Runtime Verification of Web
Service Interface Contracts

Sylvain Hallé, Tevfik Bultan, Graham Hughes, Muath Alkhalaf

University of California, Santa Barbara

Roger Villemaireyniversité du Québec & Montréal

Web applications are required to follow an interface contra ct that specifies their expected behaviour when
they communicate with a web service. Using the Amazon E-Comm erce Service as an example, we show how
we can automatically test an implementation for conformanc e as well as monitor at runtime that each partner
fulfils its part of the contract.

refers to a collection of technologies used to d@terface specified with WSDL (sidebar). It lists 40 oper-
velop rich and interactive web applications. A typations, almost all of which are differing ways of searching
ical Ajax client runs locally in the user's web browser andmazon’s product database.
refreshes its interface on-the-fly in response to user in4We built an Ajax application using the AWS-ECS API,
put. Popular Ajax applications, such as Google Maps aadd in particular a core of six operations.
Facebook, communicate in the background with a server:
entering information in the Facebook portal sendsitto itSe TtemSearch searches Amazon'’s database for items

remote database; dragging Google’'s map triggers the re- matching some keywords. It returns a list of products
trieval of new portions of the image from their server. that match the search criteria.

In many cases, the server’s functionality is made pub-
licly available as an instance ofwseb serviceand can e CartCreate takes an ASIN —a unique identifier
be freely accessed by any third-party Ajax application. for that item in Amazon’s database— and a posi-
However, this appealing modularity is also the source of tive integern and creates a new shopping cart that
one major issue: how can one ensure the interaction be- represents a request farcopies of that item. The
tween each application and each service proceeds as was cart’s contents is stored and managed by Amazon,
intended by their respective providers? Whether for spec- the SOAP operations refer to the cart by passing its

Te termAsynchronous JavaScript and XMAjax) zon’s web site. This access is provided through a SOAP

ifying interoperability constraints, business policiedes unique ID.

gal guidelines, a good web service has to have a well de-

fined and enforceabiaterface contracfl]. e CartGet returns the content of a given cart.

THE AMAZON E-COMMERCE SERVICE e CartAdd adds a new row to a given cart requesting

Take the example of a popular suite of web services, the n copies of some ASIN.
Amazon Web Services (AWS). AWS provides a diverse
roster of services, among them the Amazon Associates CartModify is used to change the quantity of some
Web Service (also known as the Amazon E-Commerce item in a given cart (0 deletes it).
Service or “ECS”), a free service that exposes Amazon’s
product data with the goal of driving traffic back to Ama- e CartClear empties the cart with given ID.

Sidebar: Defining a Web Service IdType has valueSKU, in which case it becomes

Web services interact with each other by exchanging mes- mandatory'

sages encoded using the eXtensible Markup Language
(XML). In its basic form, the web service architecture consists
of a simple RPC model where a client invokes operations
exported by a service provider using the Simple Object Ac-

2. IntheItemSearch message, the elemehtemPage
only accepts integers between 1 and 400. The WSDL
only specifies it as a positive integer without giving

cess Protocol (SOAP), a standard communication protocol for any bound.

transmitting XML messages. Each web service has to publish

its invocation interface, e.g., network address, ports, opera- | Control-Flow Constraints

tions provided, and the expected XML message formats to Although web services were originally intended to be

invoke the service, using the Web Services Description Lan- stateless, the AWS-ECS allows long-running transactions
guage (WSDL). The WSDL specification serves as a contract | \yhose state is carried through manipulations of the shop-
between the client and the server that (in part) defines the | ning cart, Therefore, we found several restrictions on the

valid interactions. sequencén which operations are invoked:
WSDL specification lists
available operations,

SO arguments and return types 3. Except forItemSearch and CartCreate, every
;A}ffgaggg'g,%ssages using XML Schema operation requires that a cart already exists, e.g. that
4 .
\\ o they follow aCartCreate operation.
WSDL , .
ﬁgg‘u"est 4. CartModify can only be called after an item
Web Service > Web Service identifier has been retrieved fro@artCreate or
Requester | Provider
(Client) SOAP (Server) CartAdd.
Response

Data-aware Control Flow Constraints

Worse yet, the AWS-ECS imposes control flow con-

Figure 1 (left) shows our own Ajax client, which SerVestraints that are alsdata-aware i.e. the authorized se-
. . . ! uence of messages depends on relationships between
as a thinly veiled interface to the AWS-ECS methods, L@ g P P

ing XML messages sent through SOAP to invoke them. A@llues of multiple messages. For example:

ppssible sequence of operations is shown on the right &f e ca rtModify after another on the same item
Figure 1. will fail if the first one deleted the item.
THE AWS-ECS INTERFACE CONTRACT

Like any other web service, the AWS-ECS cannot be6'
invoked arbitrarily. When developing our client, we had
to peruse its WSDL specification, where the structure of
each XML message sent and received is defined. We lEaCSjI\ITRACT VIOLATIONS

to make sure that our client produced messages followin . . .
. P 9 gAIas, our Ajax client, typical of many others, does not
these conventions.

. i - . take care of most of these constraints. It is purposefully

This, however, is not sufficient. In addition, we foun N
: “faulty” by allowing any ECS operation to be invoked in
that the online public documentation gives other require- ; .
.) . : any order, and fails to automatically refresh the contents
ments, expressed in plain English, that WSDL is not de; e .
. of a cart when modifications are made to it. Therefore,
signed to covet. . .)
nothing prevents a user from using the interface to send
Data Constraints messages violating theggerface specificationg~or ex-

We first found data constraints, i.e. limitations on themple, one can see that the sequence of messages in Fig-
structure and content of the messages sent to the service.1 is illegal: first, &artModify message is sent be-
For example: fore aCartCreate, and second, théartAdd operation

attempts to add an item already present in the cart. Note

1. In the TItemLookup message, the elementhat each individual message fulfils the description given

MerchantID is optional, unless the elemeninthe WSDL of the AWS-ECS, as we had made sure of.
1 . . The violation rather comes from the relationship between
All constraints are extracted from the online documens- L.
tation for the AWS-ECS, http//docs.amazonwebservicesic (N€S€ messages: their respective values, and their positio

AWSEcommerceService/2007-01-17/ in the sequence.

Even though there can only be one row for each
ASIN, CartModify only takes the item identifier re-
turned by CartAdd or CartCreate.

XXXX 2010

<CartMod1i fy>
<CartId>999</Cartid>
<CartItems>

) Amazon ECS Demo Ajax Client - Mozilla Firefox

‘Amazon ECS Demo Ajax Client <Item>
= 1 — <ItemId>1234</ItemId>
Create cart Getcart Clearcart Searchitem <Quantity>1</Quantity>
</Item>
</CartItems>
~<ny @ </CartModify>
— T <CartCreate>
CartItems:
e 2 <ASIN>$0005VIBZ</A§IN>
Camel The Snow Goose Polygram UK BOODOSY 162 -I% % <7(I2ggrrv]|§1 ty>1l</Quantity> >
CartIt
Camel The Snow Goose Polygram Intl Bo0000SSOE 4 <;éa?;creg’gzz
Camel Snow Goose Phantom Sound & Vision BOOOBRISXG | Add item to cart <CartAdds
<Cart1id>999</cartIid>
Camel The Snow Goose London BOOOLYK1AY -@ % <CartItems>
<Item>
i — <ASIN>B0005V1B2</ASIN>
Snow Goose BOODAZEPEC '& % i 3 <Quantity>2</Quantity>
e i </Item>
javascriptcartAddA=in(B000005508", 1); 1%/ </CartItems>
</CartAdd>

Figure 1: An Ajax client and a sequence of three XML messages it can send to the AWS-ECS. Some message
elements and the responses from the AWS-ECS have been omitted.

If a message, or sequence of messages violates theoften automated and does not require user intervention.
terface contract with a web service, several things canYet, in many cases (as in ours), the application devel-
happen. The server can interrupt the communicati@per is not part of the organization providing the web ser-
reply with an error message, or more insidiously, conice to be accessed. Therefore, the service appears as
tinue the conversation without warning and eventually“black box”, a component opaque to model checking.
send nonsensical or corrupt data. Moreover, there exiStgmal analysis is still possible, but at runtime, using the
the possibility that the server’'s implementation does nefal implementation of the web service. This is achieved
match its documentation. with the help of aprotocol controller which possesses

Currently, the widely used remedy is for the applicaticen formal model of the interface contract and updates its
developer to read through the documentation, and incoredel according to the runtime behaviour of the client and
porate appropriate constraints into the control flow of thiee service (Figure 2(a)), as their conversation unfolds.
application, so that erroneous messages or message se-
guences are intercepted or simply cannot be producedQQNT”\/IE SERVER TESTING
this should indeed be the case for any robust applicationTo discover whether we correctly understand the ser-
Conformance to the contract cannot be guaranteed, Wige implementation, and also to check that the web ser-
can be observed through testing, using for example Ydce actually fulfils the constraints mentioned in its own
hoo’s YUI Test Utility? In any case, deciding what andlocumentation, a first solution is to perforomtime test-
how to test still has to be done manually, and no insurariBg. In this situation, a protocol controller uses the in-
can be given on the coverage of the tests with respectagface specification to impersonate one of the peers and
the specification. communicate with the other. When the controller stands

We chose to follow an alternate, or rather complemel@r the client side of the communication, it is called a
tary approach, consisting of building a well-defined délriver (Figure 2(b)). A driver generates a sequence of in-
scription of the interaction between the Ajax applicatioypcations that a possible contract-compliant client could
and the web service, expressed in some formal languagfild to the service. This sequence is fed to the actual ser-
This modelof the expected behaviour then lends itself t¢§ce instance, and the response from the service is then
several ana|ysis techniques; for examp|e’ when both Q@Cked for Compliance with the contract. If the driver
client and the server belong to the same organizationd@es not receive what its contract expects, it signals a
first possibility is to perform static analysis. The clienthismatch between this formal contract (which represents
server pair can be studied as a single system whose p#3at we believe is the appropriate behaviour) and the ac-
sible execution traces are systematically searched for #4al server implementation.
olations of the interface contract —this is calletbdel

checking[2]. Since the model is formal, the analysis ié Runtime Model of the AWS-ECS

We implemented this idea by automatically generat-
2http://developer.yahoo.com/yuilyuitest ing a web service driver, using interface grammars as the

Runtime state
+ contract
O
O
Ajax application %

Protocol controller

(a) A protocol controller possesses a formal model of
the interface contract and updates its model according
to the runtime behaviour of the client and the service.

fAjaxapplicationi X % -

(b) Protocol controller acting as a driver, imperson-
ating the client to test the server.

Ajax - Web service
application<€—

(c) Protocol controller acting as a runtime
monitor on the client side.

—>
-«

Figure 2: Various uses of a protocol controller at runtime.

Sidebar: Interface Grammars

An interface grammar is expressed as a series of productions
of the form a(v1,...,vn) — A. Here v, ...,V correspond to
the parameters of the non-terminal a and A is the right hand
side of the production which may contain the following:

e nonterminals, which we express as nt(vy, ..., Vn);

e semantic predicates that must evaluate to true for the
production to be available, which we express as p;

e semantic actions that are executed during the parse,
which we express as ((a));

e outgoing method calls,
m(vy,...,Vn);

which we express as

e returns from outgoing method calls, which we express
as im(vi,...,Vn).

As with any grammar, the successive application of deriva-
tion rules to non-terminal symbols can be used to generate
sentences or to parse an existing sentence for correctness.
In the present case, these sentences represent sequences of
web service operations.

specification language (sidebar). Compared to many ex-
isting specification languages for web services, the nov-
elty of these grammars is their ability to model complex
behaviours mixing control flo@nddata. For the needs of
the presentation, the interface grammar shown in Figure
3 represents the client interface for a simplified version of
the AWS-ECS service (our experiments were performed
on a more detailed specification).

A compiler takes this interface grammar and automati-
cally generates Java code for a driver —that is, a language
generator that produces SOAP request sequences based on
the grammar [3]. The sentence generating algorithm is ba-
sically the same, whatever the grammar: it begins with the
start symbol and generates a derivation by applying a ran-
domly chosen production rule to some non-terminal sym-
bol, until no such symbol remains. At the same time as the
symbols are produced, the corresponding XML messages
are sent to the web service.

Results

To test the AWS-ECS, we ran the generator until it
produced 100 sentences, which were executed on the ac-
tual service implementation as they were built. Testing
each sentence took an average of 3 seconds. All the non-
terminal symbols in the grammar were covered after gen-
erating an average of 41 sentences, or roughly 2 minutes
of testing. The average number of steps in derivations
generated by the random generator was 17.5, and the av-
erage number of SOAP requests that were generated per
derivation was 3.2.

Performing these server verification experiments were
useful, as they helped us discover two errors; the firstis a
mismatch between the server implementation and its doc-
umentation, while the second results from our misinter-
pretation of the documentation.

e Error1: We found that it is illegal to sendCartAdd
for an item’s ASIN which is already in the cart. In-
stead of creating two lines with distinct item IDs, or
updating the existing line by adding its quantity to
the current request, the AWS-ECS replies with an er-
ror message. This restriction is not explicitly stated
in the AWS-ECS API specification.

e Error 2: Our driver checks that the contents of the
cart returned by Amazon are precisely those we ex-
pect to see. We thought that an empty cart would
have a non nulfartItems elementthat contains an
array of zero length. Instead, the returned cart has no
CartItems element at all. This issue is not explic-
itly stated in the APl documentation either, although
it is present in the WSDL specification.

XXXX 2010

start — searchasin);cart(asin)

| €

searci{asin — !ITEMSEARCH(); I TEMSEARCH(asin); searchi(asin)

searchi(asin — !ITEMSEARCH(); il TEMSEARCH(asin); search(asin)
| €

cart(asin — !CARTCREATE(asin);CARTCREATE(cart item); permutecart item); clear(cart)
| €
permutgcartitem) — ICARTGET(cart);CARTGET(cart); permutécart item)
| ((cHoosm > 0));!CARTMoODIFY(cart item,n); i CARTM ODIFY(cart); permutécart item)
| !CARTMoDIFY(cartitem,0); CARTMODIFY(cart)
| search{asin); permuté(cart asin); permutecart item)
| €
permuté(cartasiny — [asing ran(cart)];!CARTADD(cart asin); CARTADD(cart item); permutécart item)
| €
clear(cary — ICARTCLEAR(cart);CARTCLEAR(cart);clear(cart)
| ICARTGET(cart); iCARTGET(cart); clear(cart)
| search{asin);clear (cartasin
| €
clear(cartasin — [asing ran(car];!CARTADD(cart asin); j CARTADD(cart item);
permutgcart item); clear(cart)
| €
Figure 3: Interface grammar for an AWS-ECS client
RUNTIME MONITORING OF AJAX APPLICATIONS The BeepBeep Runtime Monitor

Our interface driver is able to detect contract non con-1h€ monitor can be hosted inside the client (Figure
formance of the service through the generation of runtiraé®)), inside the server, or in a module independent of
test sequences, when the target service is known in §8¢h. Contrarily to existing approaches [S, 6], we chose
vance. However, in service-oriented architectures, pdf-mplement a monitor on the client side, believing that
ners can be discovered dynamically: in such a situatiGifoneous behaviour is more likely to come from untested
neither static analysis nor runtime testing can be doneG#nts than from a production server. This way, erroneous
advance. In any case, it might be desirable that some fdftgSsages are trapped at the source, saving bandwidth and
of “safety net” be still present during the normal executidaPU time on the server. To this end, we developed Beep-
of the client, for various reasons. For example, monitorif@feP: @ lightweight runtime monitor for Ajax web appli-
can increase trust in an electronic marketplace by provf@tions:.
ing the consumer of a service the ability to check by itself BeepBeep’s architecture has been designed to be min-
the transaction that takes place [4]. As a second stegh@lly invasive. A standard Ajax application communi-
our work, we wanted to dynamically detect any contrag@tes with a web service by sending and receiving mes-

violations from either side as they happen. sages through th¥MLHttpRequest object provided by
S . L the local browser. BeepBeep wraps around this ob-
In this situation, the actual Ajax application communi- e o

. . ct through a JavaScript file providing a class called
cates with the actual service. The protocol controller a ; -

. .) LHttpRequestBB. It behaves exactly like the original,
as aruntime monitorand silently eavesdrops the sequence

of exchanged messages between the application and{ the exception that incoming and outgoing messages,

: R before being actually sent (or returned , are analyzed and
service. It acts only when a contract violation is detected, 9 y () Y

by raising an error and/or blocking the communication.pOSSIbly blocked if violations are found. This follows a

3BeepBeep and its source code are available for downloadr unde
free software license: http://beepbeep.sourceforge.net

principle already used to prevent script injection attac
[7], although here no modification to the browser is r¢
quired. Rather, a small and invisible Java applet called 1
BeepBeepMonitor is responsible for actually analyzing
the incoming and outgoing messages with respect to
interface contract, and signalling eventual errors back
the JavaScript code on-the-fly, following an algorithm w
devised [8].

To add BeepBeep to our (or any existing) Ajax appl
cation, the JavaScript file and Java applet (less than 50
in total) are copied to an arbitrary location on the applic
tion’s host server. The only code instrumentation requir
is to include BeepBeep by adding a single line of co
in the <head> portion of our application's HTML page.
From now on, any call taMLHt tpRequest need simply
to be replaced by a call &&MLHttpRequestBB in order
for BeepBeep to intercept and monitor the conversatior

While an interface grammar was well suited for o
sentence generating driver, its monolithic nature make
hard to identify what element of the contract becomes
olated when an error occurs. For the needs of runtir
monitoring, BeepBeep is fed with a list of independe

Sidebar; LTL-FO +

LTL-FOT is a logic on sequences of XML messages. It pro-
vides all the familiar Boolean connectives: & ("and"), || ("or"),
I ("not"), — ("if then"); they can be used to combine expres-
sions as usual. Data inside a message can be accessed us-
ing first-order quantifiers, and sequences of messages are
constrained using the following operators:

e [x € 1) means "for every X in Tt". Here, X is a variable,
and Ttis a path expression used to fetch possible values
for Xx. For example, if ¢ is a formula where X appears,
then [x € /tagl/tag?] : ¢ means: every value at the
end of /tagl/tag2 satisfies ¢. Similarly, (X € T)) means
“some Xin TU.

e X means “in the next message”. For example, if ¢ is
a formula, X ¢ says that ¢ will be true in the next mes-
sage. Similarly, G means “globally” (for all messages)
and F means “eventually” (for at least one message in
the future).

e U means “until”. If ¢ and | are formulee, writing ¢ U
says that) will be true eventually, and in the meantime,
¢ is true for every message until) becomes true.

constraintswhich, taken together, form the contract spec-

ification to enforce. These constraints are expressed
a language called LTL-FO, an extension of the well-
known Linear Temporal Logic (LTL) to accommodat:
first-order quantification over message elements and \
ues of a global system clock (sidebar). Each constra
can be violated (or fulfilled) independently of the other
making it easier to display informative error messages
the user. Figure 4 shows a contract file for BeepBeep c(
taining three of AWS-ECS'’s interface constraints give
as LTL-FO" expressions. This contract is located o
the server side in a file separate from the monitor itse
Changing the contract can be done dynamically withc
making changes to the clients or the monitor itself. This
in contrast with [9, 10], which require the compilation o
a contract into executable Java code —an operation wh
must be repeated whenever the contract is changed.
requirement is ill-suited to the highly volatile nature ¢
runtime web service interactions.

Results
We tested BeepBeep on our Ajax client for the AWS
ECS. As we now know, the client enables a user to pi

in
% ALl ItemLookup messages must have a MerchantID
element if their IdType is "SKU"

; G (([1 /ItemLookup/IdType]l ((i) = (SKU))) ->
(<m /ItemLookup/MerchantId> (TRUE)))

% No CartModify can appear once a CartClear has
been issued
; G ((<i /CartClear> (TRUE)) ->
(G (!(<j /CartModify> (TRUE)))))

% It is illegal to add an ASIN to a cart that
already has a row for that ASIN
; G ([1 /CartAdd/List/ASIN] (X (G

(7 /CartAdd/List/ASgg] (1) = (31N
a,

form a wide range of contract violations: get a cart b
fore creating a cart, add or remove the same item twi
in total we provided BeepBeep with 11 such possible
olations to watcH. By using the client and producing
non-compliant sequences of operations for all 11 pr

“The demo is available on BeepBeep’s
http://beepbeep.sourceforge.net/examples/amazon-ecs

ﬁgure 4: (a) A sample BeepBeep contract specification.
éach constraint, expressed in LTL-FO™, is preceded by
Oa caption that is displayed by the application when it be-
gomes violated. (b) A similar set of constraints, expressed

websitegraphically in a notation called DecSerFlow.

xxxx 2010 || IR

14 . contracts andvherethey should be obtained from. The
12 : . .. current state of our research does not provide definitive
10 . . solutions to these issues. However, we can mention ongo-
care T ; . ing work on these topics pointing to promising solutions.

Time (ms)

Alternative Specification Languages

Interface grammars and temporal logic are appropri-
ate representations for the automated processing of inter-
0 20 40 60 80 100 120 140 160 face contracts. However, finite state machines, regular ex-

Trace length pressions and UML activity diagrams are all appropriate
(and, to some extent, equivalent) representations of-inter
Figure 5: Monitoring time per message for various trace face contracts. Most Of them can be eaSily translated intO
lengths, with data domains of 25 (blue) and 200 (orange) €quivalent grammars or temporal logic expressions.
elements. Moreover, in most situations, interface contracts can be
expressed by combining a small set of predefined tem-
plates orpatterns An example is the DecSerFlow lan-
erties, we observed that BeepBeep caught all of theseglirage [11], which uses a graphical notation to express
olations instantly, as they were produced, by popping gfnple sequential relationships. Figure 4(b) shows a
an alert message and preventing the faulty messages fegieenshot of a prototype tool we are currently develop-
reaching Amazon. The monitor works in a bidirection@hg, where the AWS-ECS contract, input in DecSerFlow
fashion and also looks for specification mismatches framatation, is internally converted into LTL-FOand dis-
the server side. Hence, it correctly diagnosed Error @ayed graphically to the user. Each box depicts a specific
found earlier by our runtime tester, by warning the usafessage. An arrow-AB indicates that A must occur be-
that empty carts did not containCartItem container. fore B; a barred arrow rather indicates that once A occurs,

To measure the performance overhead induced by theannot occur. The top-left arrow therefore expresses
addition of a runtime monitor, we programmed the cliefiiat once a cart is created with an iteni, one can no
to generate 100 random message traces of length rangdrger add that same iteinto that same cac.
from 5 to 200 messages. For half of these traces, the repther solutions focus on extracting these constraints

quests were created from a pool of 25 randomly selectggtomatically, either by analyzing the service’s source

items; for the other half, the requests were created fromdgde [12], or by using machine learning techniques on
pool of 200 items. Each of these traces was then “playgginple execution traces [13].

back” to the AWS-ECS, as if a real user were using the
interface. For each of these traces, we measured the tﬁ?@biding the Contract

CPU time spent for the execution of the BeepBeepMom'Developers are already accustomed to the practice of

tor Java applet, and plotted the results in Figure 5. efining and providing an interface contract for the web

The time required to process a message to (orfrom)_ Svices they create: after all, the WSDL document that

AWS-ECS remains well under 20 milliseconds, taking | companies a serviégan interface contract. However,

average 8 ms, a figure that was not significantly modifi (gwe pointed out earlier, WSDL covers only part of the
S

by increasing the pool of possible items in the reques quirements for a successful interaction with a service;

by a factor 8. The length of the transaction (i.e. the totd particular, it lacks a formal specification of allowed se-

number of messages) has little effect on the monitor's p liences of messages and related constraints on data pa-
formance. This added roughly 3% to the total round-tr meters

time of a request-response to Amazon. Moreover, these-E wall ice devel Id cultivate the habit
times were computed on a low-end EeePC netbook run- ventually, service developers could cultivate the hapl

ning at 600 MHz. 0 documenti_ng _such constraints in the same way WSDL
message definitions currently are, and could warn poten-
WHO SHOULD WRITE THE tial users of their presence by storing them in a machine-
CONTRACTS? readable form at a similar URI. Message Exchange Pat-
While our experiments at testing and monitoring inteterns, introduced in WSDL 2.0, represent a step in that di-
face contracts were successful, to this dayektaction rection, although these patterns can include at most two
of such contracts remains mostly a manual task. Momessages and do not seem sufficient for long-running
over, the question remains afho should provide thesetransactions such as those we studied in the AWS-ECS.

N retrospect, our experiments with the Amazon Ef9] Ingolf H. Kriger, Michael Meisinger, and Massimilianoevarini.
Commerce Service (AWS-ECS) showed us the ad- Runtime verification of interactions: From MSCs to aspedts.
. _ Oleg Sokolsky and Serdar Tasiran, editdR/, volume 4839 of
_vantaggs of using a mOdeI based apprO_aCh for the Lecture Notes in Computer Sciengages 63—74. Springer, 2007.
runtime testing and monitoring of web applications. Once |sgN 978-3-540-77394-8.
a. for_mal model of the runtime behaY'Our of a We_b S€ 10] Grigore Rosu, Feng Chen, and Thomas Ball. Synthesizingi-
vice is created, we can perform a variety of analysis tasks tors for safety properties: This time with calls and retuinsMar-

without user intervention. tin _Leucker, editorRY, volume 5289 of ecture Notes in Computer
In a first step, we can verify our understanding of the Sciencepages 51-68. Springer, 2008. ISBN 978-3-540-89246-5.
documentation by automatically producing test sequen¢€s :’V"I 'V('j-P- IVa“t_dEF Aalst ade 'Vl'aia PESiC-I D'\eACS_efg'OW;mT_W?

. . _truly declarative service flow language. In Mario Braveitanue
that are run on the a,Ctual |mplementat|or_1 of the web ser Nufiez, and Gianluigi Zavattaro, editol&/S-FM volume 4184 of
vice. Then, our runtime tool BeepBeep is able to seam- |ecture Notes in Computer Sciengges 1-23. Springer, 2006.
lessly and easily enforce interface contracts on the client ISBN 3-540-38862-1.
side, warning the user of violations and preventing errp2] wiliam G.J. Halfond and Alessandro Orso. Improvingstte
neous messages from reaching their destination. case generation for web applications using automatedfacter

Doing so with the AWS-ECS enabled us to: 1) auto- discovery. In lvica Crnkovic and Antonia Bertolino, edior

. . ESECISIGSOFT FSkages 145-154. ACM, 2007. ISBN 978-
matically generate test sequences and detect two devia- 1.59593.811-4.

tions of their SerVi(_:e imple_ment_ation with respect tF’ t ?3] Alex Groce, Klaus Havelund, and Margaret Smith. LetisK at
online documentation provided, in less than three minutes' the logs: Low-impact runtime verification. BOMPASS2009.

of testing; 2) provide a framework that allows the runtime

monitoring of both client and server contract constraingylvain Hallé is a postdoctoral researcher at Univer-
with minimal modification to an existing Ajax applicasity of California, Santa Barbara. He received a PhD in
tion's code, with an associated overhead of roughly t@mputer science from Université du Québec a Montréal.
milliseconds for each incoming or outgoing message. T@@ntact him at shalle@acm.org.

tools we developed are generic and our approach ca

e, : . .
used on any other client or service. rH%vflk Bultan is a professor of computer science at Uni-

versity of California, Santa Barbara. He received a PhD
in computer science from the University of Maryland,
College Park. Contact him at bultan@cs.ucsb.edu.

References
[1] Greg Meredith and Steve Bjorg. Contracts and typ€smmun.
ACM, 46(10):41-47, 2003.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Pelbthdel
Checking MIT Press, 2000. ISBN 0-262-03270-8. 330 pp.

[3] Graham Hughes, Tevfik Bultan, and Muath Alkhalaf. Cliemd Graham Hughesreceived a PhD in computer science

server verification for web services using interface gransmén from the University of California, Santa Barbara. Con-
Tevfik Bultan and Tao Xie, editor§ AV-WEB pages 40-46. ACM, :
2008, ISBN 978-1-60558.053-1 tact him at graham@cs.ucsb.edu.

[4] William N. Robinson. Monitoring web service requirenten In Roger Villemaire is a professor of computer science at
RE, pages 65-74. IEEE Computer Society, 2003. ISBN 0-769%niversité du Québec a Montréal. He received a PhD in

1980-6. mathematics from University of Tibingen. Contact him at
[5] Khaled Mahbub and George Spanoudakis. Run-time mangor yjllemaire.roger@ucdam.ca.

of requirements for systems composed of web-servicesalliit-

plementation and evaluation experiencelGlVS pages 257-265.

IEEE Computer Society, 2005. ISBN 0-7695-2409-5.

[6] Fabio Barbon, Paolo Traverso, Marco Pistore, and Mehehin-
otti. Run-time monitoring of instances and classes of webice
compositions. INCWS pages 63-71. IEEE Computer Society,
2006. ISBN 0-7695-2669-1.

[7] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeatingript
injection attacks with browser-enforced embedded pdlicidn
Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Sdbee
and Prashant J. Shenoy, edito®WW pages 601-610. ACM,
2007. ISBN 978-1-59593-654-7.

Muath Alkhalaf is a PhD student in computer science at
University of California, Santa Barbara. Contact him at
muath@cs.ucsb.edu.

[8] Sylvain Hallé and Roger Villemaire. Runtime monitoriraf
message-based workflows with dataEROC, pages 63—-72. IEEE
Computer Society, 2008.

xxxx 2010 ||| IR

