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Framework
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Abstract—In this letter, we study the performance of a wireless
power transfer system under energy harvesting distribution
uncertainty. The uncertainty captures practical nonidealities
of the rectification process and is modelled as the maximum
Kullback-Leibler distance of the actual distribution from a
nominal distribution. The case where symmetrized divergence
is considered for the statistical distance between distributions is
also considered. By formulating a convex optimization problem,
we investigate a mathematical framework that provides closed
form expressions for the minimum average harvested energy (the
worst performance) and the associated statistical distribution.
Theoretical results show that the energy harvesting performance
is significantly degraded as the level of the uncertainty increases.

Index Terms—Wireless power transfer, uncertainty, Kullback-
Leibler divergence, average energy harvested.

I. INTRODUCTION

W IRELESS power transfer (WPT) is a new technology

which allows low-power devices to harvest energy

from dedicated/ambient radio-frequency signals. From the

seminal work in [1], where the authors introduced the prin-

ciples of WPT and the basic network architectures, WPT

has attracted a lot of attention from both academia and

industry. Recent studies take into account the nonlinearity

of the rectification circuit and study WPT from information

theory, signal-processing and/or networking perspective [2].

One of the most fundamental questions in WPT is the

modelling of the energy harvesting (EH) process. To address

this question, several deterministic models have been proposed

in the literature by trading off simplicity and accuracy. From

the initial linear model which has been used in [1], the

piece-wise linear model captures (in a simple way) the three

operation regions of the rectification circuit [3]. On the other

hand, more sophisticated parametric nonlinear functions (e.g.,

sigmoidal [4], fractional [5], etc.) have been proposed, where

the parameters are tuned by using real data and curve fitting

tools. Although these harvesting models try to approximate

the behaviour of the circuit from a communication theory

perspective, they neglect important practical phenomena e.g.,

antenna mismatching, parasitic effects, RC filter etc [6]. There-

fore, these deterministic models are associated with specific

operation points of the rectification circuit and are not able

to capture its general behaviour. To make these models more
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accurate and enhance their practical interest, they should be

extended by capturing uncertainty; for systems with low com-

putation/processing capabilities (e.g., WPT), this uncertainty

can be modelled by a partial knowledge of the EH statistical

distribution (including wireless channel and EH process) [7].

A fundamental model for communication under channel

distribution uncertainty is the compound channel [7, Sec. III],

where the transmitter knows that the (unknown) channel dis-

tribution is within a given Kullback-Leibler (KL) divergence

(uncertainty) from a nominal distribution. In this case, the

Shannon capacity is associated to a class of fading distri-

butions rather than a specific distribution. The work in [8]

studies the compound outage probability of a communication

system under KL fading distribution uncertainty and identifies

two fundamental operation regimes. The same mathematical

framework is used in [9] to study the ergodic compound

capacity of a multiple-input multiple-output system with in-

complete channel state information and in [10] to design the

optimal control of a stochastic system. The work in [11]

extends this framework for more general objective functions

and investigates the robustness of modulation and coding

schemes in body-area networks.

The objective of our work is to propose a mathematical

framework that integrates an EH distribution uncertainty in

WPT systems. Inspired by the fundamental concept of com-

pound channel [8], [11], we study the minimum average

harvested energy for a basic point-to-point link when the actual

EH distribution is within a certain KL uncertainty from a

nominal distribution. By formulating a convex optimization

problem with respect to the actual distribution, we admit a

general closed-form solution via the evaluation of the Karush-

Kuhn-Tucker (KKT) optimality conditions. We study the reg-

ular KL divergence metric and its asymmetric counterpart

(DKL(f0||f) and DKL(f ||f0)) as well as the symmetrized

divergence. We demonstrate that the EH performance (average

harvested energy) significantly decreases as the uncertainty

distance increases. Simplified closed-form expressions are

derived for the linear EH model with Rayleigh fading, where

the nominal distribution is exponential. The case where the

class/type of the actual EH distribution is known at the trans-

mitter is also discussed and simple expressions are proposed.

The proposed mathematical framework is general and can be

used as a basis to systematically study WPT applications.
II. AVERAGE HARVESTED ENERGY UNDER UNCERTAINTY

We study a fundamental point-to-point link consisting of

one transmitter that transmits energy signals to a single re-
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ceiver. Due to the wireless channel and the practical nonideal-

ities of the rectenna circuit [6], the energy harvested becomes

a random variable with a nominal distribution f0(x) ≥ 0 and

an unknown true distribution f(x) ≥ 0. According to the prin-

ciples of compound channel [7], we assume that this nominal

distribution is within a KL divergence DKL(f0||f) ≤ d from

the actual distribution, where DKL(f ||g) =
∫

f(x) log f(x)
g(x)dx

denotes the KL distance between the distributions f(x) and

g(x), and d is the maximum KL divergence; both f0(x)
and d are known at the transmitter through an appropriate

training/estimation process and feedback channel1. It is worth

noting that the parameters f0(x) and d determine the EH

uncertainty; they are considered constant for the whole com-

munication and independent on the transmit parameters. If

the performance of the WPT system is characterized by the

average harvested energy, the worst case scenario is captured

by the following optimization problem

(P1) min
f

∫

xf(x)dx (1)

s. t. DKL(f0||f) ≤ d,

∫

f(x)dx = 1. (2)

The solution of the optimization problem (P1) gives the min-

imum energy that can be harvested, when there is KL uncer-

tainty for the EH distribution. This is an important information

for the design of a WPT system with critical quality of service

constraints (e.g., design a robust transmission strategy that

ensures a minimum average harvested energy for all possible

cases; for the whole set of uncertainty). If E =
∫

xf(x)dx
denotes the solution to (P1), the following theorem gives the

associated actual distribution.

Theorem 1. The actual distribution that achieves the min-

imum average harvested energy is f(x) = 1
q(µ∗)

f0(x)
x+µ∗

,

where µ∗ is the solution of the (1- dimensional) equation
∫

f0(x) log[q(µ)(x + µ)]dx = d and q(µ) =
∫ f0(x)

x+µ dx.

Proof: The proof is given in Appendix A.

We now consider the performance of the system for two

asymptotic cases i.e., d = 0 and d → ∞. For the case

where d = 0, there is not distribution uncertainty and thus

f(x) = f0(x) and E0 =
∫

xf0(x)dx (expectation of the

nominal distribution). On the other hand, for the case d→ ∞,

we have
∫

f0(x) log[q(µ)(x+µ
∗)]dx→ ∞ which after simple

manipulations2 gives µ∗ → 0, q(µ∗) → ∞ and thus E → 0.

In the following discussion, we apply Theorem 1 for the case

where the nominal distribution is exponential3.

Special Case (Exponential distribution): For the case where

the nominal distribution is exponential i.e., f0(x) =

1The nominal distribution f0(x) refers to the selected model, while the
parameter d represents prior knowledge of the approximate behaviour of
the distribution and highly depends on the size/quality of the available
data, the estimation mechanism [12] (e.g., dynamics perturbations, hypothesis
test, etc.) as well as the technical capabilities of the communication and
WPT infrastructure (i.e., computational resources, feedback channel, rectenna
circuit, etc.) [8], [9].

2We have
∫
f0(x) log q(µ∗)+

∫
f0(x) log(x+µ∗) ≤ log q(µ∗)+E0+µ∗ ,

where we used the basic inequality log(x) ≤ x; since µ∗ and E0 are finite,
we have q(µ∗) → ∞.

3The exponential distribution is used for the sake of simplicity to introduce
the proposed mathematical framework. It also refers to a linear/piece-wise
linear EH model with Rayleigh channel fading.

λ0 exp(−λ0x), we have

f(x) =
1

q(µ∗)

λ0 exp(−λ0x)

x+ µ∗
=

exp(−λ0(x + µ∗))

E1(λ0µ∗)(x+ µ∗)
, (3)

q(µ∗) =

∫

∞

0

λ0 exp(−λ0x)

x+ µ∗
dx = λ0 exp(λ0µ

∗)E1(λ0µ
∗),

(4)

E =

∫

∞

0

xf(x)dx =
1

λ0 exp(λ0µ∗)E1(λ0µ∗)
− µ∗, (5)

where (4), (5) employ the expressions in [13, 3.352.4], [13,

3.353.5], respectively, and E1(x) =
∫

∞

x
exp(−t)

t dt is the

exponential integral [13]. The parameter µ∗ is the solution

of the simplified equation q(µ)/λ0 + log(µq(µ)) = d. We

can also calculate the cumulative density function (CDF) of

the distribution, which is useful for the evaluation of the

energy outage probability. Specifically, the CDF of the actual

distribution is equal to [13, 3.352.1]

F (x) =P(X ≤ x) =

∫ x

0

f(x)dx =1−
E1(λ0(x+ µ∗))

E1(λ0µ∗)
. (6)

A. KL divergence asymmetry

One of the main properties of the KL divergence is that is

not symmetric i.e., DKL(f ||g) 6= DKL(g||f). Here, we replace

the KL constraint in (2) with DKL(f ||f0) ≤ d i.e.,

(P2) min
f

∫

xf(x)dx (7)

s. t. DKL(f ||f0) ≤ d,

∫

f(x)dx = 1. (8)

By using a similar mathematical framework with the formu-

lation in (P1), we state the following theorem.

Theorem 2. The actual distribution that achieves the minimum

average harvested energy is f(x) = exp(−x/s∗)f0(x)
∫

exp(−x/s∗)f0(x)dx
,

where the variable s∗ is given numerically by solving the (1-

dimensional) equation in (30).

Proof: The proof is given in Appendix B.

By using similar arguments with the problem (P1), we can

see that f(x) = f0(x) when d = 0; the case d → ∞
will be discussed bellow for a specific example of nominal

distribution.

Special Case (Exponential distribution): For the case where

f0(x) = λ0 exp(−λ0x), we have f(x) = (1/s∗ +
λ0) exp(−x(1/s

∗ + λ0)), which shows that the actual distri-

bution is also exponential with parameter (1/s∗ + λ0). In ad-

dition, we have ζ(s∗) = λ0

(λ0+1/s∗)2 , ψ1(s
∗) = λ0

(λ0+1/s∗) and

thus E = ζ(s∗)
ψ1(s∗)

= s∗

1+s∗λ0
; s∗ is the solution of the simplified

nonlinear equation ξ(s) = d where ξ(s) = s log Z(s)
λ0

− 1
Z(s)

and Z(s) = 1
s + λ0 with s ∈ (0,∞).

To study the asymptotic performance, we can see that the

function ξ(s) is increasing (ξ′(s) ≥ 0) in the interval (0, s∗)
and decreasing (ξ′(s) ≤ 0) in the interval (s∗,∞), where

ξ′(s) = log
(

1 + 1
λ0s

)

− 2+λ0s
(λ0s+1)2 , and ξ′(s∗) = 0. Therefore,

for d ≥ ξ′(s) we have E = s∗

1+s∗λ0
; for d → 0, we have

lims→∞ ξ(s) → 0 and thus s∗ → ∞ which gives E = 1/λ0.

This is the basic difference between the two KL divergence

metrics; DKL(f ||f0) converges to a nonzero constant floor,

while DKL(f0||f) asymptotically converges to zero.
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B. Symmetrized divergence

The symmetrized divergence is another statistical distance

metric, which in contrast to the KL divergence metrics,

it satisfies the property of symmetry [14]. Specifically, the

symmetrized divergence is defined as

DSYM(f0, f) =
1

2

[

DKL(f0||f) +DKL(f ||f0)
]

, (9)

and it can be seen that DSYM(f0, f) = DSYM(f, f0); we

note that DSYM might not satisfy the triangle inequality and

therefore it is not an actual distance. In this case, the original

optimization problem is formulated as follows

(P3) min
f

∫

xf(x)dx (10)

s. t. DSYM(f0, f) ≤ d,

∫

f(x)dx = 1. (11)

The optimization problem (P3) is also convex since the

symmetrized divergence is a convex statistical metric. In the

following theorem, we provide the actual distribution that

solves (P3) as a function of the nominal distribution.

Theorem 3. The actual distribution that achieves the minimum

average harvested energy is f(x) = f0(x)

W0

(

exp
(

2(x+µ∗)
s∗

)) , where

the parameters s∗ > 0, µ∗ are computed numerically by

solving the (two-dimensional) system of equations in (33),

(34).

Proof: The proof is given in Appendix C.

C. Known class/type of the true distribution- case studies

Here, we assume that although there is uncertainty for

the distribution f(x), we know the exact class/type of the

unknown distribution. This assumption can be supported by a

more strict distribution estimation process, which provides the

type of the distribution in addition to the maximum statistical

distance d; this case has mainly theoretical interest and allows

to further investigate the impact of the divergence between the

selected and the true model on the system performance. The

following discussion refers to two specific case studies.

Case study 1 (Exponential distributions): if the nominal and

the actual distribution are exponential with parameters λ0 and

λ1 ≥ λ0, respectively, the KL divergence is written as

DKL(f0||f) =

∫

∞

0

λ0 exp(−λ0x) log
λ0 exp(−λ0x)

λ1 exp(−λ1x)
dx

= log
λ0
λ1

+
λ1 − λ0
λ0

. (12)

In this case, we have DKL(f0||f) ≤ d ⇒ λ1

λ0
exp(−λ1

λ0
) ≥

exp(−d − 1). Since the function g(x) = x exp(−x) is

monotonically decreasing for x ≥ 1 (i.e., g′(x) ≤ 0 with

x ≥ 1), the minimum average expected value is achieved at

the boundary i.e., λ1

λ0
exp(−λ1

λ0
) = exp(−d − 1) which gives

λ∗1 = max[−λ0W0(− exp(−d−1)), λ0(1+d)], whereW0(·) is

the principal branch of the LambertW function [13]; in a sim-

ilar way, for the symmetric case (DKL(f ||f0)) we have λ∗1 =
max[−λ0/W0(− exp(−1−d)), λ0/(1+d)]. For the case of the

symmetrized divergence, we have DSYM(f0, f) =
λ1

λ0
+ λ0

λ1
−2

and therefore DSYM(f0, f) ≤ d⇒ λ21−2λ0(d+1)λ1+λ
2
0 ≤ 0
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Fig. 1. CDF of the actual distribution for different values of d; solid-lines and
dashed-lines correspond to the KL divergence DKL(f0||f) and DKL(f ||f0),
respectively; nominal distribution f0(x) = exp(−x).
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Fig. 2. Minimum average energy harvested (worst case performance) versus
d with f0(x) = exp(−x); for the DKL(f ||f0) case, we have ξ′(s) = 0 ⇒

s∗ = 0.46, and E = s
∗

1+λ0s
∗
= 0.31.

with solution λ1 ∈ [λ0(d + 1) − λ0
√

d(d+ 2), λ0(d + 1) +
λ0

√

d(d + 2)]; therefore λ∗1 = λ0(d+1)+λ0
√

d(d+ 2). For

all the cases, the minimum average harvested energy is equal

to E = 1/λ∗1.

Case study 2 (Uniform distributions): If the nominal and the

actual distributions are uniform over the interval [0, α] and

[0, β] with β ≤ α, respectively, we obtain DKL(f ||f0) ≤ d⇒
log α

β ≤ d⇒ β ≥ α exp(−d), and therefore the solution of the

optimization problem considered is achieved at the boundary

i.e., E = α exp(−d)
2 . As for KL asymmetry and the symmetric

divergence, f0(x) is not dominated by f(x) and thus we have

DKL(f0||f) = ∞ [14, Def. 6.1]; therefore, these two metrics

have not practical interest.

III. NUMERICAL RESULTS

Computer simulations are carried-out to validate the pro-

posed mathematical framework. For the sake of simplicity, the

numerical results concern a normalized exponential nominal

distribution i.e., f0(x) = λ0 exp(−λ0x) with λ0 = 1.

Fig. 1 shows the CDF of the actual distribution for different

values of d for both KL divergence metrics considered. As it

can be seen, a higher KL distance d shifts the CDF curves from

right to left and increases the gap between nominal and actual

distribution. We can see that the uncertainty significantly

affects the harvested energy and an increase of the distance
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Fig. 3. CDF of the actual distribution under symmetrized divergence
uncertainty for different values of d; nominal distribution f0(x) = exp(−x).
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Fig. 4. Uncertainty with known class of distribution- λ1/λ0 versus the
distance d for an exponential nominal distribution f0(x) = λ0 exp(−λ0x).

d results in a more conservative EH performance. Another

interesting observation is that both KL divergence metrics

follow the same behaviour/trend and result in same general

conclusions; however, it worth noting that DKL(f ||f0) results

in a more conservative actual distribution than DKL(f0||f) for

low d. As the distance d increases, we have the opposite be-

haviour which is also justified by the asymptotic performance

of the two metrics (see Fig. 2 for d = 0.5).

Fig. 2 plots the minimum average harvested energy (worst

case performance) versus the KL distance d for both consid-

ered KL divergence metrics. As it can be seen, the worst per-

formance significantly decreases as the distance d increases.

This plot also validates our asymptotic results for high values

of d (i.e., d→ ∞) which are discussed in Section II. It can be

seen that swapping the distributions (nominal and true) results

in a floor effect; E asymptotically converges to zero for the

metric DKL(f0||f), while E converges to a constant floor that

depends on the KL distance d i.e., s∗/(λs∗+1) for the metric

DKL(f ||f0).
In Fig. 3, we show the CDF of the actual distribution for dif-

ferent values of d, when statistical distance corresponds to the

symmetrized divergence metric. It can be seen that the CDF is

shifted towards its left as the distance d increases; therefore the

associated energy outage probability increases. This behaviour

is inline with the observations in Fig. 1. However, it is worth

noting that the symmetrized divergence results in a CDF

which is between the CDFs associated with DKL(f0||f) and

DKL(f ||f0). Therefore, the symmetrized divergence consists

of a balance between the two KL metrics considered. In this

figure, we also show the minimum harvested energy (solution

to (P3)) by following the theoretical framework in Section

II-B.

Finally, Fig. 4 deals with the actual distribution when the

class/type of the true distribution is known. Specifically, we

assume that nominal/actual distributions are exponential with

parameters λ0 and λ1, respectively, and we plot λ1/λ0 versus

d for the statistical divergence metrics considered. It can be

seen that the difference between the true and the nominal

distributions increases as the divergence d increases. In ad-

dition, we can see DKL(f0||f) provides a better estimation of

f(x) (i.e., λ1/λ0 increases linearly with d), while DKL(f ||f0)
results in an exponential difference.

IV. CONCLUSION

A mathematical framework that integrates EH uncertainty

in the current deterministic WPT models has been proposed.

By exploiting the notion of the compound channel model, we

have studied the worst performance (average harvested energy)

when the actual end-to-end distribution is within a given

KL/symmetrized maximum statistical distance from a nominal

distribution. General closed-form expressions that hold for any

nominal distribution as well as simplified expressions that refer

to an exponential nominal distribution have been derived. The-

oretical results show that distribution uncertainty significantly

affects EH performance and therefore its integration to current

WPT models is essential for a robust design.

APPENDIX A

PROOF OF THEOREM 1

Since the problem is convex (i.e., linear objective function

and convex constraints), KKT conditions are necessary and

sufficient for optimality [15]. The Lagrangian function of the

problem is written as

L =

∫

xf(x)dx

+s

(
∫

f0(x) log
f0(x)

f(x)
dx − d

)

+ µ

(
∫

f(x)dx− 1

)

,

(13)

where s and µ are the Lagrange multipliers of two constraints.

The associated KKT conditions are given as follows [15]

x− s
f0(x)

f(x)
+ µ = 0, (14)

∫

f(x)dx − 1 = 0, (15)

s

(
∫

f0(x) log
f0(x)

f(x)
dx− d

)

= 0, (16)

s ≥ 0. (17)

From the complementary slackness condition in (16), for s > 0
the minimum is achieved at the boundary. In this case, by
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combining (14) and (15) and after some manipulations, we

have

f(x) =
f0(x)

q(µ∗)(x+ µ∗)
, (18)

where

q(µ) =

∫

f0(x)

x+ µ
dx, (19)

and µ∗ is the unique solution of the nonlinear equation
∫

f0(x) log[q(µ)(x + µ)]dx = d, (20)

which can be solved numerically (e.g., Newton-Raphson

method).

APPENDIX B

PROOF OF THEOREM 2

Since the asymmetric KL divergence is also convex with

respect to f(x) [14], the optimization problem remains convex;

we formulate the Lagrange function i.e.

L2 =

∫

xf(x)dx

+ s

(
∫

f(x) log
f(x)

f0(x)
dx − d

)

+µ

(
∫

f(x)dx− 1

)

. (21)

The associated KKT conditions [15] are written as

x+ s

(

log
f(x)

f0(x)

)

+ µ = 0, (22)

∫

f(x)dx = 1, (23)

s

(
∫

f(x) log
f(x)

f0(x)
dx− d

)

= 0. (24)

s ≥ 0. (25)

For s > 0, the optimal solution is located at the boundary

(complementary slackness in (24)); by combining the above

equations, we have

f(x) =
ψ0(x, s

∗)

ψ1(s∗)
, (26)

where

ψ0(x, s) = exp(−x/s)f0(x), (27)

ψ1(s) =

∫

ψ0(x, s)dx, (28)

ζ(s) =

∫

xψ0(x, s)dx. (29)

The optimal dual variable s∗ can be found by solving numer-

ically the following equality

−
ζ(s)

ψ1(s)
− s logψ1(s) = sd. (30)

APPENDIX C

PROOF OF THEOREM 3

The Lagrangian function for the problem in (P3) is written

as
L =

∫

xf(x)dx

+
s

2

(
∫

f0(x) log
f0(x)

f(x)
dx+

∫

f(x) log
f(x)

f0(x)
dx

)

+ µ

(
∫

f(x)dx − 1

)

. (31)

By taking the derivative of L with respect of f(x), we employ

the KKT conditions

x−
s

2

(

f0(x)

f(x)
+ log

f0(x)

f(x)

)

+ µ = 0, (32)

∫

f(x)dx = 1, (33)

s

2

(
∫

f0(x) log
f0(x)

f(x)
dx+

∫

f(x) log
f(x)

f0(x)
dx− d

)

= 0, (34)

s ≥ 0. (35)

By solving (32) with respect to f(x), we derive an expression
of the actual distribution

f(x) =
f0(x)

W0

(

exp
(

2(x+µ∗)
s∗

)) , (36)

where the optimal dual parameters s∗ and µ∗ can be computed

numerically by solving a (two-dimensional) nonlinear system

of equation that is defined by (33) and (34).
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