
Runtime Verification of Web

Service Interface Contracts

Sylvain Hallé, Tevfik Bultan, Graham Hughes, Muath Alkhalaf,
University of California, Santa Barbara

Roger Villemaire,Université du Québec à Montréal

Web applications are required to follow an interface contra ct that specifies their expected behaviour when
they communicate with a web service. Using the Amazon E-Comm erce Service as an example, we show how
we can automatically test an implementation for conformanc e as well as monitor at runtime that each partner
fulfils its part of the contract.

T
He termAsynchronous JavaScript and XML(Ajax)
refers to a collection of technologies used to de-
velop rich and interactive web applications. A typ-

ical Ajax client runs locally in the user’s web browser and
refreshes its interface on-the-fly in response to user in-
put. Popular Ajax applications, such as Google Maps and
Facebook, communicate in the background with a server:
entering information in the Facebook portal sends it to its
remote database; dragging Google’s map triggers the re-
trieval of new portions of the image from their server.

In many cases, the server’s functionality is made pub-
licly available as an instance of aweb serviceand can
be freely accessed by any third-party Ajax application.
However, this appealing modularity is also the source of
one major issue: how can one ensure the interaction be-
tween each application and each service proceeds as was
intended by their respective providers? Whether for spec-
ifying interoperability constraints, business policies or le-
gal guidelines, a good web service has to have a well de-
fined and enforceableinterface contract[1].

THE AMAZON E-COMMERCE SERVICE

Take the example of a popular suite of web services, the
Amazon Web Services (AWS). AWS provides a diverse
roster of services, among them the Amazon Associates
Web Service (also known as the Amazon E-Commerce
Service or “ECS”), a free service that exposes Amazon’s
product data with the goal of driving traffic back to Ama-

zon’s web site. This access is provided through a SOAP
interface specified with WSDL (sidebar). It lists 40 oper-
ations, almost all of which are differing ways of searching
Amazon’s product database.

We built an Ajax application using the AWS-ECS API,
and in particular a core of six operations.

• ItemSearch searches Amazon’s database for items
matching some keywords. It returns a list of products
that match the search criteria.

• CartCreate takes an ASIN —a unique identifier
for that item in Amazon’s database— and a posi-
tive integern and creates a new shopping cart that
represents a request forn copies of that item. The
cart’s contents is stored and managed by Amazon,
the SOAP operations refer to the cart by passing its
unique ID.

• CartGet returns the content of a given cart.

• CartAdd adds a new row to a given cart requesting
n copies of some ASIN.

• CartModify is used to change the quantity of some
item in a given cart (0 deletes it).

• CartClear empties the cart with given ID.

1 Computer

Sidebar: Defining a Web Service

Web services interact with each other by exchanging mes-
sages encoded using the eXtensible Markup Language
(XML). In its basic form, the web service architecture consists
of a simple RPC model where a client invokes operations
exported by a service provider using the Simple Object Ac-
cess Protocol (SOAP), a standard communication protocol for
transmitting XML messages. Each web service has to publish
its invocation interface, e.g., network address, ports, opera-
tions provided, and the expected XML message formats to
invoke the service, using the Web Services Description Lan-
guage (WSDL). The WSDL specification serves as a contract
between the client and the server that (in part) defines the
valid interactions.

Figure 1 (left) shows our own Ajax client, which serves
as a thinly veiled interface to the AWS-ECS methods, us-
ing XML messages sent through SOAP to invoke them. A
possible sequence of operations is shown on the right of
Figure 1.

THE AWS-ECS INTERFACE CONTRACT
Like any other web service, the AWS-ECS cannot be

invoked arbitrarily. When developing our client, we had
to peruse its WSDL specification, where the structure of
each XML message sent and received is defined. We had
to make sure that our client produced messages following
these conventions.

This, however, is not sufficient. In addition, we found
that the online public documentation gives other require-
ments, expressed in plain English, that WSDL is not de-
signed to cover.1

Data Constraints
We first found data constraints, i.e. limitations on the

structure and content of the messages sent to the service.
For example:

1. In the ItemLookup message, the element
MerchantID is optional, unless the element

1All constraints are extracted from the online documen-
tation for the AWS-ECS, http://docs.amazonwebservices.com/-
AWSEcommerceService/2007-01-17/

IdType has valueSKU, in which case it becomes
mandatory.

2. In theItemSearchmessage, the elementItemPage

only accepts integers between 1 and 400. The WSDL
only specifies it as a positive integer without giving
any bound.

Control-Flow Constraints
Although web services were originally intended to be

stateless, the AWS-ECS allows long-running transactions
whose state is carried through manipulations of the shop-
ping cart. Therefore, we found several restrictions on the
sequencein which operations are invoked:

3. Except forItemSearch and CartCreate, every
operation requires that a cart already exists, e.g. that
they follow aCartCreate operation.

4. CartModify can only be called after an item
identifier has been retrieved fromCartCreate or
CartAdd.

Data-aware Control Flow Constraints
Worse yet, the AWS-ECS imposes control flow con-

straints that are alsodata-aware, i.e. the authorized se-
quence of messages depends on relationships between
values of multiple messages. For example:

5. OneCartModify after another on the same item
will fail if the first one deleted the item.

6. Even though there can only be one row for each
ASIN, CartModify only takes the item identifier re-
turned by CartAdd or CartCreate.

CONTRACT VIOLATIONS
Alas, our Ajax client, typical of many others, does not

take care of most of these constraints. It is purposefully
“faulty” by allowing any ECS operation to be invoked in
any order, and fails to automatically refresh the contents
of a cart when modifications are made to it. Therefore,
nothing prevents a user from using the interface to send
messages violating theseinterface specifications. For ex-
ample, one can see that the sequence of messages in Fig-
ure 1 is illegal: first, aCartModify message is sent be-
fore aCartCreate, and second, theCartAdd operation
attempts to add an item already present in the cart. Note
that each individual message fulfils the description given
in the WSDL of the AWS-ECS, as we had made sure of.
The violation rather comes from the relationship between
these messages: their respective values, and their position
in the sequence.

XXXX 2010 2

<CartModify>
<CartId>999</CartId>
<CartItems>
<Item>
<ItemId>1234</ItemId>
<Quantity>1</Quantity>
</Item>
</CartItems>
</CartModify>

<CartAdd>
<CartId>999</CartId>
<CartItems>
<Item>

<Quantity>2</Quantity>
</Item>
</CartItems>
</CartAdd>

<ASIN>B0005V1B2</ASIN>

<CartCreate>
<CartItems>
<Item>
<ASIN>B0005V1B2</ASIN>
<Quantity>1</Quantity>
</Item>
</CartItems>
</CartCreate>

1

2

3

Amazon
ECS

Figure 1: An Ajax client and a sequence of three XML messages it can send to the AWS-ECS. Some message
elements and the responses from the AWS-ECS have been omitted.

If a message, or sequence of messages violates the in-
terface contract with a web service, several things can
happen. The server can interrupt the communication,
reply with an error message, or more insidiously, con-
tinue the conversation without warning and eventually
send nonsensical or corrupt data. Moreover, there exists
the possibility that the server’s implementation does not
match its documentation.

Currently, the widely used remedy is for the application
developer to read through the documentation, and incor-
porate appropriate constraints into the control flow of the
application, so that erroneous messages or message se-
quences are intercepted or simply cannot be produced —
this should indeed be the case for any robust application.
Conformance to the contract cannot be guaranteed, but
can be observed through testing, using for example Ya-
hoo’s YUI Test Utility.2 In any case, deciding what and
how to test still has to be done manually, and no insurance
can be given on the coverage of the tests with respect to
the specification.

We chose to follow an alternate, or rather complemen-
tary approach, consisting of building a well-defined de-
scription of the interaction between the Ajax application
and the web service, expressed in some formal language.
This modelof the expected behaviour then lends itself to
several analysis techniques; for example, when both the
client and the server belong to the same organization, a
first possibility is to perform static analysis. The client-
server pair can be studied as a single system whose pos-
sible execution traces are systematically searched for vi-
olations of the interface contract —this is calledmodel
checking[2]. Since the model is formal, the analysis is

2http://developer.yahoo.com/yui/yuitest

often automated and does not require user intervention.
Yet, in many cases (as in ours), the application devel-

oper is not part of the organization providing the web ser-
vice to be accessed. Therefore, the service appears as
a “black box”, a component opaque to model checking.
Formal analysis is still possible, but at runtime, using the
real implementation of the web service. This is achieved
with the help of aprotocol controller, which possesses
a formal model of the interface contract and updates its
model according to the runtime behaviour of the client and
the service (Figure 2(a)), as their conversation unfolds.

RUNTIME SERVER TESTING

To discover whether we correctly understand the ser-
vice implementation, and also to check that the web ser-
vice actually fulfils the constraints mentioned in its own
documentation, a first solution is to performruntime test-
ing. In this situation, a protocol controller uses the in-
terface specification to impersonate one of the peers and
communicate with the other. When the controller stands
for the client side of the communication, it is called a
driver (Figure 2(b)). A driver generates a sequence of in-
vocations that a possible contract-compliant client could
send to the service. This sequence is fed to the actual ser-
vice instance, and the response from the service is then
checked for compliance with the contract. If the driver
does not receive what its contract expects, it signals a
mismatch between this formal contract (which represents
what we believe is the appropriate behaviour) and the ac-
tual server implementation.

A Runtime Model of the AWS-ECS

We implemented this idea by automatically generat-
ing a web service driver, using interface grammars as the

3 Computer

Ajax application

Protocol controller

Web service

Runtime state
+ contract

(a) A protocol controller possesses a formal model of
the interface contract and updates its model according
to the runtime behaviour of the client and the service.

Ajax application Web serviceX

(b) Protocol controller acting as a driver, imperson-
ating the client to test the server.

Ajax
application

Web service

(c) Protocol controller acting as a runtime
monitor on the client side.

Figure 2: Various uses of a protocol controller at runtime.

Sidebar: Interface Grammars

An interface grammar is expressed as a series of productions
of the form a(v1, . . . ,vn) → A. Here v1, . . . ,vn correspond to
the parameters of the non-terminal a and A is the right hand
side of the production which may contain the following:

• nonterminals, which we express as nt(v1, . . . ,vn);

• semantic predicates that must evaluate to true for the
production to be available, which we express as p;

• semantic actions that are executed during the parse,
which we express as 〈〈a〉〉;

• outgoing method calls, which we express as
!m(v1, . . . ,vn);

• returns from outgoing method calls, which we express
as ¡m(v1, . . . ,vn).

As with any grammar, the successive application of deriva-
tion rules to non-terminal symbols can be used to generate
sentences or to parse an existing sentence for correctness.
In the present case, these sentences represent sequences of
web service operations.

specification language (sidebar). Compared to many ex-
isting specification languages for web services, the nov-
elty of these grammars is their ability to model complex
behaviours mixing control flowanddata. For the needs of
the presentation, the interface grammar shown in Figure
3 represents the client interface for a simplified version of
the AWS-ECS service (our experiments were performed
on a more detailed specification).

A compiler takes this interface grammar and automati-
cally generates Java code for a driver —that is, a language
generator that produces SOAP request sequences based on
the grammar [3]. The sentence generating algorithm is ba-
sically the same, whatever the grammar: it begins with the
start symbol and generates a derivation by applying a ran-
domly chosen production rule to some non-terminal sym-
bol, until no such symbol remains. At the same time as the
symbols are produced, the corresponding XML messages
are sent to the web service.

Results
To test the AWS-ECS, we ran the generator until it

produced 100 sentences, which were executed on the ac-
tual service implementation as they were built. Testing
each sentence took an average of 3 seconds. All the non-
terminal symbols in the grammar were covered after gen-
erating an average of 41 sentences, or roughly 2 minutes
of testing. The average number of steps in derivations
generated by the random generator was 17.5, and the av-
erage number of SOAP requests that were generated per
derivation was 3.2.

Performing these server verification experiments were
useful, as they helped us discover two errors; the first is a
mismatch between the server implementation and its doc-
umentation, while the second results from our misinter-
pretation of the documentation.

• Error 1: We found that it is illegal to send aCartAdd
for an item’s ASIN which is already in the cart. In-
stead of creating two lines with distinct item IDs, or
updating the existing line by adding its quantity to
the current request, the AWS-ECS replies with an er-
ror message. This restriction is not explicitly stated
in the AWS-ECS API specification.

• Error 2: Our driver checks that the contents of the
cart returned by Amazon are precisely those we ex-
pect to see. We thought that an empty cart would
have a non nullCartItems element that contains an
array of zero length. Instead, the returned cart has no
CartItems element at all. This issue is not explic-
itly stated in the API documentation either, although
it is present in the WSDL specification.

XXXX 2010 4

start → search(asin);cart(asin)

| ε
search(asin) → !I TEMSEARCH(); ¡ITEMSEARCH(asin);search′(asin)

search′(asin) → !I TEMSEARCH(); ¡ITEMSEARCH(asin);search′(asin)

| ε
cart(asin) → !CARTCREATE(asin); ¡CARTCREATE(cart, item);permute(cart, item);clear(cart)

| ε
permute(cart, item) → !CARTGET(cart); ¡CARTGET(cart);permute(cart, item)

| 〈〈CHOOSEn > 0〉〉; !CARTMODIFY(cart, item,n); ¡CARTMODIFY(cart);permute(cart, item)

| !CARTMODIFY(cart, item,0); ¡CARTMODIFY(cart)

| search(asin);permute′(cart,asin);permute(cart, item)

| ε
permute′(cart,asin) → Jasin 6∈ ran(cart)K; !CARTADD(cart,asin); ¡CARTADD(cart, item);permute(cart, item)

| ε
clear(cart) → !CARTCLEAR(cart); ¡CARTCLEAR(cart);clear(cart)

| !CARTGET(cart); ¡CARTGET(cart);clear(cart)

| search(asin);clear′(cart,asin)

| ε
clear′(cart,asin) → Jasin 6∈ ran(cart)K; !CARTADD(cart,asin); ¡CARTADD(cart, item);

permute(cart, item);clear(cart)

| ε

Figure 3: Interface grammar for an AWS-ECS client

RUNTIME MONITORING OF AJAX APPLICATIONS

Our interface driver is able to detect contract non con-
formance of the service through the generation of runtime
test sequences, when the target service is known in ad-
vance. However, in service-oriented architectures, part-
ners can be discovered dynamically: in such a situation,
neither static analysis nor runtime testing can be done in
advance. In any case, it might be desirable that some form
of “safety net” be still present during the normal execution
of the client, for various reasons. For example, monitoring
can increase trust in an electronic marketplace by provid-
ing the consumer of a service the ability to check by itself
the transaction that takes place [4]. As a second step to
our work, we wanted to dynamically detect any contract
violations from either side as they happen.

In this situation, the actual Ajax application communi-
cates with the actual service. The protocol controller acts
as aruntime monitorand silently eavesdrops the sequence
of exchanged messages between the application and the
service. It acts only when a contract violation is detected,
by raising an error and/or blocking the communication.

The BeepBeep Runtime Monitor

The monitor can be hosted inside the client (Figure
2(c)), inside the server, or in a module independent of
each. Contrarily to existing approaches [5, 6], we chose
to implement a monitor on the client side, believing that
erroneous behaviour is more likely to come from untested
clients than from a production server. This way, erroneous
messages are trapped at the source, saving bandwidth and
CPU time on the server. To this end, we developed Beep-
Beep, a lightweight runtime monitor for Ajax web appli-
cations.3.

BeepBeep’s architecture has been designed to be min-
imally invasive. A standard Ajax application communi-
cates with a web service by sending and receiving mes-
sages through theXMLHttpRequest object provided by
the local browser. BeepBeep wraps around this ob-
ject through a JavaScript file providing a class called
XMLHttpRequestBB. It behaves exactly like the original,
with the exception that incoming and outgoing messages,
before being actually sent (or returned), are analyzed and
possibly blocked if violations are found. This follows a

3BeepBeep and its source code are available for download under a
free software license: http://beepbeep.sourceforge.net/

5 Computer

principle already used to prevent script injection attacks
[7], although here no modification to the browser is re-
quired. Rather, a small and invisible Java applet called the
BeepBeepMonitor is responsible for actually analyzing
the incoming and outgoing messages with respect to the
interface contract, and signalling eventual errors back to
the JavaScript code on-the-fly, following an algorithm we
devised [8].

To add BeepBeep to our (or any existing) Ajax appli-
cation, the JavaScript file and Java applet (less than 50 kb
in total) are copied to an arbitrary location on the applica-
tion’s host server. The only code instrumentation required
is to include BeepBeep by adding a single line of code
in the<head> portion of our application’s HTML page.
From now on, any call toXMLHttpRequest need simply
to be replaced by a call toXMLHttpRequestBB in order
for BeepBeep to intercept and monitor the conversation.

While an interface grammar was well suited for our
sentence generating driver, its monolithic nature makes it
hard to identify what element of the contract becomes vi-
olated when an error occurs. For the needs of runtime
monitoring, BeepBeep is fed with a list of independent
constraintswhich, taken together, form the contract spec-
ification to enforce. These constraints are expressed in
a language called LTL-FO+, an extension of the well-
known Linear Temporal Logic (LTL) to accommodate
first-order quantification over message elements and val-
ues of a global system clock (sidebar). Each constraint
can be violated (or fulfilled) independently of the others,
making it easier to display informative error messages to
the user. Figure 4 shows a contract file for BeepBeep con-
taining three of AWS-ECS’s interface constraints given
as LTL-FO+ expressions. This contract is located on
the server side in a file separate from the monitor itself.
Changing the contract can be done dynamically without
making changes to the clients or the monitor itself. This is
in contrast with [9, 10], which require the compilation of
a contract into executable Java code —an operation which
must be repeated whenever the contract is changed. This
requirement is ill-suited to the highly volatile nature of
runtime web service interactions.

Results
We tested BeepBeep on our Ajax client for the AWS-

ECS. As we now know, the client enables a user to per-
form a wide range of contract violations: get a cart be-
fore creating a cart, add or remove the same item twice;
in total we provided BeepBeep with 11 such possible vi-
olations to watch.4 By using the client and producing
non-compliant sequences of operations for all 11 prop-

4The demo is available on BeepBeep’s website:
http://beepbeep.sourceforge.net/examples/amazon-ecs.

Sidebar: LTL-FO +

LTL-FO+ is a logic on sequences of XML messages. It pro-
vides all the familiar Boolean connectives: & ("and"), ‖ ("or"),
! ("not"), → ("if then"); they can be used to combine expres-
sions as usual. Data inside a message can be accessed us-
ing first-order quantifiers, and sequences of messages are
constrained using the following operators:

• [x∈ π] means "for every x in π". Here, x is a variable,
and π is a path expression used to fetch possible values
for x. For example, if ϕ is a formula where x appears,
then [x ∈ /tag1/tag2] : ϕ means: every value at the
end of /tag1/tag2 satisfies ϕ. Similarly, 〈x ∈ π〉 means
“some x in π”.

• X means “in the next message”. For example, if ϕ is
a formula, X ϕ says that ϕ will be true in the next mes-
sage. Similarly, G means “globally” (for all messages)
and F means “eventually” (for at least one message in
the future).

• U means “until”. If ϕ and ψ are formulæ, writing ϕ U ψ
says that ψ will be true eventually, and in the meantime,
ϕ is true for every message until ψ becomes true.

% All ItemLookup messages must have a MerchantID

element if their IdType is "SKU"

; G (([i /ItemLookup/IdType] ((i) = (SKU))) ->

(<m /ItemLookup/MerchantId> (TRUE)))

% No CartModify can appear once a CartClear has

been issued

; G ((<i /CartClear> (TRUE)) ->

(G (!(<j /CartModify> (TRUE)))))

% It is illegal to add an ASIN to a cart that

already has a row for that ASIN

; G ([i /CartAdd/List/ASIN] (X (G

([j /CartAdd/List/ASIN] ((i) = (j))))))
(a)

? X
||

||

j

i

||

i

c

c

c

c c

||

i
i

c c

(b)

Figure 4: (a) A sample BeepBeep contract specification.
Each constraint, expressed in LTL-FO+, is preceded by
a caption that is displayed by the application when it be-
comes violated. (b) A similar set of constraints, expressed
graphically in a notation called DecSerFlow.

XXXX 2010 6

0
0 20 40 60 80 100 120 140 160

2

4

14

6

8

10

12

Trace length

T
im

e
(m

s)

Figure 5: Monitoring time per message for various trace
lengths, with data domains of 25 (blue) and 200 (orange)
elements.

erties, we observed that BeepBeep caught all of these vi-
olations instantly, as they were produced, by popping up
an alert message and preventing the faulty messages from
reaching Amazon. The monitor works in a bidirectional
fashion and also looks for specification mismatches from
the server side. Hence, it correctly diagnosed Error 2,
found earlier by our runtime tester, by warning the user
that empty carts did not contain aCartItem container.

To measure the performance overhead induced by the
addition of a runtime monitor, we programmed the client
to generate 100 random message traces of length ranging
from 5 to 200 messages. For half of these traces, the re-
quests were created from a pool of 25 randomly selected
items; for the other half, the requests were created from a
pool of 200 items. Each of these traces was then “played
back” to the AWS-ECS, as if a real user were using the
interface. For each of these traces, we measured the total
CPU time spent for the execution of the BeepBeepMoni-
tor Java applet, and plotted the results in Figure 5.

The time required to process a message to (or from) the
AWS-ECS remains well under 20 milliseconds, taking in
average 8 ms, a figure that was not significantly modified
by increasing the pool of possible items in the requests
by a factor 8. The length of the transaction (i.e. the total
number of messages) has little effect on the monitor’s per-
formance. This added roughly 3% to the total round-trip
time of a request-response to Amazon. Moreover, these
times were computed on a low-end EeePC netbook run-
ning at 600 MHz.

WHO SHOULD WRITE THE
CONTRACTS?

While our experiments at testing and monitoring inter-
face contracts were successful, to this day theextraction
of such contracts remains mostly a manual task. More-
over, the question remains ofwho should provide these

contracts andwherethey should be obtained from. The
current state of our research does not provide definitive
solutions to these issues. However, we can mention ongo-
ing work on these topics pointing to promising solutions.

Alternative Specification Languages

Interface grammars and temporal logic are appropri-
ate representations for the automated processing of inter-
face contracts. However, finite state machines, regular ex-
pressions and UML activity diagrams are all appropriate
(and, to some extent, equivalent) representations of inter-
face contracts. Most of them can be easily translated into
equivalent grammars or temporal logic expressions.

Moreover, in most situations, interface contracts can be
expressed by combining a small set of predefined tem-
plates orpatterns. An example is the DecSerFlow lan-
guage [11], which uses a graphical notation to express
simple sequential relationships. Figure 4(b) shows a
screenshot of a prototype tool we are currently develop-
ing, where the AWS-ECS contract, input in DecSerFlow
notation, is internally converted into LTL-FO+ and dis-
played graphically to the user. Each box depicts a specific
message. An arrow A→B indicates that A must occur be-
fore B; a barred arrow rather indicates that once A occurs,
B cannot occur. The top-left arrow therefore expresses
that once a cartc is created with an itemi, one can no
longer add that same itemi to that same cartc.

Other solutions focus on extracting these constraints
automatically, either by analyzing the service’s source
code [12], or by using machine learning techniques on
sample execution traces [13].

Providing the Contract

Developers are already accustomed to the practice of
defining and providing an interface contract for the web
services they create: after all, the WSDL document that
accompanies a serviceis an interface contract. However,
as we pointed out earlier, WSDL covers only part of the
requirements for a successful interaction with a service;
in particular, it lacks a formal specification of allowed se-
quences of messages and related constraints on data pa-
rameters.

Eventually, service developers could cultivate the habit
of documenting such constraints in the same way WSDL
message definitions currently are, and could warn poten-
tial users of their presence by storing them in a machine-
readable form at a similar URI. Message Exchange Pat-
terns, introduced in WSDL 2.0, represent a step in that di-
rection, although these patterns can include at most two
messages and do not seem sufficient for long-running
transactions such as those we studied in the AWS-ECS.

7 Computer

I
N retrospect, our experiments with the Amazon E-
Commerce Service (AWS-ECS) showed us the ad-
vantages of using a model-based approach for the

runtime testing and monitoring of web applications. Once
a formal model of the runtime behaviour of a web ser-
vice is created, we can perform a variety of analysis tasks
without user intervention.

In a first step, we can verify our understanding of the
documentation by automatically producing test sequences
that are run on the actual implementation of the web ser-
vice. Then, our runtime tool BeepBeep is able to seam-
lessly and easily enforce interface contracts on the client
side, warning the user of violations and preventing erro-
neous messages from reaching their destination.

Doing so with the AWS-ECS enabled us to: 1) auto-
matically generate test sequences and detect two devia-
tions of their service implementation with respect to the
online documentation provided, in less than three minutes
of testing; 2) provide a framework that allows the runtime
monitoring of both client and server contract constraints
with minimal modification to an existing Ajax applica-
tion’s code, with an associated overhead of roughly 10
milliseconds for each incoming or outgoing message. The
tools we developed are generic and our approach can be
used on any other client or service.

References
[1] Greg Meredith and Steve Bjorg. Contracts and types.Commun.

ACM, 46(10):41–47, 2003.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.Model
Checking. MIT Press, 2000. ISBN 0-262-03270-8. 330 pp.

[3] Graham Hughes, Tevfik Bultan, and Muath Alkhalaf. Clientand
server verification for web services using interface grammars. In
Tevfik Bultan and Tao Xie, editors,TAV-WEB, pages 40–46. ACM,
2008. ISBN 978-1-60558-053-1.

[4] William N. Robinson. Monitoring web service requirements. In
RE, pages 65–74. IEEE Computer Society, 2003. ISBN 0-7695-
1980-6.

[5] Khaled Mahbub and George Spanoudakis. Run-time monitoring
of requirements for systems composed of web-services: Initial im-
plementation and evaluation experience. InICWS, pages 257–265.
IEEE Computer Society, 2005. ISBN 0-7695-2409-5.

[6] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Train-
otti. Run-time monitoring of instances and classes of web service
compositions. InICWS, pages 63–71. IEEE Computer Society,
2006. ISBN 0-7695-2669-1.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script
injection attacks with browser-enforced embedded policies. In
Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider,
and Prashant J. Shenoy, editors,WWW, pages 601–610. ACM,
2007. ISBN 978-1-59593-654-7.

[8] Sylvain Hallé and Roger Villemaire. Runtime monitoringof
message-based workflows with data. InEDOC, pages 63–72. IEEE
Computer Society, 2008.

[9] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini.
Runtime verification of interactions: From MSCs to aspects.In
Oleg Sokolsky and Serdar Tasiran, editors,RV, volume 4839 of
Lecture Notes in Computer Science, pages 63–74. Springer, 2007.
ISBN 978-3-540-77394-8.

[10] Grigore Rosu, Feng Chen, and Thomas Ball. Synthesizingmoni-
tors for safety properties: This time with calls and returns. In Mar-
tin Leucker, editor,RV, volume 5289 ofLecture Notes in Computer
Science, pages 51–68. Springer, 2008. ISBN 978-3-540-89246-5.

[11] Wil M.P. van der Aalst and Maja Pesic. DecSerFlow: Towards a
truly declarative service flow language. In Mario Bravetti,Manuel
Núñez, and Gianluigi Zavattaro, editors,WS-FM, volume 4184 of
Lecture Notes in Computer Science, pages 1–23. Springer, 2006.
ISBN 3-540-38862-1.

[12] William G.J. Halfond and Alessandro Orso. Improving test
case generation for web applications using automated interface
discovery. In Ivica Crnkovic and Antonia Bertolino, editors,
ESEC/SIGSOFT FSE, pages 145–154. ACM, 2007. ISBN 978-
1-59593-811-4.

[13] Alex Groce, Klaus Havelund, and Margaret Smith. Let’s look at
the logs: Low-impact runtime verification. InCOMPASS, 2009.

Sylvain Hallé is a postdoctoral researcher at Univer-
sity of California, Santa Barbara. He received a PhD in
computer science from Université du Québec à Montréal.
Contact him at shalle@acm.org.

Tevfik Bultan is a professor of computer science at Uni-
versity of California, Santa Barbara. He received a PhD
in computer science from the University of Maryland,
College Park. Contact him at bultan@cs.ucsb.edu.

Muath Alkhalaf is a PhD student in computer science at
University of California, Santa Barbara. Contact him at
muath@cs.ucsb.edu.

Graham Hughes received a PhD in computer science
from the University of California, Santa Barbara. Con-
tact him at graham@cs.ucsb.edu.

Roger Villemaire is a professor of computer science at
Université du Québec à Montréal. He received a PhD in
mathematics from University of Tübingen. Contact him at
villemaire.roger@uqam.ca.

XXXX 2010 8

