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Abstract

This paper investigates the performance of a legitimate surveillance system, where a legitimate monitor
aims to eavesdrop on a dubious decode-and-forward relaying communication link. In order to maximize
the effective eavesdropping rate, two strategies are proposed, where the legitimate monitor adaptively acts
as an eavesdropper, a jammer or a helper. In addition, the corresponding optimal jamming beamformer
and jamming power are presented. Numerical results demonstrate that the proposed strategies attain better
performance compared with intuitive benchmark schemes. Moreover, it is revealed that the position of

the legitimate monitor plays an important role on the eavesdropping performance for the two strategies.

I. INTRODUCTION

With rapid advancements in wireless technologies, wireless communications infrastructure and
services have brought great convenience to our daily lives. However, the benefits of wireless com-
munication may be exploited by potential malicious users to commit crimes or terror attacks [1],
[2]. Therefore, there is a growing need for the authorized parties such as government agencies to
legitimately monitor any suspicious communications to ensure public safety and prevent terrorism.

Responding to this, a new paradigm shift in wireless security by investigating how a legitimate
monitor performs legitimate information surveillance, was proposed in [3]-[3]. In particular, the

authors proposed a novel approach, namely, proactive eavesdropping via jamming, where the
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legitimate monitor operates in a full-duplex manner, and purposely transmits jamming signals to
interfere with the suspicious link while performs eavesdropping. Later in [6]], another spoofing-
relay based proactive eavesdropping approach was proposed.

Note that all the aforementioned works focus on the three-node point-to-point communication
setup. Thus far, how to perform proactive eavesdropping in relaying systems remains largely
an uncharted area. Motivated by this, in this paper, we propose a novel legitimate surveillance
approach for dual-hop decode-and-forward (DF) relaying communication systems. Specifically, to
maximize the effective eavesdropping rate as in [6]], two strategies are designed for the legitimate
monitor, which acts adaptively as an information eavesdropper, a destructive jammer or a con-
structive helper in the two time slots. For each strategy, the optimal jamming beamformer and
jamming power are derived. Numerical results reveal that the proposed strategies achieve better
performance than some intuitive benchmark schemes.

Notation: We use bold upper case letters to denote matrices, bold lower case letters to denote
vectors and lower case letters to denote scalars. ||-||, (-)" and tr(-) denote Euclidean norm, conjugate
transpose operator and the trace of a matrix, respectively. IIx £ X (XTX)_1 X' represents the
orthogonal projection onto the column space of X and IIx £ I — IIx denotes the orthogonal

projection onto the orthogonal complement of the column space of X.

II. SYSTEM MODEL

As shown in Fig. [Il we consider a four-node legitimate surveillance system, where a legitimate
monitor E aims to eavesdrop the communication between a suspicious transmitter S and a suspi-
cious receiver D, which is assisted by a DF relay R. We assume that R and E are equipped with
N and M antennas, respectively, while S and D are equipped with a single antenna each. All
nodes operate in the half-duplex mode and a direct link exists between S and D.

We adopt the time-sharing protocol [7], where the entire communication consists of two time
slots. The relay listens to the source transmission during the first time slot, and then forwards
the decoded symbol to the destination in the second time slot. In contrast, the legitimate monitor
may choose to either jam, eavesdrop, or help, depending on the channel conditions during the

two time slots.
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Fig. 1. A four-node legitimate surveillance system.

We assume that all the channel links are composed of large-scale path loss with exponent 7 and
statistically independent small-scale Rayleigh fading. We denote the inter-node distance of links S
—+R,S—-D,S—-E R—E R—DandE — Dby di, ds, ds, dy, d5 and dg, respectively. The
corresponding small-scale fading channel coefficients are denoted by /N x 1 vector h;, scalar hy,
M x 1 vector hy, M x N matrix Hy, 1 x N vector hy and 1 x M vector hg, respectively. Quasi-static
fading is assumed, such that the channel coefficients remain unchanged during each transmission
block but vary independently between different blocks. Each element of these complex fading
channel coefficients are circular symmetric complex Gaussian random variables with zero mean
and unit variance. Channel reciprocity is also assumed.

We assume that global channel state information (CSI) is available at EJEI, while S, R and D
only know the channel gains of relative suspicious channels. This assumption is practical since
it is difficult for the suspicious nodes to know the existence of the legitimate monitor and hence

conventional physical layer security is not applied to prevent eavesdropping.

III. PROBLEM FORMULATION

In this section, we describe in detail the problem formulation. Depending on the particular

action taken by E during the first time slot, we consider two separate scenarios.

A. Strategy I: Jamming First

This scenario is applicable when E is located relatively far away from S, thus E is un-
likely to have a good eavesdropping performance. Therefore, in the first phase when S trans-
mits information signal to R and D, E simultaneously transmits jamming noise to disrupt the

"The CSI can be obtained by utilizing the methods given in paper [4], [6].



suspicious communications. The received signals at R and D can be respectively expressed as

gﬁ hx + T H4ws +n,, and i = %hg[[’ + %hGWS + ng1, where the superscript
JE stands for “jamming-then-eavesdropping”, P, denotes the transmit power of S, x and s denote
the information and jamming symbol with unit power, respectively. w is the M x 1 transmit
beamforming vector at E with wiw < P, where P denotes the maximum jamming power at E.
In addition, n, and ng4 are the additive white Gaussian noises (AWGNSs) at R and D, respectively.
Without loss of generality, the elements of n, and ng4 follow zero mean Gaussian distribution
with unit variance.

In the second phase, R first decodes the information from S using maximal ratio combining
(MRC), and then forwards the re-encoded symbol to D using maximum ratio transmission (MRT),
while E tries to overhear the signal. The received signals at D and E can be expressed as y}; =
\/dzgrh5 Hh—;’Hx+nd2, and y'F = \/%H4 Hh—iux—i—neg, where P, denotes the transmit power of R, 745
and n., are the AWGNSs at D and E, respectively. Since D observes two copies of the signal, MRC
is used to enhance the signal recovery, while E exploits the multiple antennas by using MRC for

reception. Therefore, the corresponding SNRs (signal-to-interference-plus-noise ratios, SINRs) at
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B. Strategy II: Eavesdropping First

In contrast to strategy I, it is a better choice to perform eavesdropping in the first phase if the
quality of S — E link is good. In this case, S broadcasts the information signal to R and D, while
E tries to eavesdrop the information. The received signals at R, D, and E can be respectively

expressed as y; = %hlx +n, Yy, = %hg[[’ + ng, and y; = %hg[[’ + n, with % €

2 X3

{EH, EE, EJ}, where each superscript stands for “eavesdropping-then-helping”, * eavesdropping-

" (13

then-eavesdropping”, “ eavesdropping-then-jamming”, respectively. Also, n.; is the AWGN at E.

Therefore, the received SNRs at R and E can be expressed as SNR; =

|| and SNR? =

dT N()



Now, depending on the relative channel quality of the suspicious communication link and
eavesdropping link, E may take different actions in order to maximize the effective eavesdropping
rate in the second phase.

1) Helping: If SNR; < SNR?, E is guaranteed to successfully decode the suspicious in-
formation. Therefore, in order to further improve the effective eavesdropping rate, E acts as a
helper trying to increase the rate of the suspicious link. As such, the received signal at D can be
expressed as yd2 = \/%h5 HE—EHx + \/dzghﬁ Hﬁ—éux + ng4o, Where P, denotes the transmit power of
E. For fairness of comparison between different strategies, we constrain the maximum transmit
power as in strategy I, i.e., 0 < P, < P. Therefore, the corresponding SNRs can be expressed
by |[?, Tg" = ? + 5 (/2 Ihs|| + [ %,

as TEH =

)2, and TEH =

dTNo dT No dTN 0

respectively.

2) Eavesdropping: 1f E is not able to decode the information in the first phase, E may choose
to either continue eavesdropping the suspicious link or switch to jamming in the second phas
then the received signals at D and E can be expressed as ygg = \/deghgj HE—EH‘W + Ng9, and yEE =
\/%HM'E—;HJJ + n.,. To strengthen the signal detection, E employs MRC to combine the signals
Iy [,

from two time slots. Therefore, the corresponding SNRs can be expressed as TEE =

|ho|® + s[> +

dT No
FEE

dTN dTN |h;||?, and TEE = dTN dTN0||H4|| ‘||2, respectively.

3) Jamming: In this case, E performs jamming in an effort to degrade the rate of the suspicious

link, so that the probability of the successful eavesdropping can be improved. Therefore, the re-
t i

ceived signal at D can be expressed as y53 = | /%h5 %:@’—i—w /%h(ﬁ%ﬁneg. The corresponding
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SNRs (SINRs) can be expressed as TH = dT A dT N and

FEJ

, respectively.

C. Problem Formulation

Depending on the different strategies, the maximum achievable rate of the suspicious link and
eavesdropping link can be respectively expressed as Csp = 3 min (log(l +T%), log(1 + Fg)) and
Cse = 3 log(1+T%), where ¢ € {JE,EH, EE, EJ}. Note that the factor 1 is due to the fact that

the entire communication occupies two slots.

>The mode selection criterion will be specified in the next section.



If Csg > Csp, E can reliably decode the suspicious information with arbitrarily small error
probability. As such, the effective eavesdropping rate is given by R = Csp [6]. On the other hand,
if Csg < Csp, it is impossible for E to decode the information without any error. In this case, the
effective eavesdropping rate is defined as R = 0. Therefore, the main objective is to optimize the
transmit beamforming vector w for strategy I or the transmit power P, for strategy II at E, so
that the effective eavesdropping rate is maximized. The corresponding optimization problem can

be formulated as

(P1) max Cgp
S.t. CSE Z CSD

wiw<P or 0<P <P (1)

IV. OPTIMAL BEAMFORMER AND TRANSMIT POWER DESIGN

In this section, we study the optimal beamformer and transmit power design of optimization

problem (P1).

A. Strategy I: Jamming first

Since logarithm is a monotonically increasing function, problem (P1) can be reformulated as

(P2) max f(w)

st. O > f(w) and wiw < P, 2)
h = min(© o 2. o hs|[%, O = D578 | hy|?, O3 = di N,
where f(w) = min( 1+|hﬁw|2+@3 i ), O1 = dTN |[hs|| 2= " |ha|?, O3 64V0s
[ Hbw 205 i
. i _ _
Oy = le‘lf“ [|hy]|%, ©5 = dj Ny, and Og = CQ——]QOHHZLHEEH ||2. Tt is easy to observe that the maximum
value of f(w) equals to fiax (W) = min(©; + g—g, 8—‘;), which can be achieved when w = 0.

Then we have the following important observation:

Lemma 1: The optimal transmit beamformer that minimizes f (w) can be expressed as

HhT H4h1 H H4h1

Wopt = VI + VP —0———— 3
VIR Y I ®



with 0 <z < P. Proof: The proof of Lemma 1 can be referred to [8].

Substituting Wy, into f (w), and define g () = min(©; +
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We now consider three separate cases:

1) If O > fmax (W), i.e., the eavesdropping channel is sufficiently good that E is able to decode
the information successfully without any help. As such, it is better for E to eavesdrop rather than
to jam, i.e., w = 0. Therefore, the corresponding eavesdropping rate is %log (1 4+ fmax (W)).

2) If ©g < fumin (W), i.e., the eavesdropping channel is too weak that even jamming with full-
power is insufficient, thus there is no need to waste jamming power. Therefore, we set w = 0,
the resulting eavesdropping rate is 0.

3) Otherwise, since f (w) is a continuous function of w, there exists w satisfying f (w) = Og. As
such, the corresponding eavesdropping rate is % log (1 + ©g), where the optimal w can be obtained
with the help of semidefinite programming (SDP) technique [9]. Specifically, let W = ww' and

ignore the rank-one constraint, W can be found by

(P3) II‘I}%’H 0 4)
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s.t. tr(Whihg) = O3,
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or

(P4) min 0 (5)

st tr(WHhhiH)) = ||hy])? (— —05),
6

O,
Wh h
tr( 6) < 6,0, — O3,

w(W)< P, W =0.

Note that at least one of the optimization problems is feasible and the convex SDP problem can
be efficiently solved using the CVX tools [9]. Due to the fact that the optimal solution may have
a rank higher than one, we need to use some approximation approaches such as randomization to

find the approximate beamforming vectors [10]].

B. Strategy II: Eavesdropping First

In this subsection, we provide the optimal transmit power solution of problem (P1).

If SNR” < SNR, E can always successfully decode the suspicious message. Hence, the effective
eavesdropping rate is determined by the maximum achievable rate of the suspicious link. Since
the achievable rate of the dual-hop suspicious link is limited by the rate of the weakest hop, E
may act as a helper to improve the SNR of the second hop if it is inferior to the SNR of the first
hop. Depending on the effective SNRs of the two hop channels, we consider three different cases:

ol <

D If 5

1>+ d «~|[hs]|?, the effective SNR of the second hop without help from

— d"No

E is larger than that of the first hop, then E can remain silent, i.e., P. = 0, and the corresponding
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eavesdropping rate is 1 5 log(1 +

2) If

dT i |2, the effective SNR of the second hop

is too weak that E should help with maximum transmit power P, and the eavesdropping rate is

slog(1+ o lhol? + 5 (4 /EIhs[| + /= 11he[])).
3) Otherw1se,Ecan adjust its transmit power to maintain TEH = FEH,ie P, = IIIf\P(\/%thHQ — Le|hy|2—
1 2

d%||h5||) and the corresponding eavesdropping rate is 3 log(1 +

2),

If SNR” > SNR, E is not guaranteed to decode the suspicious 1nformati0n successfully in the

first phase, thus E can act as an eavesdropper or a jammer in the second phase. Three cases are



studied:

1) If

||hs||* > dTP o lhal? + dT = |[hs||?, the effective SNR of the eavesdropping channel is

dTN
larger than that of the second hop channel, then E can always successfully decode the suspicious

information. Therefore, E can remain silent in the second phase, and the corresponding eaves-
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dropping rate is %log(l +
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2) If

dT e the effective SNR of the eavesdropping chan-

nel is too weak such that even full-power jamming does not work, E has no choice but to

eavesdrop again to enhance the eavesdropping performance. Thus, the eavesdropping rate is

5 log(1 + min(

2 + |hs|[*)) when TEE > min (TEE, T5E), otherwise the

) dTNO dTN

eavesdropping rate is 0.

3) Otherwise, E can select to perform eavesdropping or jamming to ensure the success of decod-

_Ps
and TN

ing. Since , which indicates
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that eavesdroppmg provides a higher rate, we propose to use E as an eavesdropper if TPF >

min (I'EE, T5F), and the corresponding eavesdropping rate is 1 log(1-+min (%

d] No ) dTNo

||hs|[?)). If TEE < min (EE, TEE), E can adjust its jamming power to maintain I'¥ = FEJ, ie.,
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—df), and the resulting eavesdropping rate is 5 log(1+ 7N

V. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the performance of the proposed
proactive strategies. Unless otherwise specify, we set the carrier frequency as 5 GHz, the bandwidth
as 20 MHz, the noise power density as -174 dBm/Hz, and the transmit power of S and R as
P, = P, =40 dBm. The path-loss exponent is 7 = 3, and the numbers of the antennas at R and
E are N = M = 4. The four nodes are located in a 2-D topology, where S, R, D, and E are
located at (0,0) km, (2,0) km, (4,0) km, and (2, 3) km, respectively.

Fig. 2| depicts the achievable eavesdropping rate of different strategies. For comparison, the
performance of two heuristic benchmark schemes are also plotted, namely, eavesdropping-then-
jamming and eavesdropping-then-eavesdropping. As expected, strategy Il always outperforms the
two reference schemes, since it adaptively adjusts the action of the legitimate monitor to enhance

the eavesdropping rate of the system. However, the performance difference of strategy I and II
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Fig. 2. Eavesdropping rate comparison of the two strategies and other benchmark schemes.

depends heavily on the network topology and operating parameters. In the current setup, strategy
I is inferior in the low jamming power regime, while becomes superior when there is sufficient

available jamming power.
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Fig. 3. Eavesdropping rate versus different positions of the legitimate monitor with P = 40 dBm.

In Fig. Bl we plot the eavesdropping rate as a function of the legitimate monitor’s location
for the two strategies where the y-coordinate (Ey) of E is fixed as 3 km or 4 km, while the
x-coordinate (Ey) of E varies within the range of [0,4] km. We observe that when E moves away
from S, the eavesdropping rate of strategy II monotonically decreases. This is intuitive since the
eavesdropping performance degrades when the distance between E and S increases. In contrast,
there is an optimum position for E when adopting strategy I, i.e., the point that is most close to
R. This reason is that when E is near R, it can perform jamming and eavesdropping efficiently.
Therefore, as a simple criterion, E employs strategy II when it is close to S, and employs strategy

I when it is close to R.
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VI. CONCLUSION

This paper considered the issue of legitimate surveillance in a dual-hop DF relaying system.
Specifically, two strategies aiming at maximizing the effective eavesdropping rate have been
proposed, and the corresponding optimal beamformer and power allocation scheme have been
obtained. It was shown that the proposed strategies significantly outperform other benchmark
schemes. Moreover, the position of the legitimate monitor can be used as a simple criterion to

determine the appropriate strategy.
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