction mode for
the first word we make sure that the word is either saved explicitly or that it
can be predicted by the other predictor components.

Table 1: The three value predictor based compressors we 
studied.

Header Value Meaning

LAST OUTCOME (LO)
0 not predicted/stored explicitly

1 predicted/not stored

COMBINED NEIGHBOR (CN)
00 not predicted/stored explicitly

01 Last-outcome predicted/not stored

10 Predicted by previous to Last-Outcome/not stored

11 Same as preceding word in block/not stored

COMBINED STRIDE (CS)

00 not predicted/stored explicitly

01 Last-outcome predicted/not stored

10 Predicted by previous to Last-Outcome/not stored

11 Predicted by Stride Predictor/not stored



there are no conflicts with program data. Alternatively, via
operating system support we could use another memory
space for checkpoint storage. There several open questions
in this area that should be addressed. However, further
investigation of this topic is beyond the scope of this
paper.

4.  Related Work

Related work can be classified in mechanisms for
supporting CR, techniques that utilize CR for a purpose
other than speculative execution, hardware compression
methods and work on value-prediction-based
compression. Burtscher and Jeeradit proposed using value
prediction for compressing program traces in software [6].
In this work we are concerned with hardware-based
compressors sharing the goal of quick compression but
having the additional constraint of using few, low
complexity hardware resources. The cost and the
complexity of data alignment and value prediction are
vastly different in hardware than in software. Moreover,
the value locality potential is different in our application
as we consider only a subset of the memory stream at the
cache block level.

Existing fine-grain, small-scale CR mechanisms are
variations of designs that were proposed for supporting
precise exceptions and out-of-order, speculative execution
[10,19,20]. Recently there has been work in extending
these mechanisms for scheduling windows of several
hundreds [11] or several thousands of instructions [7].
There has also been work in reducing the number of
global, fast checkpoints needed for frequent recovery
actions such as branch mispredictions [1,14]. Besides
supporting speculative execution recent proposals rely on
CR mechanisms for other purposes. Specifically, Oplinger
and Lam suggest using CR for on-the-fly software-based
invariant checking [17]. Zhou et al. propose hardware-
based monitors for debugging purposes [28]. Both
aforementioned works rely on extensions of thread-level
speculation mechanisms for checkpoint and recovery.
Sorin et al. propose SafetyNet, a CR mechanism for long-
latency fault detection and recovery. SafetyNet relies on
relatively large on-chip buffers (512K) for holding
checkpoints and is targeted at much shorter checkpoint
intervals (i.e., less than a millisecond) than giga-scale CR.
Prulovic and Torrellas proposed ReEnact a system for
recovering from data races in multiprocessors [18].
ReEnact is also targeted at relatively short intervals. Xu,
Bodik and Hill describe a CR mechanism for post-mortem
analysis [25]. Their focus is on recording data races with
low overhead and assume a hardware-based LZ77
compressor for reducing checkpoint storage. We build on
previous work and propose a fast compressor that exploits
value locality. In principle, all aforementioned techniques
could benefit from our compressor as using it would
reduce on-chip buffer requirements. Narayanasamy et. al.
propose mechanisms for deterministic playback for the
purposes of debugging [16]. 

Several hardware compressors for memory data have
been developed. IBM’s MXT technology [22] relies on a
variation [9] of the LZ77 algorithm [29] to compress 1K
cache blocks. We demonstrate that simpler mechanisms
can offer most of the benefits with a lot less cost and at a
much faster speed. Other memory compression techniques
have been proposed [2,4,8,12,13] that exploit locality
within a cache block or frequent bit patterns (such as
sequences of zeroes or ones). To do so, most of these
implementations process the block serially. A technique
that exploits frequent values for compressing cache data
has been proposed by Yang, Zhang and Gupta [26]. It too
processes the block serially. Our compressor is much
simpler than these methods. Alameldeen and Wood
proposed Frequent Pattern Compression (FPC), a relatively
fast compressor for on-chip caches [3]. We consider FPC in
Section 5.4.

5.  Evaluation
In Section 5.1 we present our methodology. In Section

5.2 we study the checkpoint storage requirements for
various checkpoint intervals and show that often several
megabytes of storage are required. In Section 5.3 we show
that our compressors can reduce checkpoint storage
requirements significantly. In Section 5.4 we compare our
compressors to the Frequent Pattern Compressor [2,3]. In
Section 5.5, we study dictionary-based compression and
show that often our compressors offer similar compression
ratios. We also show that higher overall compression is
possible when our compressors are used in-series with a
dictionary-based compressor. In Section 5.6, we
demonstrate that the combination of our compressors with
a dictionary-based compressor significantly reduces on-
chip buffer requirements.

5.1.  Methodology
We extended the Simplescalar v3.0 simulators [5]. We

used the functional simulator to study value locality,
checkpoint requirements and compressibility. We used the
timing simulator to determine the performance impact of
various compressors under varying assumptions about on-
chip buffers and compressor speed. Our base
configuration is an aggressive wide-issue, 8-way
dynamically-scheduled, deeply pipelined superscalar
processor. We modified Simplescalar’s main memory
system to appropriately model bus contention. Table 2
depicts the base processor configuration and other key
simulation parameters. We used the following integer or
floating-point benchmarks from the SPECCPU 2000 suite:
164.gzip, 174.parser, 176.gcc, 177.mesa, 181.mcf,
183.equake, 188.ammp, 197.parser, 254.gap, 255.vortex,
256.bzip2 and 300.twolf. We used a reference input
dataset for all benchmarks except mcf and parser. For the
latter two we used a training input dataset since it was not
possible to allocate sufficient memory in our systems to
simulate them with a reference data set. The binaries were
compiled for the PISA architecture using GNU’s gcc and
g77 v2.7 (options: “-O2 -funroll-loops -finline-
functions”). For the functional simulations we simulated



up to 80 billion instructions or to completion (whichever
came first). In order to obtain tractable simulation times
under timing simulation we simulated five billion
committed instructions after skipping five or ten billion
instructions in order to skip the initialization. Instead of
using the less effective LZ77 [29] compressor we opt for
an LZW implementation [24]. 

In all our simulations we ignore the first checkpoint to
avoid artificially skewing our results towards higher
compression ratios. This is necessary since most memory
blocks initially are zeroed out in Simplescalar. We
verified that the compression rates did not decrease had
we skipped more checkpoints. We do not report statistics
for the 16 billion checkpoint interval for gcc, mcf and
parser since they execute less than 32 billion instructions.
For the latter two it was also not possible to collect
statistics for the four billion instruction checkpoint
interval. 

5.2.  Checkpoint Storage Requirements
We study the maximum checkpoint storage requirements

for a single checkpoint as a function of the checkpoint
interval to show that on-chip storage is not sufficient for
storing even a few checkpoints. Figure 6 reports the
checkpoint storage requirements for checkpoint intervals
of 1K through 16 billions of instructions. We report the
base two logarithm of the checkpoint size in bytes. Note
that a whole cache block is checkpointed prior to the first
update. This explains why for example about 1K or more
are needed for the 1K interval. Generally, checkpoint
requirements increase almost linearly with the checkpoint
interval. For some programs (e.g., amp, gcc and twolf), the

checkpoint requirements level off after a few million
instructions. Still, several megabytes are needed for all
programs except twolf and for the larger checkpoint
intervals. In the rest of this work we will focus on
checkpoint intervals of 64 million instructions or more.

Figure 7 shows the cumulative distribution of
checkpoint sizes for few representative applications.
These results show that while the maximum checkpoint
may require several megabytes of storage, there can be
great variation in checkpoint sizes depending on the
application. For example, the maximum checkpoint in gcc
requires about 32Mbytes, however, 50% of all checkpoints
require 2Mbytes or less. From these results it follows that
the checkpoint requirements of most programs are
relatively large and hence techniques for compressing
checkpoints are worth investigating. Furthermore, on-chip
storage of even a single checkpoint would require several
tens of megabytes for some applications. 

5.3.  Value-Prediction-Based Compressors
We study the compression possible with the last-

outcome compressor, the simplest amongst those we
proposed. Figure 8(a) reports the overall compression
ratio observed with this compressor for various

Table 2: System parameters. 
 Branch Predictor 16k GShare+16K bi-modal 

16K selector
2 branches per cycle

Instruction Window 256 entries

Issue/Decode/Commit any 8 instructions / cycle

DL1/IL1 Geometry 64Kbyte/64-byte blocks/4-way SA

L1/UL2 Latencies 3/16 cycles

Fetch Unit Up to 8 instr. per cycle 
64-entry Fetch Buffer
2 branches per cycle
Non-blocking I-Cache

Load/Store Queue 64 entries, 4 loads or stores per cycle
Perfect disambiguation

FU Latencies same as MIPS R10000 

UL2 Geometry 1Mbyte/64byte blocks/8-way SA

Stage Latencies 8 cycles from branch predict to decode stage
6 cycles for decode and renaming 
6 cycles from writeback to commit
10 cycles branch misprediction penalty.

Instructions Simulated 80 Billion max. functional
Five Billion timing

Input Data Set Training for mcf and parser
Reference for all others

Checkpoint Intervals 64M, 256M, 1B and 4B instructions

On Chip Buffers 1K, 4K, 16K and 64K bytes.

Main Memory Infinite capacity, 100 cycles latency
16 Banks, one port/bank
64-byte interleaved

LZW dictionary size 1K, 4K, 16K or 64K

LZW consumption rates from 32 bytes/cycle to 4 bytes per 16 cycles

Figure 6: Checkpoint storage requirements as a function of the 
checkpointing interval: 1K through 16Billion instructions.

Figure 7: Cumulative checkpoint size distribution per benchmark 
and for the 1B instruction checkpoint interval. For clarity we show a 

few representative applications.
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checkpoint intervals. We consider the total storage
required by all checkpoints combined and report the ratio
of the storage required with our compressor over the
storage required without compression. Hence the lower
the compression ratio the higher the compression. This
measurement includes the compression headers in addition
to data and addresses whenever needed. A compression
ratio of 10% means that we need only 1/10th of the
original space. On the average, compression ratios of 60%
to 54% are possible. The best compression ratio of 14% is
observed for gcc for the 1B checkpoint interval. The worst
compression ratio of 88% is observed for vpr and for the
64M checkpoint interval. In general, the compression
observed does not vary monotonically with the checkpoint
interval. The amount of compression possible depends on
how predictable the data words and the block addresses
are. The prediction rates of the underlying value and
address predictors are shown in figures 8(b) and 8(c)
respectively. For most programs, data prediction rates
either remain relatively unchanged or tend to increase for
larger checkpoint intervals. However, prediction rates
decrease with larger intervals for some applications (e.g.,
equake). The prediction rate depends on the amount of
value locality that exists amongst the data that is updated
during a checkpoint. As we have seen in Section 5.2, in
some applications the amount of data per checkpoint
increases with the checkpoint interval. Value locality may
be lower or higher in this larger data set. Block address
prediction rates tend to increase with the checkpoint
interval for all applications except gap.
5.3.1.  Combined-Predictor-Based Compressors. We report
the compression ratios possible with the two combined-
predictor-based compressors of Section 3.1. In the interest
of space we restrict our attention to the 256M and 1B
checkpoint intervals. Figure 9 reports the compression
ratios for the last-outcome (LO), combined neighbor (CN)
and combined stride (CS) compressors. Sometimes the
differences amongst them are negligible. The CN is
always better than the LO and in mesa, vortex, gap and
twolf the improvement is relatively significant. The CS
compressor is better than CN only for vpr and somewhat
better than LO for most applications. Thus, compared to
LO or CN, CS does not offer benefits that would justify its
much higher cost (adders and subtractors). On the other
hand, CN offers noticeable compression improvements
over LO at a small additional cost.
5.4.  Frequent Pattern Compression

Frequent pattern compression (FPC) exploits frequent
occurring sub-word patterns and zero word runs to
compress L2 blocks [2]. With appropriate modification,
the same compressor could also be used for gigascale CR.
Accordingly, we compare its compression performance to
the LO and CN compressors. The results are shown in
Figure 10 for the 256M and 1B checkpoint intervals. On
the average, FPC performs slightly better (2%) than LO
and slightly worse (4%) than CN. Compression
performance varies significantly per program. This is not
unexpected since FPC exploits different behavior than the

other compressors. FPC is slightly better than CN for vpr
(3%), gap (2%), parser (1%), vortex (7%) and twolf (5%).
(Shown in parentheses are approximate differences for the
1B checkpoint interval.) CN is slightly better than FPC for
gzip (9%), gcc (5%), mcf (15%), equake (13%), ampp
(6%) and bzip2 (4%). Thus, focusing on compression ratio
alone there is no compelling reason to chose one
compressor over the other. Complexity-wise and ignoring
the fixed-length headers, FPC requires a more powerful
alignment network since a four byte word can be
compressed to one, two, three or four bytes. The number
of permutations is higher if we consider zero-runs (our
results include zero run compression for FPC). While
simplifications may be possible a straightforward way of
accounting for zero runs is to assume that each word can
be represented in five possible ways: no byte, one byte,
two bytes, three bytes or four. Thus there are 516

permutations per 16 word block for FPC1. CN represents a
word using either zero or four bytes and thus there just two
options per word and thus there are 216 permutations per
block. Accordingly, we conclude that: (1) there is no
reason to dismiss the CN predictor, and (2) that given that
the alignment network for CN is less demanding it is
important to further consider the CN predictor as it may
lead to simpler compression hardware. The results of this
section serve also as motivation for studying a possible
combination of FPC and CN. However, this study is
beyond the scope of this work.  

5.5.  Dictionary-Based Compression

We study the LZW compressor which offers higher
compression compared to the LZ77 variants implemented
in hardware we reviewed in Section 4.. A key design
parameter for dictionary-based predictors is the size of the
dictionary. Using larger dictionaries typically results in
higher compression. However, larger dictionaries imply
higher cost and slower operation. IBM’s MXT uses a 1K
byte dictionary. In Figure 11(a) we report the compression
ratios possible with a 64K byte dictionary for checkpoint
intervals of 64M through 16B instructions. We use a larger
dictionary since we are interested in demonstrating that
our compressors offer competitive compression ratios. In
most cases, compression is higher compared to our
compressors. However, in equake LZW fails to reduce the
amount of storage required. This suggests that while there
is some repetition in the memory values rarely there are
repeating patterns of more than one value. Alternative
encoding can be used to avoid inflation [22, 23]. In
Figure 11(b), we show that indeed in most cases, using
larger dictionaries results in higher compression. Shown
are the compression ratios for LZW compressors with 1K
(10 bits), 4K (12 bits), 16K and 64K dictionaries for the
1B checkpoint interval.
1 Note that this analysis is for our application of compressing whole program

checkpoints. FPC was originally proposed for L2 block compression and
there the minimum amount of space used per compressed block was 8 bytes.
This significantly reduces the number of relevant alignments. In our case, we
do care to reduce the input block to the minimum possible size hence we do
have to consider all possible permutations. 



Figure 12 shows a direct comparison of LZW and of our
compressors. In the interest of space we restrict our
attention to the 1B checkpoint interval. We report
compression ratios for the 64K dictionary LZW (LZW-
16bits), the LO and the CN compressors. We also consider
combining the two value prediction based compressors

with LZW (LO+LZW and CN+LZW) as shown in
Figure 2(b). Except for equake, LZW compression offers
higher compression compared to LO and CN. Considering
the high resource cost of LZW compression, the difference
with CN is relatively small for gzip, gcc, mesa, mcf,
ammp, and bzip2. However, for vpr, parser, gap and twolf
compression with LZW is about twice as much as it is with

Figure 8: Last-outcome-based compressor. (a) Overall compression ratio for various checkpoint intervals. Reported is the ratio: 
Total_Checkpoint_Storageafter-compression/Total_Checkpoint_Storagewithout-compression. Lower is better. (b) Prediction rates for data words. Higher 

is better. (c) Prediction rates for address blocks. Higher is better.
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Figure 9: Compression ratios with three value predictor based 
compressors and for the 256M and 1B instruction checkpoint 

intervals. Shown are the last-outcome (LO), combined neighbor (CN) 
and combined stride (CS) predictors. Bars are labeled as I-P where I 
is the checkpoint interval (256M or 1B) and I is the predictor. Lower is 

better.

Figure 10: Compression ratios with last-outcome (LO), combined 
neighbor (CN) and frequent pattern (FPC) compressors and for the 
256M and 1B instruction intervals. Bars are labeled as I-P where I is 
the checkpoint interval (256M or 1B) and I is the predictor. Lower is 

better.
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Figure 11: LZW compression. (a) Compression ratio with an LZW 
compressor with a 16-bit codewords (64Kbyte dictionary) and for 

various checkpoint intervals. (b) Compression ratio for LZW 
compressors with 10 through 16 bit codewords (1K through 64K 

dictionaries) for the 1B instruction checkpoint interval. In both graphs 
lower is better. 
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CN. When we combine our compressors with LZW we get
a slight improvement in compression rate for most
programs. While this improvement is small, as we will
show in Section 5.6, this combination results in a
significant reduction of on-chip buffer resources. 

5.6.  Performance and Resource Overheads
We first demonstrate that our compressors when

combined with LZW can result in a high-performance,
low-cost compressor. Here we consider two alternatives.
The first uses just an LZW compressor (64K dictionary)
and the second places a LO or a CN compressor in-series
with the LZW (where our compressor appears first). In
front of the LZW compressor there is a buffer (“in-buffer”
of figure 2) so that we can avoid stalling the processor
while the LZW processes checkpointed blocks. They key
issue here is what size this buffer needs to be to avoid a
significant impact on performance. We first report the
maximum buffer size required so that we never have to
stall the processor for various LZW processing rates.
These results are shown in figure 13(a) for processing
rates of 32 bytes every processor cycle through four bytes
per 16 processor cycles. The latter processing rate is more
realistic if we consider existing hardware implementations
of dictionary-based compressors. Specifically, Pinnacle
can process four bytes every cycle for a 133Mhz clock and
a 0.25 micrometer implementation [23]. If we
optimistically assume that the same hardware can be
clocked twice as fast (e.g., 266Mhz) when implemented
with a better technology then about 16 processor cycles
will be needed assuming a 4Ghz processor cycle. In the
interest of space we restrict our attention to three
representative applications. It can be seen that as the LZW
processing rate decreases a much smaller buffer is
required when our compressor pre-processes the
checkpoint (LO+LZW) compared to that required when
LZW operates alone (LZW). While not clearly shown, in
the worst case scenario of gzip our compressor reduces the
on-chip buffer requirements by half (notice that the size
scale is logarithmic). In the best case of ammp, a 212 times

smaller buffer is required when the LZW compressor
processes four bytes every processor cycle (4/1). 

Figure 13(b) reports performance degradation over the
base configuration that does no checkpointing for various
checkpointing configurations that use on-chip “in-buffers”
(see Figure 2) of 1K, 16K or 64K bytes. With LZW alone,
an average performance slowdown of 3.7% is observed
even with a 64K byte on-chip buffer. Furthermore, for all
benchmarks increasing the on-chip buffer for 16K to 64K
did not result in a noticeable improvement in performance.
When our LO compressor is used in-series with LZW
performance degradation is lower (three right-most bars).
In the case of gcc, mesa and mcf and to a lesser extend
gzip the performance benefit is significant. More
importantly, even when we use just an 1K byte buffer
(LO+LZW 1K), the LO+LZW combination offers
performance that is better than that of LZW alone with a
64K byte buffer (LZW 64K). This is the case for all

Figure 12: Comparing dictionary-based compression with value 
prediction based compression and combining the two. Shown are the 

compression ratios for the following compressors: LZW with 64K 
dictionary (LZW-16bits), Last-outcome (LO), Combined Neighbor 
(CN), Last-outcome in-series with LZW (LO+LZW) and Combined 

Neighbor in-series with LZW (CN+LZW). Lower is better. Results are 
shown for the 1B checkpoint interval.
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Figure 13: Combining a CN and an LZW compressor. (a) 
Maximum on-chip buffering required to avoid stalling the processor 
as a function of the LZW compressor processing rate. Processing 
rates are shown as B/C where B is the number of bytes processed 
simultaneously and C is the number of processor cycles required. 
Lower is better. In the interest of space, we report results for three 

representative applications. (b) Relative performance when the LZW 
compressor can process four bytes every 16 processor cycles for on-

chip buffers of 1K, 16K and 64K. Shown are results for the LZW 
compressor alone and the LO in-series with the LZW (LO+LZW 

labels). All results are for the 256M checkpoint interval. Labels are of 
the form “C S” where C is the compressor and S is the “in-buffer” 

size. Higher is better.
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benchmarks except bzip2 and gzip. In these two programs
the difference in performance is below 0.2%. For the same
“in-buffer” the LO+LZW is always better than the LZW
alone performance-wise. On the average, the LZW
compressor with a 64Kbyte “in-buffer” results in a 3.7%
performance slowdown while the combination of LZW
and LO and with just a 1Kbyte buffer results in a 1.6%
slowdown. The benefits of value-prediction-based
compression are clearly seen when we consider worst case
performance. With LZW compression alone and even if
we use a 64K in-buffer, worst case performance
degradation is at 11% for mesa. The LO+LZW compressor
with just 1K in-buffer incurs a worst case performance
degradation of 4.4% for bzip2. From these results it
follows that when used in-series with a dictionary-based
compressor our compressors offer better performance and
reduce on-chip buffering requirements significantly.
While modern high performance processors do have
hundreds of millions of transistors and processors with
billions of transistors will soon appear, arguing that the
aforementioned reduction in on-chip buffers is
insignificant is shortsighted. For one, even with a 64K on-
chip buffer, dictionary compression still imposes a higher
performance penalty. For another, there are numerous
other uses for 64K of on-chip storage for improving
performance and power or possibility for enhancing
functionality.

Finally, we show that even if it was possible to build a
faster dictionary-based compressor (this includes the
option of making LZW more parallel) our compressors
could still offer a performance and resource advantage.
We focus only on three of the benchmarks where using a
value-prediction-based compressor yields significant
improvements. Differences for other benchmarks exist but
they are small (we note that for the same size “in-buffer”
the LO+LZW combination always offers better or same
performance as the LZW alone). Figure 14 shows relative
performance as a function of dictionary-based processing
speed. We consider processing speeds of four bytes every
four processor cycles (4/4), four bytes every eight
processor cycles (4/8) and four bytes every 16 processor
cycles (4/16). For each processing speed we report
performance slowdowns for the dictionary-based
compressor alone (LZW) and for when a last-outcome
value-prediction-based compression is placed in-series
with the LZW (LO+LZW). As the dictionary-based
compressor becomes faster, overall performance improves
for both systems. However, in all cases the LO+LZW
compressor offers better performance. For gcc and mesa
the LO+LZW results in significantly better performance
for all rates. The same is true for mcf except when the
processing rate rises to four bytes every four processor
cycles. In the latter case, the difference between LZW and
LO+LZW is negligible. 

6.  Summary
Recent work has showed that checkpoint/restore can

have many useful applications in the areas of debugging,

crash analysis and reliability. For this type of applications
checkpoint/restore mechanisms over several hundred
million or few billions of instructions are desirable. A key
consideration with such giga-scale CR mechanisms is the
amount of storage required for checkpoints and the
performance impact of saving checkpoints. In this work
and motivated by the value locality found in the memory
stream of typical programs we proposed hardware value-
prediction-based compression of checkpoint data. Our
compressors are inexpensive since they rely on small,
direct-mapped structures they operate at high frequencies
matching the processor’s clock. We have shown that when
used alone, they offer in most cases competitive
compression rates when compared with much more
expensive and slower dictionary-based compressors. We
have also demonstrated that our compressors when
combined with dictionary-based compression offer
slightly higher compression rates, while significantly
reducing on-chip buffering requirements. For this reason
they offer an alternative, viable solution to the frequency
and concurrency scalability issues that exist with
dictionary-based compression. Value-prediction-based
compressors may be useful in other applications where
low-cost, high-speed compression is necessary.
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