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Abstract—During the last decade, stochastic geometry has been 
widely employed for system-level analysis in cellular networks. 
The resulting analytical frameworks are, however, not always 
amenable for system-level optimization. This is due to three 
main reasons: (i) the performance metric of interest may not be 
formulated in closed-form; (ii) under some analytically tractable 
modeling assumptions, important system parameters may not 
explicitly appear in the analytical frameworks; and (iii) the 
optimization problem may not possess any structural properties, 
e.g., convexity, that facilitate the development of numerical 
algorithms for optimizing multiple (continuous- and discrete-
valued) parameters at an affordable computational complexity 
and with performance-guarantee, e.g., the convergence to the 
global optimum is provable. In this letter, we leverage the 
new definition of coverage probability in [1], we show that it 
is suitable to formulate mixed-integer non-linear system-level 
resource allocation problems in Poisson cellular networks, and 
we prove that the global optimum can be efficiently calculated 
by applying the generalized Benders decomposition. Numerical 
results are illustrated in order to compare the proposed approach 
against brute-force and greedy-like optimization algorithms.

Index Terms—Cellular networks, stochastic geometry, system-
level analysis, mixed-integer non-linear optimization.

I. INTRODUCTION
Stochastic geometry is a widely employed analytical tool for

modeling and analyzing the performance of cellular networks
[2]. The Poisson Point Process (PPP) is, in particular, the
most analytically tractable abstraction for modeling cellular
networks. For example, homogeneous and inhomogeneous
PPPs have been used for modeling the locations of the Base
Stations (BSs) in cellular networks [2], [3], and Boolean
schemes of rectangles, whose centers are distributed according
to a PPP, have been used for modeling blocking objects [4].

With the aid of stochastic geometry, relevant key perfor-
mance metrics that quantify the performance of cellular net-
works, e.g., the spectral efficiency, can be formulated in com-
putable analytical expressions. As recently elaborated in [1],
however, the resulting analytical frameworks are not always
conveniently formulated for system-level optimization. This
originates, in particular, from two main reasons: (i) the per-
formance metric of interest may not be formulated in closed-
form, which may result in a difficult function to optimize; and
(ii) under analytically tractable modeling assumptions, some
system parameters may not explicitly appear in the analytical
frameworks, which may lead to meaningless optimization
problems. Motivated by these considerations, the authors of [1]
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have introduced a new definition of coverage probability that
is suitable to formulate meaningful optimization problems. In
[1], for example, the optimal transmit power and deployment
density of the BSs that maximize the energy efficiency are
computed. More recently, the same authors have leveraged
the framework in [1] to prove the impact of several design
parameters on the coverage [5], and to compute the energy-
spectral efficiency Pareto front in cellular networks [6].

In spite of these promising results, the authors of [1], [5], [6]
have tackled the optimization of a single parameter, e.g., the
transmit power or the density of the BSs, and have unveiled the
complexity of solving multi-parameter optimization problems
(e.g., to optimize the transmit power and the density of the
BSs). Also, they have shown that it is often difficult to
prove even the existence of an optimizer for every set of
parameters. From these research works, we can conclude that
it is difficult, in general, to prove structural properties (e.g.,
the convexity) of optimization problems that originate from
stochastic geometry models and analysis. This is, however,
needed in order to facilitate the development of numerical
algorithms for optimizing multiple (continuous- and discrete-
valued) parameters at an affordable computational complexity
and with performance-guarantee, e.g., the convergence to the
global optimum in a finite number of iterations is provable.

In this letter, we investigate this open issue and propose
an efficient approach to tackle it. We consider a Poisson
cellular network whose resources (spectrum and power) are
to be optimally allocated among multiple services (called
tenants) so as to maximize the aggregate spectral efficiency
under individual performance-guarantee for each tenant. Also,
we optimize the scheduling of tenants so as to maximize
the aggregate spectral efficiency. By embracing the analytical
formulation of the spectral efficiency in [1], we prove that the
joint scheduling and resource allocation problem of interest
is a Mixed-Integer Non-Linear (MINL) optimization problem,
whose global optimum can be calculated by employing the
Generalized Benders Decomposition (GBD) [7]. The effi-
ciency of the proposed approach stems from three properties:
(i) the spectral efficiency in [1] is a jointly concave function
in the transmit power and the bandwidth of the BSs; (ii)
the MINL resource allocation problem fulfills the separability
conditions in [8]; (iii) the master problem in [7] is linear.
Numerical results confirm that the proposed approach offers
the same accuracy as brute-force optimization at a similar (or
lower) complexity as (than) a sub-optimal greedy algorithm.

II. CELLULAR NETWORKS – THE POISSON ABSTRACTION

We consider a single operator downlink cellular network.
The locations of the BSs are assumed to constitute a ho-
mogeneous PPP of density λBS. Each BS transmits with a
constant power Ptot over a spectrum of bandwidth Btot. The
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Telecommunications Operator (TO) offers T different services
to its Mobile Terminals (MTs). An MT requests the ith, for
i = 1, 2, . . . , T , service if it wishes to obtain an average data
rate at least equal to τi (bit/s). The MTs that request the ith
service are collectively referred to as the ith tenant.

The locations of the MTs of the ith tenant are assumed to
follow a homogeneous PPP of density λMTi

. For example,
a tenant may be constituted by the MTs that need to use
the network for mobile broadband applications (i.e., τi and
λMTi

are likely to be large and small, respectively), while
another tenant may be constituted by the MTs that need to
use the network for sensing applications (i.e., τi and λMTi are
likely to be small and large, respectively). In this letter, due
to space limitations, we do not consider the case studies of
multi-operator cellular networks and services that necessitate
other than a minimum guaranteed data rate, e.g., a maximum
transmission delay or a minimum number of MTs to be served.
These generalizations are postponed to future research.

The locations of the BSs are denoted by x ∈ ΨBS ⊆ R2.
The channels of the T tenants and MTs are assumed to be
mutually independent and identically distributed. As far as the
channels are concerned, therefore, the index i can be omitted.
An unbounded path-loss model is considered, i.e., l (x) = κrα,
where r = ‖x‖ is the distance of the BS at x from the typical
MT, and κ and α > 2 denote the path-loss constant and
the path-loss slope, respectively. The power gain of the fast-
fading is assumed to be an exponential random variable of unit
mean. A cell association based on the highest average received
power is assumed, which, for the considered path-loss model,
is equivalent to the shortest distance cell association.

Let us denote by Pi and Bi the transmit power and
bandwidth that the TO allocates to the ith tenant, respectively.
Thus, Pi and Bi are the power and spectrum that each BS has
at its disposal to serve the MTs of the ith tenant associated to
it. We assume that the tenants are served over disjoint bands
of the spectrum owned by the TO, i.e., Btot, so that no inter-
tenant interference is present. For each tenant, we assume that
the BSs equally allocate the bandwidth Bi among all the MTs
associated to them, and that their transmit power Pi is evenly
spread across the available bandwidth Bi. This implies that the
considered network model is subject to inter-cell interference,
but is not subject to intra-cell interference [1], [5].

Under these modeling assumptions, the resource allocation
problem that we are interested in analyzing jointly encom-
passes: (i) the scheduling of the tenants; and (ii) the optimiza-
tion of their transmit power, Pi, and bandwidth, Bi. In fact, it
is not guaranteed that, given Ptot and Btot, the T tenants can
achieve the requested minimum rates τi, for i = 1, 2, . . . , T ,
simultaneously. Thus, the optimal sub-set of tenants (≤ T ) that
maximizes the performance metric of interest (the network’s
spectral efficiency) needs to be identified. The optimization
problem is formulated in the next section, by using recent
results on the spectral efficiency and average rate [1].

III. PROBLEM STATEMENT – AN MINL FORMULATION

Let Si = S (Pi, Bi, λMTi
;λBS) and Ri =

R (Pi, Bi, λMTi
;λBS) be the network’s spectral efficiency

and the user’s average rate of the ith tenant, respectively. Si

and Ri yield the bit/s/m and the bit/s that the TO is capable
of delivering to the ith tenant throughout the network and to
the typical MT, respectively. Let βi ∈ {0, 1} be 0-1 variables
for i = 1, 2, . . . , T . We assume, by definition, the following
relation among βi, Pi, and Bi for i = 1, 2, . . . , T :

S (Pi = 0, Bi = 0, λMTi
;λBS) = 0 ∀i = 1, 2, . . . , T (1)

R (Pi = 0, Bi = 0, λMTi
;λBS) = 0 ∀i = 1, 2, . . . , T (2)

βi = 0⇔ Pi = 0, Bi = 0 ∀i = 1, 2, . . . , T (3)

The conditions in (1) and (2) imply the physical constraint
that Si and Ri need to be zero if no power and spectrum are
allocated to the ith tenant. The condition in (3) allows us to
interpret βi as an indicator variable that is equal to zero if
and only if the ith tenant is not scheduled (or admitted), and,
hence, the TO allocates no power and spectrum to its MTs.

The problem (P1) of jointly scheduling the tenants and
allocating their resources (power, spectrum) is formulated as:

P1 : maximize
Pi,Bi,βi

∑T

i=1
ln [(1 + βi) (1 + Si)] (4)

subject to Ri ≥ βiτi (5)
0 ≤ Bi ≤ βiBtot (6)
0 ≤ Pi ≤ βiPtot (7)∑T

i=1
Bi ≤ Btot (8)∑T

i=1
Pi ≤ Ptot (9)

βi ∈ {0, 1} (10)

P1 can be interpreted as follows. The objective function in
(4) is the aggregate spectral efficiency of all the tenants that
can be scheduled. The logarithmic function is employed in
order to ensure a certain level of fairness among the tenants
[9]. Based on (1)-(3), the objective function is appropriately
chosen to be non-negative, i.e., if βi = 0, then ln (1) = 0. This
is the reason of the presence of the “+1” terms. If βi = 0, in
particular, the ith tenant does not contribute to the objective
function. The constraint in (5) ensures that the minimum
rate requirement is fulfilled. The constraints in (6) and (7)
ensure that the bandwidth and power are non-negative, and
the constraints in (8) and (9) that the total allocated spectrum
and power do not exceed Btot and Ptot, respectively. In (5)-(7)
the presence of the 0-1 variables βi ensures that the constraints
are effective only if the ith tenant is scheduled (βi = 1). Also,
by virtue of (3), and the constraints in (6) and (7), there is no
need to add the 0-1 variables βi in (8) and (9).

P1 requires an analytical expression for Si and Ri. For
the considered network model, Si and Ri are defined and
formulated in [1, Eq. (7)] and [1, Eq. (9)], and, for com-
pleteness, they are reported in the next two lemmas, where:
(i) γD is the minimum signal-to-interference ratio in order
for the typical MT to decode the data from the serving BS;
(ii) γA is the minimum average signal-to-noise ratio in order
for the typical MT to detect the pilot signals during the cell
association phase; (iii) N0 is the receiver’s noise spectral
density at the typical MT; (vi) L (x) = 1 − (1 + x/3.5)

−3.5;
and (v) Υ (y, z) = 2F1 (−2/z, 1, 1− 2/z,−y) − 1, where
2F1 (·) is the Gaussian hypergeometric function.
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Lemma 1: Consider the network model in Section II. Define
Φ (λBS, λMTi , γD, α) = 1 + L (λMTi/λBS) Υ (γD, α). The
spectral efficiency of the ith tenant can be formulated as:

Si = Bilog2 (1 + γD)
λBSL (λMTi

/λBS)

Φ (λBS, λMTi
, γD, α)

(11)

×

(
1− exp

(
−πλBS

(
Pi/Bi
κγAN0

)2/α

Φ (λBS, λMTi
, γD, α)

))
Proof : It follows from the definition of Si in [1, Eq. (7)]

and the analytical steps reported in [1, Appendix A]. �
Lemma 2: Consider the network model in Section II. The

user’s average rate of the ith tenant is equal to Ri = Si/λMTi ,
where Si is formulated in closed-form in (11).

Proof : It is similar to the proof of Lemma 1 [1]. �
It is worth mentioning, as detailed in [1, Remark 7], that Si

in Lemma 1 is defined from the viewpoint of the typical MT
rather than from the viewpoint of the typical BS. Thus, it is an
approximated formulation of the network’s spectral efficiency.
Besides the proof in [1, Appendix A], this remark justifies the
relation between Ri and Si in Lemma 2 as well.

P1 is an MINL program and, hence, is NP-hard [8]. Tackling
P1 via global optimization methods based on the branch-and-
bound algorithm is possible, but subject to identifying suitable
bounds for its application [8]. To devise an algorithm that is
computationally efficient and provably convergent to the global
optimum, we need the following two preliminary results.

Proposition 1: The network’s spectral efficiency, Si, and
the user’s average rate, Ri, in Lemma 1 and Lemma 2,
respectively, are jointly concave functions in Pi and Bi.

Proof : The proof follows by computing the Hessian matrix
of Si (or Ri) as a function of Pi and Bi, and observing that
the corresponding quadratic form is negative semidefinite. �

Lemma 3: By conditioning upon the 0-1 variables βi, P1 is
a convex optimization problem.

Proof : The proof follows by noting that, conditioning on the
variables βi, the objective in (4) is a concave function since it
is the sum of concave functions by virtue of Proposition 1, the
constraint in (5) is a concave function by virtue of Proposition
1, and the constraints in (6)-(9) are affine functions. �

Based on Proposition 1 and Lemma 3, the following con-
clusions about P1 can be drawn.

• If no scheduling is considered, P1 is a convex optimiza-
tion problem that can be efficiently solved in polynomial
time regardless of the number of tenants. This feature
originates from the mathematical tractability of the re-
cently proposed definition of coverage probability in [1].

• The complexity of P1 originates from jointly optimizing
the scheduling of the tenants, and the power and spectrum
of the tenants admitted into the network.

• By virtue of Proposition 1, P1 may be tackled by em-
ploying an exhaustive search over the T binary variables
βi, and by applying convex optimization methods to
compute, for each possible case, the optimal power and
spectrum to be allocated to the corresponding tenants.
Even for modest values of the number of services that
the TO needs to support, e.g., T = 20, the computational
complexity of such a brute-force method may be pro-

Algorithm 1 Proposed algorithm for solving P2
1: Set an arbitrary βi = β̄i (i = 1, 2, . . . , T ) that makes P3 feasible.

Solve P3, and denote its global solution by
(
P ∗
i , B

∗
i

)
and the vector of

Lagrange multipliers by µ∗. Set ε ≥ 0, K1 = 1, K2 = 0, µ(1) = µ∗,
UBD = f

(
P ∗
i , B

∗
i , β̄i

)
, and compute L∗ (

βi,µ
(1)

)
in (21).

2: Solve P4 and denote its global solution by
(
β∗
0 , β

∗
i

)
. Set LBD = β∗

0 .
3: while UBD− LBD > ε do
4: Set β̄i = β∗

i . Solve P3.
5: if P3 is feasible then
6: Compute the global solution,

(
P ∗
i , B

∗
i

)
, and the Lagrange mul-

tipliers, µ∗, of P3. Set K1 = K1 + 1, µ(K1) = µ∗, compute
L∗ (β̄i,µ(K1)

)
in (21). If f

(
P ∗
i , B

∗
i , β̄i

)
< UBD, set UBD =

f
(
P ∗
i , B

∗
i , β̄i

)
. Return to Step 2.

7: else
8: Compute the Lagrange multipliers, ρ∗, corresponding to the global

solution of P5. Set K2 = K2 + 1, ρ(K2) = ρ∗, and compute
L∗

(
β̄i,ρ

(K2)
)

in (24). Return to Step 2.
9: end if

10: end while
11: The solution of P2 is Pi = P ∗

i and Bi = B∗
i from the solution of P3,

and βi = β∗
i from the solution of P4.

hibitive. Given the need of future networks to overcome
the “one-size-fits-all” design paradigm, and to be highly
adaptable to support multiple and disparate services, a
computationally-efficient algorithm with provable conver-
gence to the global optimum is needed.

In Section IV, we capitalize on Proposition 1 and the
structure of the objective and the constraints in (4)-(10) in
order to develop an algorithm, based on the GBD, that is
provably convergent to the global solution of P1. This cannot
be guaranteed, in general, by using general-purpose solvers
for MINL problems. The proposed approach has, in general,
exponential complexity, but numerical results show that it is
faster than a (sub-optimal) greedy algorithm (see Section V).

IV. ALGORITHMIC SOLUTION – GBD-BASED APPROACH

The proposed approach for solving P1 is based on the
GBD originally introduced in [7]. We show, in particular, that
the specific properties of Si and Ri proved in Proposition 1
allows us to obtain an efficient iterative implementation that
necessitates the solution of a few convex optimization prob-
lems and Mixed-Integer Linear (MIL) optimization problems,
whose global solution can be provably guaranteed.

Define the column-vector of constraints G (Pi, Bi, βi) =
[G1;G2; . . . ;G7], whose seven rows are: G1 = βiτi − Ri;
G2 = Bi − βiBtot; G3 = Pi − βiPtot; G4 = −Bi; G5 =
−Pi; G6 =

∑T
i=1Bi − Btot; and G7 =

∑T
i=1 Pi − Ptot.

Define f (Pi, Bi, βi) = f1 (βi) + f2 (Pi, Bi), where f1 (βi) =
−
∑T
i=1 ln (1 + βi) and f2 (Pi, Bi) = −

∑T
i=1 ln (1 + Si). P1

can be re-written, in canonical form, as follows:

P2 : minimize
Pi,Bi,βi

f (Pi, Bi, βi) (12)

subject to G (Pi, Bi, βi) ≤ 0 (13)
βi ∈ {0, 1} (14)

Algorithm 1 reports the proposed approach for solving P2.
Algorithm 1 is an iterative algorithm that recursively solves
the three optimization problems, P3, P4, and P5 defined
in the following paragraphs. The optimality and rational of
Algorithm 1 are discussed at the end of this section.
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a) Problem P3: P3 is defined as follows:

P3 : minimize
Pi,Bi

f
(
Pi, Bi, β̄i

)
(15)

subject to G
(
Pi, Bi, β̄i

)
≤ 0 (16)

where β̄i denotes a given instance of βi (i = 1, 2, . . . , T ), as
stated in Algorithm 1. Since the 0-1 variables are not subject
to optimization, P3 is a convex problem by virtue of Lemma
3. Thus, its global optimum is obtained in polynomial time.

b) Problem P5: Let β̄i be an instance of βi that makes
P3 feasible. Let θ be a real variable. P5 is defined as:

P5 : minimize
Pi,Bi,θ

θ (17)

subject to G
(
Pi, Bi, β̄i

)
− θ1 ≤ 0 (18)

Since the 0-1 variables βi are not to be optimized, P5 is
a convex optimization problem by virtue of Proposition 1.
Let ρ∗ = [ρi; ρ0Bi

; ρ0Pi
; ρ00Bi

; ρ00Pi
; ρB ; ρP ] be the column-

vector of Lagrange multipliers of P5, whose eth entry cor-
responds to Ge (e = 1, 2, . . . , 7) in (18). ρ∗ is needed to
formulate P4. It is worth mentioning that P5 is an equivalent
(convex) formulation of [7, Eq. (6)], as elaborated in [10].

c) Problem P4: Before formulating P4, we introduce the
auxiliary optimization problems P4∗ and P4∗.

Let µ∗ = [µi;µ0Bi
;µ0Pi

;µ00Bi
;µ00Pi

;µB ;µP ] be the
column-vector of Lagrange multipliers of P3, whose eth entry
corresponds to Ge (e = 1, 2, . . . , 7) in (16). Let b̄i = µ0Bi

−
µ00Bi + µB and p̄i = µ0Pi − µ00Pi + µP , P4∗ is defined as:

P4∗ : minimize
Pi,Bi

∑T

i=1

(
− ln (1 + Si)− µiSi + b̄iBi + p̄iPi

)
(19)

subject to (8) and (9) (20)

Let fP4∗ be the objective function evaluated at the optimal
solution of P4∗ in (19). Define the following function1:

L∗ (βi,µ
∗) = fP4∗ − µBBtot − µPPtot (21)

+
∑T

i=1
βi (µiλMTiτi − ln (2)− µ0BiBtot − µ0PiPtot)

Let ρ∗ be the column-vector defined in P5. Let bi = ρ0Bi
−

ρ00Bi +ρB , p
i

= ρ0Pi−ρ00Pi +ρP . P4∗ is defined as follows:

P4∗ : minimize
Pi,Bi

∑T

i=1

(
−ρiSi + biBi + p

i
Pi

)
(22)

subject to (8) and (9) (23)

Let fP4∗ be the objective function evaluated at the optimal
solution of P4∗ in (22). Define the following function:

L∗ (βi,ρ∗) = fP4∗ − ρBBtot − ρPPtot (24)

+
∑T

i=1
βi (ρiλMTiτi − ρ0BiBtot − ρ0PiPtot)

By virtue of Proposition 1, P4∗ and P4∗ are convex and
their global solution can be computed in polynomial time.

Let β0 be a real number. P4 is defined as follows:

P4 : minimize
β0,βi

β0 (25)

1The ln (2) term is obtained by noting that ln (1 + βi) = βi ln (2).

Algorithm 2 Greedy algorithm
1: Initialize β̄i = 1 for i = 1, 2, . . . , T .
2: Solve P3 for βi = β̄i.
3: if The convex problem P3 is not feasible then
4: Set β̄î = 0, where î = arg maxi {τi}.
5: Return to Step 2.
6: else
7: Return the solution,

(
P ∗
i , B

∗
i , β

∗
i

)
, of P3.

8: end if

subject to L∗
(
βi,µ

(k1)
)
≤ β0 k1 = 1, 2, . . . ,K1 (26)

L∗

(
βi,ρ

(k2)
)
≤ 0 k2 = 1, 2, . . . ,K2 (27)

where µ(k1) = µ∗ and ρ(k2) = ρ∗ as defined in Algorithm 1.
P4 is referred to as the master problem. The master problem

in (25)-(27) is, in particular, an MIL optimization problem,
whose global solution can be computed by using the branch-
and-cut algorithm based on Gomory cuts [11]. More specifi-
cally, a sequence of continuous relaxations of P4 are solved
by using standard linear programming methods [8, Chapter
5]. New Gomory cuts are added each time that the solution
of P4 results in some variables that are not integer numbers.
It is proved in [11, Theorem 9.13] that the branch-and-cut
algorithm based on Gomory cuts applied to an MIL converges
to its global solution in a finite number of iterations.

Therefore, three remarks about Algorithm 1 can be made.
• In contrast to P2, the computation of the global solution

of P4 can be guaranteed in a finite number of iterations.
The reason is that P4 is a linear optimization problem
and a systematic procedure to compute the cuts, which
assures the convergence to the global optimum, exists.

• Algorithm 1 consists of iteratively solving convex and
MIL optimization problems. Since all the considered
optimization problems can be solved globally, Algorithm
1 provably converges to the optimum of P2 in a finite
number of iterations [7, Theorem 2.5]. In particular,
Algorithm 1 is ε-optimal (with ε > 0).

• Since P4 is a non-convex optimization problem, it is not
possible to ensure that the global optimum of Algorithm 1
is computed in polynomial time. In Section V, we show,
however, that Algorithm 1 is more efficient than other
competing algorithms, including solving P1 by using
branch-and-bound methods applied to MINL problems.

V. NUMERICAL RESULTS

In this section, we substantiate the global optimality and
analyze the complexity of Algorithm 1. With the aid of the
OPTI toolbox integrated in Matlab [12], P3, P5, P4∗, and
P4∗ are solved by using the IPOPT solver, which employs the
primal-dual interior point method, and P4 is solved by using
the SCIP solver, which employs the branch-and-cut method.

We compare Algorithm 1 against three benchmark algo-
rithms: (i) the exhaustive search (brute-force) approach de-
scribed in Section III, which consists of solving 2T convex
optimization problems and then computing the best solution
among them. The convex problems are solved by using the
IPOPT solver of the OPTI toolbox; (ii) the branch-and-bound
algorithm, which is directly applied to the MINL optimization
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TABLE I: Simulation setup

λBS = 1/
(
πR2

cell

)
, λMT = 1/

(
πR2

MT

)
, Rcell = 500 m,

γI = γA = 10 dB, κ = 38.9 dB, α = 3.5, T = 20,
Btot = 100 MHz, Ptot = 30 dBm, N0 = −174 dBm/Hz,
τ1:7 = 37.74, 885.17, 913.29, 796.18, 98.71, 261.87, 335.36
τ8:14 = 679.73, 136.55, 721.23, 106.76, 653.76, 494.17, 779.05
τ15:20 = 715.04, 903.72, 890.92, 334.16, 698.75, 197.81
RMT1:7

= 5.13, 15.75, 48.06, 1.75, 55.73, 43.82, 29.32
RMT8:14

= 34.71, 14.24, 27.53, 57.79, 32.81, 31.27, 13.90
RMT15:20 = 29.33, 37.44, 40.75, 23.73, 22.05, 59.28
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Fig. 1: Convergence of Algorithm 1.
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Fig. 2: Comparison with benchmarks: Objective function.

problem P1 (equivalently P2). In this case, for a fair compar-
ison with Algorithm 1, the SCIP solver of the OPTI toolbox
is applied; and (iii) the greedy-like Algorithm 2.

The simulation setup is given in Table I. The numerical
results are obtained on a Lenovo Thinkpad T440 platform
(Intel Core i7-4500U, CPU 1.80-2.40 GHz, RAM 8.00 GB).

In Fig. 1, the convergence of Algorithm 1 is analyzed. In
particular, the UBD and LBD functions defined in Algorithm
1 are plotted as a function of the iterations. The gap between
the UBD and LBD functions decreases with the number of
iterations, which confirms the convergence of Algorithm 1.

In Fig. 2, the objective function in (4) that corresponds to
the solution of Algorithm 1 is compared against the other
three benchmark algorithms. Algorithm 1 returns the same
objective function as the brute-force search and the SCIP
general-purpose solver applied to P2, while Algorithm 2 yields
worse performance due to its sub-optimality. Therefore, it is
confirmed that algorithm 1 returns the global optimum.
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Fig. 3: Comparison with benchmarks: Computation time.

The advantage of Algorithm 1 compared with brute-force
and SCIP algorithms is apparent in Fig. 3. Since Algorithm
1 iteratively solves convex and MIL optimization problems,
its computation time is lower than the considered benchmark
algorithms. In the considered setup, Algorithm 1 may be even
faster, for large value of T , than the greedy algorithm. This
is due to the small number of iterations that are needed for
convergence (around 3, as shown in Fig. 1). The computation
time of Algorithm 1 does not increase exponentially with T .

VI. CONCLUSION
We have formulated a mixed-integer non-linear optimization

problem based on utility functions obtained from stochastic
geometry. By capitalizing on the generalized Benders decom-
position, we have devised an efficient numerical algorithm that
is provably convergent to the optimum in a finite number of
iterations. Numerical simulations confirm the convergence to
the same solution as a brute-force search but with reduced
computational complexity. The proposed approach constitutes
a viable and promising method for solving scheduling and
resource allocation problems in Poisson cellular networks.
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