
INVocD: Identifier Name Vocabulary Dataset
Simon Butler, Michel Wermelinger, Yijun Yu and Helen Sharp

Centre for Research in Computing, Department of Computing
The Open University, Milton Keynes, United Kingdom

Abstract—INVocD is a database of the identifier name decla-
rations and vocabulary found in 60 FLOSS Java projects where
the source code structure is recorded and the identifier name
vocabulary is made directly available, offering advantages for
identifier name research over conventional source code models.
The database has been used to support a range of research
projects from identifier name analysis to concept location, and
provides many opportunities to researchers. INVocD may be
downloaded from http://oro.open.ac.uk/36992

Index Terms—identifier names; source code model; source code
mining

I. INTRODUCTION

Typical source code models, e.g. the Dagstuhl middle model
(DMM) [1] and FAMIX [2], are AST based and focus on code
structure with identifier names often recorded as attributes of
AST nodes. The researcher interested in identifier names and
identifier name vocabulary has then to extract identifier names
from the source code model. In this paper we present INVocD
(Identifier Name Vocabulary Database), a database model
populated with the identifier name declarations in 60 FLOSS
Java projects (including ArgoUML, Derby, Eclipse, Hibernate,
Tomcat and Vuze) where the source code entities, and their
structural relationships, are recorded and the identifier names
and their component words are made directly available to
the database user. The component words and identifier name
records effectively form an index to the source code. For
example, the component word array found in the identifier
name ANEWARRAY (FindBugs) is linked to all other identifier
names in INVocD containing the word array.

The 60 projects recorded in the database contain 5,091,000
program entities, including 626,000 field name, 1,238,000
method and 1,319,000 local variable declarations. There are
some 831,000 unique identifier names, including imported
types, constructed from 25,000 unique component words.

INVocD has been used to support a number of research
papers including work on identifier name tokenisation [3] and
the analysis of class name structure [4]. The infrastructure that
created INVocD has also been used to support the development
and evaluation of concept location techniques [5].

II. SCHEMA

The INVocD schema has two principal elements. The first
is the PROGRAM ENTITIES table that is used to store entities
found in the AST. The second is the small group of tables
that record the identifier name vocabulary. The two are linked,
allowing the identifier name vocabulary used in program
entities to be recovered, and the program entities in which
particular words or groups of words are used to be identified.

The model of source code used in PROGRAM ENTITIES (see
Figure 1) is predicated on the idea that a program consists
of a set of program entities that may contain other program
entities. Identifier names are declared as labels for program
entities, and the majority of program entities are named.
By recording program entities, their relationships and their
associated identifier names, the model records the source code
structure and location and relative relationships of the entities
containing vocabulary found in the program.

Rows in the PROGRAM ENTITIES table represent each iden-
tifier name declaration in the AST and any unnamed nodes,
such as initialiser blocks and anonymous classes, that might
contain further identifier name declarations.

The PROGRAM ENTITIES table contains the columns
CONTAINER UID and ENTITY UID, which record the hierar-
chical relationships between program entities. The UIDs are
generated during parsing using an SHA1 digest of a unique
string for each file created by concatenating the project name
and version, the package name and the file name. A serial
number is then appended to the hash for each program entity
encountered in the AST for that file. It is possible to use
database keys instead of UIDs to record relationships, but
that requires each container entity to be stored in the database
before its children, which constrains the implementation of the
system writing to the database.

For each constructor and method, a unique method signature
is recorded in the METHOD SIGNATURES table. The signa-
ture is a string composed of the type names of the formal
arguments in declaration order. For example, the signature
(String; int) is recorded for the java.lang.String method
indexOf(String str, int fromIndex). The signatures dis-
tinguish between multiple constructors, and methods of the
same name, including overloaded methods.

The species of the program entity (class, method, etc.)
and Java modifiers (private, static, etc.) are recorded
in separate tables. Species are stored in the SPECIES table
and referenced from the PROGRAM ENTITIES table. Modifiers
are found in the MODIFIERS table and are cross-referenced
through the MODIFIERS XREF table, because there may be
more than one modifier for each program entity. For example,
fields that are class constants might be declared with the
public, final and static modifiers.

The start and end line and column numbers of the program
entity are recorded in the PROGRAM ENTITIES table, and a
foreign key references a unique file name recorded in the
FILES table. File path information is not recorded, but may
be derived, in part, from the package name (see Figure 2).

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

405



PROGRAM_ENTITIES

program_entity_key INT

container_uid VARCHAR(100)

entity_uid VARCHAR(100)

is_anonymous BOOLEAN

start_line_number INT

start_column INT

end_line_number INT

end_column INT

Indexes

PROJECTS

project_key INT

project_name VARCHAR(128)

project_version VARCHAR(20)

Indexes

PACKAGES

package_key INT

Indexes

SPECIES

species_name_key INT

species_name VARCHAR(20)

Indexes

MODIFIERS

modifier_key INT

modifer VARCHAR(20)

Indexes

MODIFIERS_XREF

TYPE_NAMES

type_name_key INT

fqn VARCHAR(255)

Indexes

SUPER_CLASS_XREF

Indexes

SUPER_TYPE_XREF

idsuper_type_xref INT

Indexes

IDENTIFIER_NAMES

identifier_name_key INT

identifier_name VARCHAR(255)

Indexes

COMPONENT_WORDS

component_word_key INT

component_word VARCHAR(255)

Indexes

COMPONENT_WORDS_XREFS

position INT

Indexes

FILES

file_name_key INT

file_name VARCHAR(255)

Indexes

METHOD_SIGNATURES

method_signature_key INT

method_signature VARCHAR(255)

Indexes

PACKAGE_NAMES

package_name_key INT

package_name VARCHAR(255)

Indexes

Fig. 1. The INVocD database model

Packages and projects are also containers like program
entities. However, they share little common data with the
programming language constructs that we record as program
entities, e.g. they do not have types or modifiers. Details of
packages and projects are stored in separate tables. Projects are
recorded as a name and version pair, which allows the database
to store multiple versions of the same project. Packages are
recorded as unique packages belonging to a specific project in
the PACKAGES table, and unique package names are recorded
in the PACKAGE NAMES table. This saves space when storing
multiple versions of projects, where the package names remain
largely unchanged between versions.

Unique identifier names are stored in the
IDENTIFIER NAMES table, which is referenced by both
program entities and type names. The component words
of identifier names are recorded as unique words in the
COMPONENT WORDS table and linked to identifier names
through a cross reference table (COMPONENT WORDS XREFS)
that records the position of the component word within the
identifier name where the component word is found (indexing
starts at 1). For example, keys for the identifier name
ANEWARRAY and the component word array are stored in
COMPONENT WORDS XREFS with the position 3. (An example
SQL query using these tables is given in Figure 3.)

Type names are stored in the TYPE NAMES table with a
reference to the identifier name used to specify the type.

The fully qualified name of the type may be recorded in
the TYPE NAME column. The resolution of fully qualified type
names is experimental and is discussed in Section V. Generic
types are not recorded. Any type with a generic type argument
is recorded as the underlying type and the type argument
ignored, e.g. ArrayList〈String〉 is recorded as ArrayList.

Type names involved in inheritance are cross referenced
with program entities using two tables: SUPER CLASS XREF

for class based inheritance (extends keyword), and
SUPER TYPE XREF for type based inheritance (implements
keyword, and extends when applied to interfaces).

III. DATABASE EXTRACTION

The tool that created the INVocD database, JIM or Java
Identifier Miner, consists of 3 main components – a coor-
dinating layer, a parser and a persistence layer – that in
combination extract identifier names, component words and
metadata concerning the location of the identifier name from
source code and store it in an Apache Derby1 database.

The coordination layer undertakes a recursive exploration
of a directory tree supplied as a command line argu-
ment and parses every Java file found, except files named
package–info.java, which contain only package level doc-
umentation comments, not source code.

1http://db.apache.org/derby/

406



The parser layer consists of two parsers: one for Java 1.5
and another for earlier versions. New language features were
introduced in Java 1.5 including the new reserved word enum

for enumerations. Consequently, source code which complies
with older versions of Java and where enum is used as an
identifier name will cause a Java 1.5 compliant parser to fail.
The parsers use the Sun Java 1.52 grammar supplied with
JavaCC3, with some modifications to record identifier names in
the resulting AST as well as metadata such as access modifiers.
A parser for source files that conform to the Java 1.4 or earlier
standard was created by removing keywords and productions
related to features introduced in Java 1.5 from a second copy
of the grammar. An attempt is made to parse a file using the
Java 1.5 compliant parser. Should that fail, a further attempt
is made using the alternative parser.

Some Java program entities do not have identifier names,
e.g. initialiser blocks and anonymous classes. We record
anonymous program entities with the identifier name ‘#anony-
mous#’, which is not a legal Java identifier name. Similarly,
program entities such as static initialisers that cannot have a
type are given the type name ‘#no type#’. We adopted this
method initially for debugging, but have found it a useful
mechanism that allows analytical tools that extract data from
INVocD to identify unnamed and untyped program entities.

The identifier names and metadata extracted from the AST
node for each program entity are passed to the persistence
layer, which manages the extraction of component words
from identifier names using an updated version of identifier
name tokenisation tool (INTT)4 [3]. The program entity data,
identifier names and component words are then stored in an
Apache Derby database using the schema described earlier.
The database is available for download from http://oro.open.
ac.uk/36992 as a Derby database, a SQLite database and a
SQL dump which can be imported into other RDBMSs.

IV. OPPORTUNITIES

INVocD contains the identifier name declarations and source
code structure of 60 Java projects. The projects were selected
from a variety of domains including frameworks, IDEs, parser
generators, project management applications, and servers5,
which allows the study of the vocabulary of groups of con-
ceptually similar projects.

The identifier names in INVocD are drawn from a single
programming language, and thus permit the investigation of
the naming of single programming language entities across
projects with the confidence that programming language is a
consistent factor. For example, when comparing class identifier
names the investigator can be confident that they are dealing
with the linguistic influences of single inheritance only, and
that field names, with the exception of parts of the reflection
API, refer to entities only and not actions as well.

2All project versions in the database were released prior to Java 1.7.
3http://javacc.java.net/
4http://oro.open.ac.uk/28352/
5Full details can be found at http://www.facetus.org.uk/corpus.html

Corpora of both identifier names and component words may
be extracted from INVocD according to specific criteria. It is
possible, for example, to extract a single species of identifier
name (see Figure 4 for an example SQL query) to study
its structure – Java class names have been analysed using
INVocD [4], and corpus of method names might be extracted
to replicate studies by Høst and Østvold [6]. Public identifier
names, and their component words, could be extracted to study
the vocabulary used in APIs. The recorded structural relation-
ships and type information in INVocD may also support the
investigation of the anomalous word usage identified as lexicon
bad smells by Abebe et al. [7].

The database contains a faithful record of the location, type,
modifier and species for each identifier name declaration, as
well as the component words identified by INTT. All the
information can be used for the testing of new tokenisation
and abbreviation expansion algorithms, e.g. using species or
type information to support both processes, and the existing
tokenisations as a baseline.

The storage of the component word vocabulary allows a
single word to be used to identify all the identifier names in
which it appears, and even allows the query to specify the
position a word occurs in. For example, Figure 3 contains
a query to recover all identifier names that begin with the
component word ‘array’.

The model of source code in INVocD also provides supports
for developing vocabulary based search techniques. Dilshener
and Wermelinger [5] used the infrastructure to create a
database of identifier names for proprietary source code to look
for vocabulary common to change requests and source code.
They were then able to use the database to identify rapidly the
source code locations of source terms. The example query in
Figure 2 illustrates the retrieval of location information for a
given identifier name.

The INVocD schema can be used to store representations
of source code vocabulary from programming languages other
than Java. The MODIFIERS and SPECIES tables can be ex-
tended to reflect other programming language constructs, and
the tables for packages and package names used to record C++
or .NET namespaces. For programming languages without
namespaces a dummy package might be recorded.

V. LIMITATIONS

There are three principal limitations to the information
stored in INVocD. The first is that the database schema was
developed for the study of identifier names, not data flow,
and hence records only identifier declarations, not usage. The
second is the recording of qualified type names, which is
experimental. The third is the processing of identifier names
to extract vocabulary.

Typical Java builds are automated with tools like Ant and
Maven that are configured with often complex build paths
indicating where external Java classes and libraries are found,
and external symbols may be resolved. Our intention was to
create a single pass tool that processed source code only.
Hence, the resolution of external names is imprecise. External

407



s e l e c t pn . package name , f . f i l e n a m e , pe . s t a r t l i n e n u m b e r from SVM. PROGRAM ENTITIES pe
j o i n SVM.PACKAGES pkg on pkg . package key =pe . package key fk
j o i n SVM.PACKAGE NAMES pn on pn . package name key=pkg . package name key fk
j o i n SVM. FILES f on f . f i l e n a m e k e y =pe . f i l e n a m e k e y f k
j o i n SVM. IDENTIFIER NAMES i d on i d . i d e n t i f i e r n a m e k e y =pe . i d e n t i f i e r n a m e k e y f k
j o i n SVM. SPECIES sp on sp . spec i e s name key =pe . s p e c i e s n a m e k e y f k
j o i n SVM. PROJECTS pr on pr . p r o j e c t k e y =pe . p r o j e c t k e y f k
where pr . p r o j e c t n a m e = ‘xom ’ and sp . s p e c i e s n a m e = ‘ method ’ and i d . i d e n t i f i e r n a m e = ‘ t o S t r i n g ’ ;

Fig. 2. Example SQL query to identify the start locations of toString() method declarations in XOM

s e l e c t i d e n t i f i e r n a m e from SVM. IDENTIFIER NAMES i d
j o i n SVM.COMPONENT WORDS XREFS cwx on i d . i d e n t i f i e r n a m e k e y =cwx . i d e n t i f i e r n a m e k e y f k
j o i n SVM.COMPONENT WORDS cw on cw . component word key=cwx . component word key fk
where cw . component word = ‘ a r r a y ’ and cwx . p o s i t i o n =1;

Fig. 3. Example SQL query to recover unique identifier names beginning with the word ‘array’

s e l e c t i d e n t i f i e r n a m e from SVM. IDENTIFIER NAMES i d
j o i n SVM. PROGRAM ENTITIES pe on i d . i d e n t i f i e r n a m e k e y =pe . i d e n t i f i e r n a m e k e y f k
j o i n SVM. SPECIES sp on sp . spec i e s name key =pe . s p e c i e s n a m e k e y f k
j o i n SVM. PROJECTS pr on pr . p r o j e c t k e y =pe . p r o j e c t k e y f k
where pr . p r o j e c t n a m e = ‘ j e d i t ’ and sp . s p e c i e s n a m e = ‘ f i e l d ’ ;

Fig. 4. Example SQL query to recover field identifier name declarations in jEdit

symbols in Java may be indicated explicitly in the source code
in import statements, or implied in ‘starred’ imports where all
the public entities of a package are made available to the Java
compiler to resolve. Alternatively, an external symbol may be
found in the local package, or the default java.lang package.
In the TYPE NAMES table we record a reference to the unique
identifier name used to specify the type in the source code
file. Where the fully qualified type name is given in an import
statement, we record it, otherwise we use heuristics – such
as knowledge of public names in the local package, and fully
qualified types already seen that may match starred imports –
to try to identify the fully qualified type name. Consequently,
the fully qualified type name may not be present, and may not
be reliable even if it is present.

The extraction of component words from identifier names is
not trivial and the accuracy of the identifier name tokeniser is
a limiting factor on the quality of the component word vocab-
ulary. INVocD was generated using our own tokeniser, INTT
[3], which relies on dictionaries and can oversplit unrecognised
abbreviations and words. Since INVocD includes the original
identifier names, users can apply their own tokenisers.

VI. CONCLUSIONS

INVocD is a database of identifier name vocabulary, cur-
rently covering 60 FLOSS Java projects with over 830,000
unique identifiers naming over 5 million program entities.
The component words form an index to the identifier names

which are associated with the program entities where they
were declared. The database schema allows access to identifier
name vocabulary both independently and in conjunction with
the source code structure, providing a low cost platform
for imaginative identifier name vocabulary research, e.g. to
improve naming conventions, program comprehension, feature
location, abbreviation expansion, and tokenisation algorithms.

REFERENCES

[1] T. Lethbridge, S. Tichelaar, and E. Plödereder, “The Dagstuhl middle
metamodel: A schema for reverse engineering,” Electronic Notes in
Theoretical Computer Science, vol. 94, no. 0, pp. 7–18, 2004.

[2] S. Ducasse, N. Anquetil, U. Bhatti, A. C. Hora, J. Laval,
and T. Girba, “MSE and FAMIX 3.0: an interexchange format
and source code model family,” INRIA, Tech. Rep., Nov 2011.
[Online]. Available: http://hal.archives-ouvertes.fr/index.php?halsid=
bvn39r6d5ucvb6e95asroiipj6&view this doc=hal-00646884&version=1

[3] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the tokeni-
sation of identifier names,” in 25th European Conf. on Object-Oriented
Programming, ser. Lecture Notes in Computer Science, M. Mezini, Ed.,
vol. 6813. Springer Berlin / Heidelberg, 2011, pp. 130–154.

[4] ——, “Mining Java class naming conventions,” in Proc. of the 27th IEEE
Int’l Conf. on Software Maintenance. IEEE, 2011, pp. 93–102.

[5] T. Dilshener and M. Wermelinger, “Relating developers concepts and
artefact vocabulary in a financial software module,” in Proc. of the 27th
IEEE Int’l Conf. on Software Maintenance. IEEE, 2011, pp. 412–417.

[6] E. W. Høst and B. M. Østvold, “The Java programmer’s phrase book.” in
Software Language Engineering, ser. LNCS, vol. 5452. Springer, 2008,
pp. 322–341.

[7] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and Y.-G. Gue-
heneuc, “Can lexicon bad smells improve fault prediction?” in Proc. 19th
Working Conference on Reverse Engineering (WCRE). IEEE, Oct. 2012,
pp. 235 –244.

408


