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Abstract—This paper presents a link between the well known
Common Spatial Pattern (CSP) algorithm and Riemannian
geometry in the context of Brain Computer Interface (BCI).
It will be shown that CSP spatial filtering and Log variance
features extraction can be resumed as a computation of a
Riemann distance in the space of covariances matrices. This fact
yields to highlight several approximations with respect to the
space topology. According to these conclusions, we propose an
improvement of classical CSP method.

I. INTRODUCTION

A Brain-Computer Interface (BCI) aims at providing a
new communication channel for people who are suffering
of important paralysis. Most of non-invasive BCIs use Elec-
troencephalogram (EEG) in order to measure the cerebral
activity. Through a paradigm, a mental task is associated to
a command (for example imagine a left hand movement to
turn left on a wheelchair). By analysis of cerebral activity, the
BCI identifies and detects the user intention (the mental task)
and performs the corresponding command. Each mental task
has different properties in temporal, frequential and spatial
domains. Since EEG provides very noisy measurements with
low spatial resolution it is necessary to enhance the specific
characteristics of each mental task by appropriate methods.

A lot of useful information lies in the spatial domain since
the brain areas involved in the mental tasks are well separated.
Spatial filtering methods try to collect this information and
discard the irrelevant ones. Common Spatial Pattern (CSP)
is a well known method in BCI domain [1]. The present
work establishes a link between the CSP algorithm and the
Riemannian geometry in the space of Symmetric Positive
Definite (SPD) matrices.

II. SPATIAL FILTERING IN EEG-BCI

The conventional EEG-BCI signal chain begins with several
pre-processing steps, such as time windowing, frequency fil-
tering, etc. Furthermore, one important step consists generally
in spatial filtering of EEG data [1] , i.e., in performing
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a linear combination of EEG signals, for enhancing signals
coming from a particular area of the brain. Mathematically,
this operation is parametrized by a matrix W ∈ <N×J , which
projects the EEG signal x(t) ∈ <N×1 from the original sensor
space into the signal z(t) ∈ <J×1 which lives in the surrogate
sensor space :

z(t) = [z1(t) . . . zJ(t)]
T = WTx(t) (1)

Each column vector of W, wj , denotes a spatial filter and
zj(t) = wT

j x(t) the corresponding spatial filtered signal at
instant t. More generally, for a given EEG trial X ∈ <N×K
of K time samples, we can define Z = WTX with Z =
[z(1) . . . z(K)] ∈ <J×K and zj = wT

j X.
Different design methods exist for the wj’s, depending

on the problem at hand and in agreement with the chosen
criterion. For EEG source localisation, beamforming methods
are often used [2] but need an appropriate forward model. On
the other hand, in BCI, blind methods are usually preferred [3].

In the context of a two-class paradigm in EEG-BCI, the
Common Spatial Pattern (CSP) algorithm is the technique of
choice for spatial filtering [1]. Briefly, this method amounts to
maximizing the variance of the (spatially) filtered signal under
one condition while minimizing it for the opposite condition,
as shown in Fig. 1.

CSP is a supervised technique since it requires known trials
for both conditions in order to estimate W. First, CSP builds
an average covariance matrix for each class. Let P1 and P2

being such class-related mean covariance matrices. Spatial
filter W is obtained by CSP using a joint diagonalization of
both matrices and subject to an equality constraint. i.e. : WTP1W = D1

WTP2W = D2

D1 +D2 = IN

⇔ P1wj = λj(P1 +P2)wj

with λj = (D1)jj

In the above equation D1 and D2 are two diagonal matrices
and λ the generalized eigenvalues which also coincide with
diagonal elements of D1. Because λj are strictly positives and
D1 +D2 = In, by definition λj ∈]0 : 1[. The CSP algorithm
is detailed below :
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Figure 1. Illustration of CSP effect over filtered signal (at the bottom) and
original signal (at the top). CSP maximizing the variance of the filtered signal
under one condition while minimizing it for the opposite condition.

Algorithm 1 CSP Algorithm
Input: a set of I preprocessed EEG trials Xi with known class
Yi ∈ {1, 2}.
Output: W projection matrix

1: for i = 1 to I do
2: PXi

= Cov (Xi) {Compute Sample Covariance ma-
trix}

3: end for
4: P1 = A (PXi , Yi = 1) {Arithmetic mean of covariance

matrices for class 1}
5: P2 = A (PXi

, Yi = 2) {Arithmetic mean of covariance
matrices for class 2}

6: (P1 +P2)
−1

P1 = WD1W
T {Eigenvalue decomposi-

tion}
7: return W

CSP algorithm gives us N spatial filters so W ∈ <N×N ,
however it is usual to select a subset of the J < N most
relevant spatial filters and let the classification process operate
on features extracted from the J filtered signals [4].

Features are naturally related to variance of the filtered
signals with the usual choice :

FX =

log
(
Var(wT

1 X)
)

...
log
(
Var(wT

JX)
)
 =

log (Var(z1))
...

log (Var(zJ))

 (2)

We will see in next sections that such feature choice is quite
natural according to space topology.

III. CSP INTERPRETED VIA DIFFERENTIAL GEOMETRY

A. Differential geometry framework

1) Distance: A Riemannian manifold is a differentiable
manifold in which the tangent space at each point is a finite-
dimensional Euclidean space. We denote by S(N) = {S ∈
M(N),ST = S} the space of all N ×N symmetric matrices
in the space of square matrices and denote by P (N) = {P ∈

S(N),P > 0} the set of all N×N symmetric positive-definite
(SPD) matrices.
N×N spatial covariances matrices, which are used in CSP

algorithm, are by construction SPD and therefore lie in P (N).
According to the topology of P (N), rigorous manipulation
of covariance matrices must be done through Riemannian
geometry.

The Riemannian distance between two SPD matrices P1

and P2 in P (n) is given by [5] :

δR(P1,P2) = ‖Log
(
P−11 P2

)
‖F =

[
N∑
n=1

log2 βn

]1/2
(3)

where βn, n = 1 . . . N are the real eigenvalues of P−11 P2.
In Eq. (3), Log (P) is the logarithm of the matrix P, defined
in [6] from the diagonalization of P.

Riemannian distance has the following properties :
• δR(P1,P2) = δR(P2,P1)
• δR(P1,P2) = δR(P

−1
1 ,P−12 )

• let W ∈ Gl(N) be an invertible matrix,
δR(P1,P2) = δR(W

TP1W,WTP2W)

The third property is very important, since it implies that the
space of SPD matrices is invariant by projection. It allows us to
manipulate such space with tools like PCA without incidence
over the distance.

2) Mean: It is well known that in Euclidean space, the
arithmetic mean of I given SPD matrices P1, . . . ,PI can be
defined as follows :

A (P1, . . . ,PI) = argmin
P∈P (N)

I∑
i=1

δ2E (P,Pi) =
1

I

I∑
i=1

Pi (4)

with the Euclidean distance between two matrices M1 and
M2 in M(N) given by the Froebenius norm [5] :

δE(M1,M2) = ‖M1 −M2‖F (5)

where ‖X‖F = tr
(
XXT

)1/2
.

The mean in the Riemannian sense, i.e. associated with the
metric of (3), of I given SPD matrices P1, . . . ,PI is defined
according to [5] :

G (P1, . . . ,PI) = argmin
P∈P (N)

I∑
i=1

δ2R (P,Pi) (6)

There is no closed-form expression for such mean computation
and optimisation algorithms should be employed. Refer to [6]
for efficient algorithmic implementation.

B. CSP revisited

1) Class-related mean covariance matrices: Referring to
CSP algorithm, class-related mean covariance matrices P1 and
P2 are usually obtained using arithmetic mean. As explained
in Section III-A1, the topology of the space of covariance
matrices follows Riemannian geometry. In order to obtain a
rigorous estimation of class-related mean covariance matrices,



a simple and effective improvement is to change the Euclidean
mean A (.) for the Riemannian mean G (.).

However Eq. (6) shows its limitations in term of compu-
tation time when the number of sensor is large (> 50). In
this case, an approximation of Riemannian metrics like log-
Euclidean metrics can be used instead [7]

2) Spatial filter selection: All CSP filters are not relevant
for subsequent classification. The discriminative power of a
spatial filter wj is linked with its associated eigenvalue λj
in :

(P1 +P2)
−1

P1wj = λjwj

It is common to select an arbitrary number of filters, taking for
example the filters which correspond to the three highest and
the three lowest values of λj [1]. The most usual criterion
consists on keeping the spatial filters which maximize the
following quantity :|λj − 0.5| [1].

However some smarter criterion can be established. Indeed
if we look at the Riemannian distance between the two class-
related mean covariance matrices, the full (J = N ) CSP
projection matrix W being invertible, it holds :

δR(P1,P2) = δR(W
TP1W,WTP2W) = δR (D1,D2)

Since D1 +D2 = IN , it holds :

δR(P1,P2) =

√√√√ N∑
j=1

log2
(

λj
1− λj

)
(7)

Thus Riemannian distance between the two class-related
mean matrices is directly linked with the set of CSP eigenvalue
λj . Let denote dR a N × 1 column vector with elements
(dR)j = | log

(
λj

1−λj

)
|. It holds

δR(P1,P2) = ‖dR‖2 (8)

Consequently every spatial filter wj supports a part of the total
distance through its weight (dR)j . It is interesting to observe
the function fR(λj) = (dR)

2
j , see Fig. 2.
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Figure 2. Evolution of squared distance supported by spatial filter wj as a
function of λj (solid line: Riemann , dashed line: Euclidean)

As it can be observed, the further is the eigenvalue from
the symmetric point 1/2, the more the distance supported

by the spatial filter between the two matrices is important.
If we consider the distance between the class means as the
most important factor to discriminate the two classes, the
Riemannian distance gives us a tool to control which spatial
filter should be chosen and its contribution to the whole
distance. The function fR(λj) yields directly the spatial filters
according to the intrinsic distance between P1 and P2. The
sum across the different values of fR(λj)

2 enable us to
automatically choose the optimal number of spatial filters.

Using this approach, we can also define a similar criterion
with Euclidian distance. In the projected space, D1 and D2

are the class-related mean matrices. We want to maximise
the distance between the two classes in the projected space.
If we take the Euclidean distance, we obtain the following
statement :

δE(D1,D2) = ‖D1 −D2‖F = 2

√√√√ N∑
j=1

(
λj −

1

2

)2

(9)

Let denote dE a N×1 column vector with elements (dE)j =
2|λj − 0.5| It holds

δE(D1,D2) = ‖dE‖2 (10)

dE represents a decomposition of Euclidean distance between
D1 and D2 over the different spatial filters. It is interesting
to study the evolution of the function fE(λj) = (dE)

2
j . This

function has a slower increase compared to its Riemannian
counterpart.

Finally, the Riemannian approach provides us an estimation
of the distance between the class-related matrices which is
supported by each spatial filter. As we can see Section III-B3,
the Riemannian distance is directly linked to the distance in
feature space and therefore gives us an estimation of classi-
fication performance. That being not the case of Euclidean
approach, even though it is almost equivalent, we would
always prefer the use of Riemannian distance.

3) Feature extraction: CSP spatial filtering is followed by
feature extraction, as mentioned in Section II. In this case, only
the log-variance of each signal zj is considered. In our setting,
this amounts to approximate the covariance matrix PZ =
Cov(Z) by its diagonal counterpart DZ = diag (diag (PZ)).
In most cases, this should not be a bad approximation because
for a given trial covariances matrices PZ are statistically close
either to D1 or D2 and so PZ should be almost diagonal.

In terms of distance, the approximation yields to :

δR (P1,PX) = δR
(
WTP1W,WTPXW

)
= δR (D1,PZ) ' δR (D1,DZ)

which is expressed explicitly as the vector norm of :
log
(

(DZ)11
(D1)11

)
...

log
(

(DZ)NN

(D1)NN

)
 =

 log (Var(z1))− log ((D1)11)
...

log (Var(zN ))− log ((D1)NN )


Usually we use J < N spatial filters, so the previous vector

will be truncated. However, if the spatial filters selection is



correctly done, this truncation can be interpreted as denoising.
If spatial filters are selected in order to conserve an arbitrary
percentage of total distance between mean matrices, for ex-
ample about 99%, we can consider that this truncation will
discard irrelevant information.

It is interesting to observe that the log variance of the zj’s
appears in the previous vector. Remember Eq. (2), log variance
is the usual choice for features. The feature vector FX, which
describes the EEG trial X in front of the classification algo-
rithm, is directly linked to an approximation of Riemannian
distance :

δR (P1,PX) ' ‖FX − F1‖2 (11)

The feature space represents an approximate decomposition
of Riemannian distance between the test covariance matrix
PX and the class-wise mean covariance P1. Conversely, the
Riemannian distance represents an approximation of the
Euclidean distance in the Euclidean feature space, in the
context of CSP. Thus, the spatial filters selection based on
the highest Riemannian distance insures implicitly a maximal
separability of classes in feature space.
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Figure 3. Feature Space, class-related means and distances

An illustration of feature space is shown in Fig. 3. Each
element of this space can be linked to an approximation
of Riemannian distance, in the original space of covariance
matrices.

IV. RESULTS

A. Datasets

In order to evaluate classification performances, we bench-
mark the proposed methods, with respect to the standard CSP
method [1] with the following signal processing chain :
frequency filtering, CSP spatial filtering, log-variance feature
extraction and finally Fisher’s LDA classification, as described
in section II.

Datasets IVa of BCI competition III are used for analy-
sis [8]. In our work, the goal is not to achieve the best perfor-
mance but to compare different improvements of CSP method
using the Riemannian framework. Thus no frequency filter is
optimized nor electrode subset selection so that performances

could be less than those observed on the BCI competition or
in the literature.

Only 9 electrodes are used : F3, FZ , F4, C3, CZ , C4, P3,
PZ , P4. This electrode subset represents a typical case of an
every-day use BCI. A general [10, 30] Hz band-pass filter has
been applied on the original EEG signals for all subjects.

This dataset is composed by 5 subjects who performed 280
trials of right-hand or right-foot motor imagery. It was pro-
vided by Fraunhofer FIRST, Intelligent Data Analysis Group.
leave-one-out cross-validation is used to evaluate properly the
performances.

B. CSP results

When performing a CSP, the first step is to observe the
so called spatial patterns. Spatial patterns are obtained by
inverting the transpose of the full projection matrix :

A =
(
WT

)−1
Spatial patterns aj are the column vectors of matrix A,
and can be viewed as a correlation map between original
electrodes signal Xi and the spatially filtered signal zj . Further
informations about spatial patterns can be found in [1].

Fig. 4 shows us the first spatial filter and the corresponding
spatial pattern for user al. We can see that the maximum
weight of the spatial filter is for electrodes C3, which covers
the area dedicated to the right-hand movement. The spatial
pattern is also consistent with the mental task of the motor
imagery and the contralateral operation of the motor cortex.

Spatial filter w
1

Spatial pattern a
1

C
3

C
4

Figure 4. First spatial filter w1 and the corresponding spatial pattern a1 for
user al.

Fig. 5 shows the percentage of distance covered by the
subset of filters. We see that 95% of total distance is covered
by the 2-3 first spatial filters, and at least 99% of distance
between the two matrices is covered with 5-6 filters.

Fig. 6 gives the repartition and weights, in terms of per-
centage of total squared distance, of the λj’s for the user al.
The best filter w1 associated with λ1 covers about 60% of
total squared distance. The use of Euclidean distance leads
to underestimate the contribution of w1 and overestimate the
others.

C. Classification results

In this work, we have proposed different ameliorations of
CSP algorithm : they are implemented both separately and
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Figure 6. Percentage of squared distance supported by the spatial filters and
corresponding eigenvalues for user al.

all together. They are compared with an implementation of
standard CSP algorithm.

The first improvement, named CSP+, consists in the Rie-
mannian mean computation as described in section III-B1.

The second one, named CSP++, adds to CSP+ an auto-
matic spatial filter selection with a threshold of 99% of total
distance as described in section III-B2.

For state-of-the-art CSP and CSP+, we select the six best
spatial filters according to classical criterion |λi−0.5|. Table I
shows the results in terms of classification error rates and
number of selected filter for CSP++ :

Table I
CLASSIFICATION ERROR RATES IN LEAVE-ONE-OUT CROSS-VALIDATION

AND NUMBER OF SELECTED FILTERS (SECOND COLUMN OF CSP++)

User CSP CSP+ CSP++

aa 24.2 23.5 23.5|6
al 2.8 3.2 3.2|4
av 35 31.7 31.7|6
aw 6 6.7 5.3|5
ay 8.9 9.6 9.2|5
Mean 15.4± 13.7 14.9± 12.2 14.6± 12.4

Classification error rates for CSP+ and CSP++ methods
shows an interesting decrease, due to a better estimation of
mean matrices and a smarter selection of spatial filter.

For CSP+ methods, the whole improvement is owned by
the Riemannian mean estimation. For predisposed subjects i.e.

subject al, aw and ay, the improvements are not significant
but for aa and av the ameliorations are important. Indeed,
for predisposed subjects the intrinsic distance between the
two class-related mean covariance matrices is large enough
to compensate for approximation due to a poor estimation of
class mean.
CSP++ shows a slight improvement compared to CSP+.

This is due to a better spatial filters selection. Since the
number of kept filter does not change for aa and av, only the
other subjects support the improvement. For these subjects,
the distance supported by the spatial filters grows quickly and
leads to a difficult choice of filters as it can be observed in
Fig. 6. The automatic filter selection will be very helpful in
this case.

V. CONCLUSION

We have shown that the Common Spatial Pattern algorithm
can be viewed and interpreted through Riemannian geometry.
This point of view leads to two possible enhancements of the
classical CSP method.

First, the arithmetic mean, which estimates the intrinsic
mean of covariance matrices is non-optimal in the sense of
topology of symmetric-positive-definite matrices space. This
can be solved using a tailored mean [6].

Second, an efficient and automatic solution for selection
of spatial filters was presented. This can be achieved directly
using the eigenvalues given by CSP algorithm and need no
extra computation. However this method does not take into
account the classes dispersion. Future works will provide a
solution which includes data dispersion around the mean, like
t-statistics, instead of distance between mean matrices.

Third, the feature space obtained by log variance extraction,
and used for classification, actually describes an approximation
of Riemannian distance between covariance matrices.

Finally, the combination of these improvements appears
to produce better results than classical CSP due to a better
handling of space of covariances matrices.
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