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This article argues that low latency, high bandwidth, device pro-
liferation, sustainable digital infrastructure, and data privacy and
sovereignty continue to motivate the need for edge computing re-
search even though the initial concepts of edge research were for-
mulated more than a decade ago.

The initial concepts of what is today referred to as edge
computing were formulated more than a decade ago (1).

Although a nascent research area, it is generally understood
that edge computing enables the (pre)processing of data closer
to the source outside a centralized and geographically distant
data center (2–4). In previous decades, although not articu-
lated in its current form, there were several notions of such
geography-aware computing with a premise to bring compute
services closer to where data was generated.

‘Edge’ although generally refers to a location rather than
computing using any specific technology, it has started to
emerge that it may be more than just the location. Recent
advances made in computer processor, 5G and AI technologies
and their application in novel domains have necessitated a
strong need for geography-aware computing (and much more).
These have brought edge computing to the limelight and has
inadvertently coupled the notion of the edge as a location with
certain technologies. The differentiating lines between tech-
nologies that may be required for realizing edge applications
have therefore blurred.

An exemplar of edge computing that is commercially used
is Content Delivery Networks (CDNs). They are commonly
used to deliver digital content (such as web, gaming, AR/VR,
videos) from servers to end-users by Internet Service Providers,
carriers and network operators. More than half of today’s
consumer traffic is generated in delivering digital content to
users in the Internet using CDNs. Digital content is replicated
and stored across many edge servers in different geographic
locations, a concept referred to as ‘edge caching’, which is
commercially used for improving application responsiveness
and reducing latencies.

When the cloud was rapidly being adopted within the
technology landscape, it was argued that extremely centralized
compute resources of the cloud would not be suitable for a
wide-range of sensor-rich applications that were to emerge
in the future. These applications generate data by end-users
that is required to be transferred elsewhere for processing (as
opposed to delivering content from servers to end-users). Such
applications would be latency-critical, bandwidth-intensive,
and privacy-craving. A few hyperscalers and comparatively
low network speeds observed then mandated the need for
more decentralized data centers to be placed and used at the
edge. However, it was always recognized that hyperscalers

as economies at scale were essential and could not become
redundant infrastructure.

Times have now changed - there are plenty of cloud locations
scattered across the globe and data can travel through fibre
optic communication channels at (near) speed of light. Do the
arguments that initially mandated the need for edge computing
still hold?

Recent research articles examined cloud reachability across
the globe to measure the average round-trip communication
latency for an end-user when communicating with the cloud (5,
6). The authors concluded that current clouds in the United
States were sufficient for many latency-critical applications
and noted that the motivation for realizing edge computing
as a mere ‘enthusiasm for newer computing paradigms’ (the
data used in the above mentioned research and the conclusions
drawn will be briefly examined in the next section).

Contrary to the above, we note that cloud and edge com-
puting are not necessarily competing paradigms; rather they
are compatriots in delivering computing as a ubiquitous utility
by appealing to arguments that will be discussed in this article.
In light of the above and a renewed interest in determining
whether there is still a need for edge computing as a concept
and an avenue of research, this article (re)examines five differ-
ent arguments, namely (1) Latency, (2) Bandwidth, (3) Prolif-
eration, (4) Sustainability, and (5) Privacy and Sovereignty.

Latency

Reducing the overall latency in processing data at the source
or delivering data from servers to end-users has been a key
argument in favor of edge computing. These arguments have
been supported by predictions of Gartner, for example, an-
ticipating that by 2025, over 50% of enterprise data will be
created and processed outside the typical data center1.

We note that different technology providers consider latency
in diverse ways. Therefore, some clarity is required on what
should constitute the latency metric. For example, consider an
end-user connected via a wired broadband connection - latency
should refer to the sum of the times for raising a request from
source (browser on device), for transporting the request over
the network (including the delays incurred on routers and on
different hops), for processing the request on the receiving
server, for sending the response back to the source, and for
taking an action on the source. The transport time from the
source to the server and back only accounts for the round-trip
communication latency. Often computational latencies are

1https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-impacting-infrastructure-operations-for-2020/
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ignored. When considering a mobile network, the round trip
latency between the source and the access network should also
be accounted for.

The Federal Communications Commission of the United
States (US) carried out a performance measurement study
of broadband services in the US. Ten major Internet Service
Providers (ISPs) and an additional nine organisations partici-
pated in the exercise2. The measurement servers were located
in thirteen cities across the US with multiple locations in each
city. The median round trip communication latencies observed
on fibre optic cables were between 10 ms to 27 ms to edge
locations.

Broadband connection latencies enable us to quantify what
delays will be incurred within an enclosed environment, such
as a home or office. Given that a vast number of users rely
on mobile devices and that machine-to-machine, vehicle-to-
vehicle, machine-to-everything and vehicle-to-everything will
need to rely on telecommunication infrastructure, it is worth-
while considering mobile network latencies. 4G, which is the
most available global mobile network model has observed
communication latencies of over 30 ms. In 2019, Opensignal
reported that only 13 countries had a communication latency
of between 30-40 ms which excluded North America and many
parts of Europe3. These reported latencies are access network
latencies and do not include the latency for reaching an edge
compute location via the mobile network or for actually per-
forming computations. With 5G, although a theoretical 1 ms
communication latency is envisioned, early deployments in the
US in 2019 had demonstrated nearly a 30 ms communication
latency for the access network. In the UK, the 5G deployments
in 2020 had a communication latency of at least 20 ms for the
access network.

The above communication latencies can indeed support
many interactive internet applications that are already in use
today. However, they will not be adequate to support (near)
real-time computing (sub millisecond), such as those required
for rapid responsiveness of autonomous cars or robots that
share spaces with humans. For these contexts, the overall
latency will need to be guaranteed. Therefore, it would not be
sufficient for any latency measuring exercise to merely high-
light the average of a distribution of observed communication
latencies without considering computation latencies and the
type of application. In addition, the the tail-end and outlier
latencies in a distribution may be substantially higher than
the average latency which also need to be accounted for.

At this point, the dataset employed by the research arti-
cles investigating cloud reachability is considered (5, 6). The
dataset employed is from RIPE Atlas, an Internet measurement
network that provides hardware probes for network measure-
ments (for example, ping) that is publicly available4. We note
that these measurements reflect only network communication
latencies and do not include computation latencies associated
with the execution of application code.

We analyzed the dataset and focused on the data for the
United States containing 3091 different probe locations. For
each location, there are measurements for up to 102 different
data centers. Only the closest data center for each probe

2https://www.fcc.gov/reports-research/reports/measuring-broadband-america/
measuring-fixed-broadband-tenth-report

3https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2019-05/the_
state_of_mobile_experience_may_2019_0.pdf

4https://doi.org/10.1145/3442381.3449854

as determined by the lowest average latency was considered.
Since 80% of the locations have less than 64 measurements per
data center, we focused on the remaining 650 locations that
have at least 100 measurements to their closest data center;
the average no. of measurements per probe is 2611.

Figure 1 shows the results of our analysis. Figure 1a shows
a box plot of the latency distributions sorted by increasing
average latency. For clarity, the plot only includes 1 out of ev-
ery 7 probes (the plot of the complete dataset shows a similar
pattern but is is very hard to read due to clutter). The top and
bottom of the box represent 25% and 75% latencies, and the
whiskers show the minimum and 99% latency. Measurements
outside of this range are shown as individual outlayers. Fig-
ure 1b shows the cumulative distribution for the proportion of
probes which experience median, 95%, 99%, and 99.9% latency
below a given threshold. For example, the figure shows that
25.4% of probe locations experience a median latency to their
closest data center of 10 milliseconds or less.

We observed that the majority of locations had a round-
trip communication latency of more than 10 milliseconds.
Moreover, even probe locations that experience low median
latency observe very substantial variations. For example, only
6.7% of the 650 locations were able to reach their closest data
center within 10 milliseconds 99.9% of the time. This rose to
18% of the locations when lowering to 95% of the time.

The current communication latencies observed to the near-
est cloud locations are undoubtedly an improvement over the
average of 80 ms that was observed to cloud locations when
edge computing was initially formulated as a concept (7). Over-
all latencies under 10 milliseconds (let alone sub-milliseconds)
cannot be guaranteed today on current public clouds for appli-
cations that require performance guarantees. Latency measure-
ment studies are required to better understand edge computing.
However, focusing on average latency (5, 6) does not paint a
correct or complete picture as it inherently hides significant
variations in network latency over time.

The above have led to new industry trends that will po-
tentially lead to the convergence of what is today known as
the cloud and edge. For example, cloud providers are em-
bracing edge locations for setting up data centers on the last
mile network (for example, Amazon Outpost) together with
dedicated hardware, such as the AZ1 neural edge processors
for the extreme edge to reduce communication latencies.

However, edge as a location is only one aspect of the la-
tency argument. If only communication latencies had to be
considered, then edge compute locations would need to be
placed every 60 miles for theoretically achieving a 1 ms round
trip communication latency using current fibre optic technolo-
gies (based on the speed of light travelling through a medium
with a refractive index of 1.5) between two endpoints ignor-
ing latencies in the access network, processing delays on the
hops, network congestion or computation latencies on servers.
Telecom providers are experimenting with hollow core fibre
optics that can transmit data at (near) speed of light to reduce
latencies5. The invasiveness and substantial increase in costs
of infrastructure may not be pragmatic for a global rollout
and that by reducing communication latencies alone will not
be sufficient for minimizing the overall latency.

There are a select few locations around the globe by virtue
of geographic location or proximity to traditional data cen-

5https://newsroom.bt.com/bt-kicks-off-trials-of-revolutionary-new-optical-fibre/
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(a) Boxplot of probe location latencies shorter in order of increasing average latency.
Whiskers show minimum and 99% latency.
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(b) CDF of latencies for probe locations.

Fig. 1. Latency to closest cloud datacenter for probe locations in the USA with at least 100 measurements.

ters that can achieve an average communication latency of
10 ms. Nonetheless, delivering low overall latency globally for
emerging and futuristic applications still remains a challenge
to be surmounted and a vision to be fulfilled. Transformative
advancements are still required both on the networking and
computing fronts to achieve this. Thus, latency continues to
be a first-class argument for edge computing research.

Bandwidth

Although an abundance of processing servers are available on
the cloud, the network bandwidth bottleneck of the wide-area
network (WAN) to the cloud has been an argument in favor
of edge computing (3). It was demonstrated that the network
bandwidth on the WAN is restrictive due to the number of
traversed hops ranging from 9 to 20 (8). When measured a
few years ago, the TCP bandwidth between two m3.xlarge
instances of Amazon EC2 in the same data center was 900
Mbps (9). However, when the WAN is involved, the bandwidth
to the same instance was 30 – 160 Mbps (8), which is far from
the peak performance. Furthermore, most cloud providers
throttle the bandwidth when the total data transfer reaches a
certain threshold. Therefore, a geographically distant cloud
is not adequate for emerging applications that require high
network throughput.

Emerging applications including AR/VR, remote-controlled
factories, and autonomous vehicles employ a wide range of
devices and sensors at the edge of the network and increasingly
generate and consume a large volume of data. Therefore, a high
network bandwidth is required for meeting Quality-of-Service
(QoS) objectives. Consider the example of autonomous vehi-
cles. The Automotive Edge Computing Consortium (AECC)
estimates that more than 30% of video data produced on the
vehicle will need to be offloaded. This is to increase safety
thresholds by processing offloaded data with external data for
augmenting awareness of the moving vehicle. The volume of
data that will need to be offloaded is expected to be between
400 GB to 5 TB per hour. If all the data is sent to the cloud,
the response time would be significantly increased owing to
the limited bandwidth. Therefore, exploiting the edge that

efficiently processes the data near the source is required for
such emerging applications.

Many devices and sensors will be connected to the edge
using the mobile network. The latest commercial 5G cellular
network implements the millimeter wave (mmWave) technol-
ogy, which theoretically offers bandwidth up to 20 Gbps for
download and 10 Gbps for upload utilizing higher frequencies
between 24 GHz and 53 GHz (10). A recent measurement
study (11) performed field tests of Verizon, Sprint, and T-
Mobile on 5G mmWave performance in three major U.S. cities.
While the 5G peak download speeds that were observed range
from 600 Mbps to 1.7 Gbps, the upload speeds were limited
to between 30 and 60 Mbps. Another measurement study of
commercial 5G in China (12) reported that the peak down-
load bandwidth was 1.2 Gbps and the peak upload speed was
218 Mbps. Because 5G has just begun commercialization, its
performance is still far from reaching the theoretical speed but
offers notably higher bandwidth than 4G LTE. 5G is expected
to achieve the target speed of 20 Gbps with the development
of advanced terminal chips.

The current peak download speed of 5G mmWave is accept-
able for many existing applications including video streaming
and gaming. For example, high resolution cameras in a sta-
dium can transmit a video stream directly to an edge server
without sending the data to the cloud. The edge server then
routes the stream to mobile devices in the same venue in order
to avoid a latency delay. As the bandwidth required for 8K
video streaming is 300 Mbps6, the current bandwidth of 5G
can sufficiently support this application scenario. An emerging
real-time streaming system such as volumetric videos, which
capture three-dimensional space, demands throughput at least
1.1 Gbps (13). The peak speed of current 5G can satisfy such
a requirement, and the advances in 5G will be able to support
more high quality volumetric videos in future.

The current upload speed of 5G can meet the bandwidth
requirements of non-bandwidth-hungry applications in edge
computing. For example, 4K panoramic video telephony does

6https://www.huawei.com/~/media/CORPORATE/PDF/whitepaper/
Big-Data-Video-Top-Ten-Most-Demanding-Videos-en
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not exceed the 5G upload capacity when sending all HD reso-
lution videos up to 5.7K whereas 4G cannot support 5.7K (14).
The uploaded video data can be processed at the edge in
order to reduce the data volume, which will be transferred
to users in different locations. This efficient data processing
can provide low latency communication without exploiting the
cloud. However, recent deep learning applications employed in
IoT devices face challenges when exploiting edge computing.
A massive amount of information exchanged between a user
device and the edge node presents a network bottleneck in edge
training or inference. More communication-efficient training
and inference systems are being explored (15).

The current upload and download bandwidths available
in 5G and to public clouds can satisfy the requirements of
many existing applications. However, bandwidth is still a
limiting factor that hinders the emergence of certain safety-
critical applications. Therefore, bandwidth continues to be an
argument that motivates edge computing research.

Proliferation

It is estimated that by 2025 more than 55 billion devices,
sensors and instruments will be connected7. This anticipated
increase will consequently expose a larger attack surface. One
key challenge is cybersecurity - detecting malicious users and
containing breaches.

Detecting malicious activity is usually a data-driven ap-
proach and using extremely centralized resources to monitor
are known to be challenging. Preceding versions of distributed
computing paradigms have taught us that centralized mon-
itoring is generally not scalable (16, 17). Therefore, more
distributed and hierarchical monitoring strategies are required
which can find home on the edge (18). In addition, intrusion
detection and prevention systems, such as those used in vehic-
ular ad-hoc networks are latency sensitive and the edge of the
network is considered to be an ideal location (19).

The edge appeals to providing more distributed locations
for monitoring and data aggregation thereby inherently provid-
ing containment zones. Recent years have seen an increasing
number of botnet and malware based attacks originating from
IoT devices. Edge computing offers the opportunity for local-
ized detection and isolation of such devices (20, 21). Network
segmentation for example is one approach that can be adopted
at the edge to contain the access of a potentially malicious
device beyond the edge.

Many existing edge applications only achieve a functionality
improvement by using the edge - they may meet satisfactory
performance thresholds even if what is known today as the
cloud is available to them. However, looking forward, as edge-
native workloads start to emerge, running services on the edge
will eventually become necessities for people, factories, cities,
and transportation that use them. Thus, even if networks
beyond the edge were to fail, the edge can independently
operate without any central control, thereby making our people
and infrastructure more resilient.

In relation to the device proliferation argument, edge com-
puting is likely to pave way for achieving scalable decentralized
management of security, enabling effective containment zones
to isolate malicious activities originating from devices, and
delivering network independence for more resilience.

7https://www.idc.com/getdoc.jsp?containerId=prAP46737220

Sustainability

Sustainability may be understood in terms of electricity con-
sumption, the amount of electricity to transmit data and the
consequent carbon footprint.

The arguments on sustainability in complete favor of edge
computing are not sufficiently well articulated and sometimes
also send a mixed message. For example, on one hand Na-
ture8 reported that it is anticipated by 2030 that nearly 21%
(other estimates say at least 8%) of the worlds electricity con-
sumption will be driven by increase in networks, requiring
nearly 5,000 terawatt hours (TWh) per year and increase in
data centers, requiring nearly 3,000 terawatt hours (TWh)
per year (22). The estimates presented assumed a year on
year increase in electricity requirements for data centers and
networks. The exponential growth reported was attributed to
expanding telecoms infrastructure and exponentially increas-
ing internet traffic to and from data centers generated by end
user devices/sensors and emerging applications.

On the other hand, the IEA reported that the global data
centre energy demand has remained largely flat for the last
ten years and data transmission networks have become more
energy efficient9. Data centers and networks indeed consume a
large amount of electricity, but whether edge computing with
existing technology can substantially shift this trend is not
abundantly clear.

Similarly, there have been numerous attempts to estimate
the kilowatt hour per gigabyte of data (KWh/GB) transferred
over the internet, but has resulted in values ranging across
different orders of magnitude (23). All of the above suggests
room for more large-scale measurement studies on further
articulating the sustainability arguments.

Nonetheless, it is commonly understood that there are
costs involved in sending data over the networks. The energy
required for transmitting data over the networks is at the
least directly proportional to the distance that data needs
to travel. With increasing data traffic it is only logical to
consider localized data processing to reduce the overall amount
of energy required by the networks. It was recently noted
that data flowing through the internet is a primary driver for
CO2 emissions; other sources include from the Radio Access
Network (RAN) and servers (24). By computing on the edge
in a 5G network it was noted that the CO2 footprint could be
reduced by up to 50%.

Sustainability is therefore an important argument to sup-
port edge computing research from an electricity consumption
and carbon footprint point-of-view, which are both major
global concerns. However, further insight from large-scale
measurements are required to make a more informed case.

Privacy and Sovereignty

Undoubtedly, data has become the fuel for the digital economy.
Social welfare and advancement now relies on protecting criti-
cal data. Creating a trusted environment for all stakeholders
(for example, public sector organizations, private organizations,
governments and individual citizens) is underpinned by data
privacy and sovereignty.

Although the cloud is a demonstrable business success
in the technology and economic landscape, more recently,

8https://www.nature.com/articles/d41586-018-06610-y
9https://www.iea.org/reports/data-centres-and-data-transmission-networks
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the capability growth in the cloud is pressed by the large-
scale IoT deployments and data-driven services, such as smart
cars10. One visible trend is the shift of connected devices from
mere data consumers towards data producers. For example,
YouTube users generate nearly 100 hours of video content and
Instagram users post over 2 million photos every minute (25).
This shift raises privacy concerns, specifically pertaining to
large-scale machine learning in the cloud over data that is
crowd-sourced from individual users that may contain private
information (26). As highlighted earlier, large-scale IoT also
increases the attack surface and thereby aggravates privacy
threats (27).

The edge is generally understood to meet this evident
privacy gap by providing the unique capability of enforcing
localized privacy control and establishing a trust proxy or
firewall (28). The opportunities for edge computing to com-
plement the cloud for addressing the data privacy challenge
has been highlighted (25).

As a compute resource offering layer between the data
source and distant clouds, By leveraging the resource-rich layer
offered between relatively weak devices that generate data and
distant clouds, the edge has been demonstrated in the context
of distributed machine learning (such as federated learning)
to achieve differential privacy for devices while meeting the
regulatory and legislative requirements of data sovereignty
such as the General Data Protection Regulation (GDPR) (29).
This development aligns with the demand for indigenous data
sovereignty in Canada, New Zealand, Australia and USA (30).
In relation to personal user data, a more secure and trusted
way of using them on the user edge has been demonstrated
through the ‘Data Box’ approach (31).

In relation to practical operation, the edge can better uti-
lize local contexts to strike a balance between privacy and
usability. Recent studies reveal the synergistic potential of
edge, advanced machine learning and privacy-enhancing mech-
anisms (32–36). Lightweight virtualization (37) has also made
it feasible for the edge to quickly adopt novel mechanisms for
data privacy and sovereignty (38).

The edge as an enabler for data privacy and sovereignty
is an argument that will be further developed as we aim to
transform the Internet into a more ethical system. Early
research on privacy and sovereignty enhanced by the edge
is encouraging. Therefore more collaborative efforts with
researchers from law, ethics and public policy, which are from
outside the immediate technical envelope of edge computing
are required to advance this front.

Conclusions

There are several arguments both technical and non-technical
that continue to motivate edge computing research and innova-
tion. The democratization of the future internet is yet another
argument in favor of the edge (39). The edge introduces new
stakeholders (for example, providers, applications and users),
enables the convergence of different technologies that have
traditionally operated in silos and takes monopoly away from
a select few global players and countries. As a part of this
endeavor, the European initiative on the federated data infras-
tructure for Europe (GAIA-X11) and the concept of the Global
Data Plane (40) recognize the edge as an essential building

10https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/
11https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.html

block for delivering open, transparent and trustworthy digital
infrastructure.

This article argues that the motivation for edge comput-
ing research has not diminished since it was first formulated.
Ongoing edge research and the wide range of edge-native and
edge-accelerated applications that are emerging are indica-
tions of the benefits of using the edge. Edge computing as
an enabler for advancing new frontiers in space-based systems
by reducing communication times and energy is one example
among many12 13. While the case for edge computing in pri-
vate networks and applications is clear, the value in a public
rollout will need to be more precisely calculated.
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