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Abstract— Visual Place Recognition (VPR) is fundamental for
the global re-localization of robots and devices, enabling them
to recognize previously visited locations based on visual inputs.
This capability is crucial for maintaining accurate mapping
and localization over large areas. Given that VPR methods
need to operate in real-time on embedded systems, it is critical
to optimize these systems for minimal resource consumption.
While the most efficient VPR approaches employ standard
convolutional backbones with fixed descriptor dimensions, these
often lead to redundancy in the embedding space as well as
in the network architecture. Our work introduces a novel
structured pruning method, to not only streamline common
VPR architectures but also to strategically remove redundancies
within the feature embedding space. This dual focus signif-
icantly enhances the efficiency of the system, reducing both
map and model memory requirements and decreasing feature
extraction and retrieval latencies. Our approach has reduced
memory usage and latency by 21% and 16%, respectively,
across models, while minimally impacting recall@1 accuracy
by less than 1%. This significant improvement enhances real-
time applications on edge devices with negligible accuracy loss.

I. INTRODUCTION

Visual Place Recognition (VPR) is a critical capability
in the field of robotics, enabling robots and devices to
recognize locations they have previously visited based on
visual inputs. This ability is fundamental to achieving global
re-localization, which facilitates consistent mapping and lo-
calization across expansive areas within a visual perception
system. Typically framed as an image retrieval problem, VPR
requires a feature extraction model to generate embeddings
that are proximate in feature space for images of the same
location and distant for those of different locations. This is
despite natural variations that occur in different images of
the same place such as changes in lighting, occlusion, and
appearance over time.

For practical applications, such as in the loop closure
module of Visual Simultaneous Localization and Mapping
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Fig. 1: Structured Pruning of Convolution Visual Place
Recognition Networks. In grey is the pruned backbone filters,
which once removed simultaneously reduce the backbone
size and descriptor dimension.

(VSLAM) systems, VPR methods must operate in real-
time, necessitating the use of on-device processing [1]. This
requires efficient utilization of resources to minimize power
and computational demands while maintaining accuracy and
robustness across various environments. Recent methods,
including TransVPR, AnyLoc, and DinoSalad, [2], [3], [4]
primarily focus on enhancing robustness and accuracy using
large, powerful, self-supervised, pre-trained transformers.
Although these methods achieve state-of-the-art accuracy,
their resource demands are prohibitively high for real-time
deployment on low powered edge devices [1].

Current state-of-the-art VPR methods suited for real-time
deployment, such as EigenPlaces, MixVPR, and CosPlace
[5], [6], [7], utilize either ResNet or VGG convolutional
backbones for feature extraction and employ fixed descriptor
sizes. Although these methods achieve excellent recall scores
and maintain efficient resource utilization, they do not fully
exploit potential redundancies in their descriptors and feature
extraction networks, which could be used to further enhance
efficiency.

To address this gap and further exploit efficiency while
maintaining robustness and accuracy, our work leverages
structured pruning to optimize both the feature extraction
networks and retrieval steps. Structured pruning involves
removing groups of non-salient weights in the neural network
that have minimal impact on accuracy [8]. This approach
significantly reduces the network size, providing substan-
tial resource savings. Unlike unstructured pruning, which
removes individual weights, structured pruning eliminates
entire neurons or filters in convolutional networks, resulting
in a dense pruned model. This density preserves the effi-
ciency of memory access and supports the acceleration of
smaller networks through parallel computation [9].

Structured pruning is most commonly applied to clas-
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sification problems where the output dimension remains
constant [10]. However, in embedding models, it is both
possible and computationally advantageous to reduce the
output dimension. This reduction, however, can detrimentally
impact the recall@1 score by decreasing the capacity of
the embedding space. Therefore, identifying the minimal
dimension of the embedding space and the optimal model
architecture is critical to maximize recall@1 accuracy while
minimizing memory and computational demands of VPR
systems. Our method’s approach to addressing this challenge
is illustrated in Fig. 1, where we use structured pruning
both as an architecture search mechanism to identify an
efficient model architecture and to minimize the embedding
space. By executing these dual optimizations, our method
provides a twofold performance benefit for the VPR system,
reducing the resources needed for both feature extraction and
map storage and searching. Furthermore, the architectures
of current real-time VPR feature aggregation techniques,
such as MixVPR, GeM, ConvAP, and NetVLAD are highly
specialized [6], [11], [12], [13]. Thus, they require tailored
approaches to maximize resource efficiency, and our methods
are specifically designed to address this challenge.

Our key contributions include:
• Introduction of Structured Pruning to VPR: We intro-

duce three new pruning methods to the VPR domain,
adapting state of the art network architectures to elim-
inate non-essential weights.

• Enhanced Efficiency in Resource Utilization: Our
method achieves substantial reductions in resource de-
mands, demonstrating an average reduction in memory
and latency of 21% and 16% respectively for less than
a 1% decrease in recall@1.

• Comprehensive Assessment of Efficiency-Performance
Trade-offs: We analyze the trade-offs between efficiency
and performance of our pruning methods, providing
detailed results that include quantitative metrics and
empirical embedding space analysis. Evaluations on an
Nvidia Xavier NX platform, representative of typical
robotic hardware, demonstrate our method’s effective-
ness.

This paper is organized as follows: Section II reviews re-
lated work on visual place recognition and pruning methods.
Section III details our structured pruning approach for VPR
architectures. Section IV presents the experimental setup
and results, including analysis of memory usage, latency,
and embedding space. Finally, Section V concludes with a
discussion of our findings and their implications for real-time
VPR systems.

II. RELATED WORK

In this section, we review existing methods in visual
place recognition and pruning, highlighting advancements
and identifying gaps addressed by our approach.

A. Visual Place Recognition

To achieve high accuracy in VPR, methods must ef-
fectively extract features that are invariant to changes in

different images of the same place. Convolutional Neural
Networks (CNNs) excel in this area, benefiting from exten-
sive research into optimal feature map pooling techniques,
including hierarchical, spatial, and region of interest methods
[14], [7], [15]. Beyond basic pooling, more advanced meth-
ods extract feature vectors and aggregate them into holistic
representations. An example of which is the NetVLAD
aggregation [13], which uses a differential relaxation of the
Vector of Locally Aggregated Descriptors (VLAD) technique
to emphasize salient parts of the image. A more recent
advancement is MixVPR [6], which adapts an MLP-Mixer
architecture to iteratively process the channel and spatial
dimensions of CNN feature maps.

Alongside these developments, the advent of powerful
self-supervised foundation models has led to the emergence
of highly robust VPR methods that adapt the general repre-
sentations of the DINOv2 model to the VPR task [16]. Whilst
all of them show excellent accuracy it remains a challenge to
deploy them into the real-time perception systems of mobile
robotic systems. Such systems usually default to using simple
hand-crafted features [17] due to the need for resource
efficiency in terms of memory consumption and processing
latency. For example FAB-MAP [18], ORB-SLAM2/3 [19],
and Kimera1/2 [20], all use a bag of visual words aggregation
despite the great improvements in accuracy recorded by
deep methods. Furthermore as advancements in semantic
scene understanding and dense mapping make their way
into Spatial AI systems, the requirement for efficiency from
every part of the system is further emphasized. In order
to achieve it in the place recognition module, techniques
such as Binarization, Quantization [21], [22] and Knowledge
Distillation [23], [24] have been explored. To the best of our
knowledge however there has not been any work directly
addressing the use of structured pruning in VPR and our
work aims to address this gap.

B. Pruning Methods

It is well recognized that neural networks exhibit substan-
tial redundancy in their weights [25]. Pruning capitalizes on
this by removing weights that minimally affect task accuracy,
thereby compressing the network and enhancing efficiency.
This is achieved by reducing both the memory required to
store the model weights as well as reducing the number of
floating point operations (FLOPS) required in the forward
pass. Pruning initially targeted individual weights [26], re-
sulting in models with high compression rates and minimal
performance degradation. However, the irregularity of the
resulting sparsity patterns from such approaches meant that
without specialized accelerators the pruned models efficiency
was not significantly different from it’s dense counterpart
[27]. Only with specialized processors such as EIE [28]
could these theoretical efficiencies be partially achieved.
Pattern-based pruning addresses this limitation by imposing
some structure on the pruned weights, such as requiring
two out of every four consecutive weights to be zero, or
enforcing blocks of weights to be pruned together [29].
These patterns can be exploited by specialized kernels and



processing cores for acceleration. However the most general
approach is structured pruning, which removes only groups
of weights that would leave the resulting network a smaller
dense version of itself. Examples include removing channels
of linear layers or filters in convolutional layers [8], [9].
Pruning in this way enables effective memory saving and
acceleration though general purpose parallel processors.

Pruning can be performed on dense models before, during,
or after training [8]. It is most commonly applied in a
one-shot manner, involving a single round of post-training
pruning followed by fine-tuning. While this method is simple
and effective, higher compression rates can be achieved
through iterative rounds of pruning and fine-tuning [25].
Although it was previously considered less efficient to train
models in this manner, recent evidence has shown that by
selecting the right learning schedule, training timescales can
be equivalent [30].

While network pruning has been applied to numerous
tasks in computer vision, including classification, object
detection, segmentation, depth estimation, and more, a com-
mon requirement across these applications is that the output
dimension must remain the same post-pruning [8]. However,
this is not a requirement in VPR, where the embedding
dimension can vary. Consequently, pruning can be strate-
gically used to optimize both feature extraction and retrieval
stages. While other techniques such as principle components
analysis (PCA) have been used to reduce the dimensionality
of the descriptor [13], they do not jointly optimize feature
extraction and retrieval efficiency. Therefore, our work is cru-
cial for fully optimizing all sources of resource consumption
in VPR systems and thereby enabling their deployment in
real-time perception systems on low-powered and low-cost
commodity hardware.

III. PRUNING VPR ARCHITECTURES

Despite the broader representational capacity of trans-
formers, convolutional architectures are preferred in lower-
powered embedded systems due to their efficiency in latency
and memory [1], [31], [32]. CNNs achieve computational ef-
ficiency through weight sharing, hierarchical processing, and
require less data to train due to their inductive biases, making
iterative pruning more resource-efficient. In subsections III-
A, III-B and III-C we present our three novel methods for
pruning state-of-the-art convolutional architectures for VPR.

A. Fully Convolutional Models

We begin by considering fully convolutional networks, as
they are the most lightweight. This category includes the
CosPlaces [7], EigenPlaces [5], and ConvAP [12] archi-
tectures. All three use a ResNet50 backbone, with Eigen-
Places and CosPlaces incorporating GeM [11], and ConvAP
utilizing spatial average pooling [12]. To effectively prune
channels in these architectures, the approach outlined in
Algorithm 1 can be used. Here, ci and co refer to the input
and output channels of the convolution, respectively, and WL

represents the last convolutional weight in a network with
1→ L backbone layers.

Algorithm 1 Pruning Fully Convolutional Modelss

1: Input: Convolutional weights W l, intermediate pruning
rate ri, output layer pruning rate ro

2: for l = 1 to L− 1 do ▷ Pruning intermediate layers
3: Compute i: indices of the smallest

ri × co filters of W l based on ℓ1 norm
4: W l ←W l

co /∈i,:,:,: ▷ Remove smallest output filters
5: W l+1 ←W l+1

:,ci /∈i,:,: ▷ Remove corresponding input
filters in the next layer

6: end for
7: Compute i: indices of the smallest ro×cL0 filters in WL

based on ℓ1 norm
8: WL ←WL

co /∈i,:,:,: ▷ Remove smallest output filters in
the last layer of the CNN backbone

9: Output: Pruned fully convolutional model.

For pruning the aggregation module, such as GeM [11],
as implemented in EigenPlaces and CosPlace [5], [7], no
changes are required. GeM pooling, as shown in Equation 1,
has a single learnable scalar p, which is independent of the
backbone’s output feature map dimension. This allows the
final pruning rate of WL (ro) to control the output feature
dimension.

yc = (
1

HW

H∑
h=0

W∑
w=0

XL
c,h,w)

1
p (1)

Spatial Average Pooling, as utilized in the ConvAP VPR
model, is described by Equation 2. In this method, P
represents the spatial pooling block size, and XL denotes the
last convolution activation. Being a parameter-less pooling
method, it is also independent, and its descriptor dimension
can likewise be controlled by the output pruning rate ro.

yj,k·co =
1

P 2

P−1∑
m=0

P−1∑
n=0

XL
co,i∗P+m,j∗P+n (2)

B. MixVPR

MixVPR integrates an MLP-Mixer aggregation that first
flattens the spatial dimensions of convolutional features as
described in step 3 of Algorithm 2. This operation pro-
duces feature vectors F , processed through N residual MLP
blocks (Equation 3), where σ denotes the ReLU activation
function. This enables each feature vector’s linear projection
to incorporate context from the entire input image. Our
structural pruning method for WL, the last convolutional
layer (Algorithm 1), reduces the number of feature vectors
in F without changing their dimensionality hw, leaving W1

and W2 unaffected. Consequently, the MLP block stage’s
computational cost decreases linearly with the pruned output
channels cLo , greatly improving the networks efficiency.

To aggregate the features FN , MixVPR applies Equations
4 and 5 sequentially, creating a dependency between Wd and
WL due to the transposition operation, necessitating their
joint pruning. Additionally, to reduce the final descriptor



Algorithm 2 Pruning the MixVPR Module

1: Input: Convolutional features XL, weights W1, W2,
Wd, Wr

2: Output: Pruned MixVPR module
3: Flatten the spatial dimensions: F = XL → Rc0,hw

4: Process feature vectors through N MLP blocks:

Fn+1 = W2σ(W1F
n) + Fn (3)

5: Aggregate features:

Fd = Wd(Transpose(FN )) (4)

y = flatten(Wr(Transpose(FN ))) (5)

6: Prune Wd [:, : h /∈ G] where G
is the pruned output filters of WL

7: Compute i: indices of the smallest ro ×
number of channels in Wd based on ℓ1 norm

8: Wd ←Wd [c /∈ i, :] ▷ Prune channels
9: Output: Pruned MixVPR model.

dimension, we strategically prune the output channels of
Wd. However, to maintain the integrity of MixVPR’s four-
dimensional row projection and prevent performance losses,
our method avoids pruning Wr. This ensures that efficiency
gains do not compromise the model’s capacity.

C. NetVLAD

Algorithm 3 Pruning the NetVLAD Module

1: Input: Feature vectors Ti, cluster centers Cz , pruning
rate ro

2: Output: Pruned NetVLAD model
3: Extract and aggregate feature vectors:

Vz =

N∑
i=1

ai,z(Ti − Cz) (6)

4: Apply K-means clustering on C to prune cluster centers.
5: Set the new cluster number to pruning rate ro× the

number of clusters in C.
6: Output: Pruned NetVLAD model.

Unlike MixVPR, NetVLAD extracts convolutional feature
vectors Ti across the channel dimension RHW,co and ag-
gregates them by summing residuals between Ti and softly
assigned cluster centers Cz . Equation 6 shows this process,
where Vz is the aggregated descriptor for the z-th cluster,
and aiz is the soft assignment weight of Ti to cluster Cz .

The NetVLAD descriptor dimension is the product of
the feature vector size Ti and the number of clusters C
(128 dimensions with 64 clusters originally [13]). To reduce
memory consumption and computation, we prune the number
of clusters, adjusting the channel dimension of C as shown
in Algorithm 3. Instead of using group norm importance for
pruning, we apply K-means clustering to reduce cluster cen-
ters based on the pruning rate. This method preserves cluster

distribution and reduces the descriptor dimension linearly,
crucial for managing NetVLAD’s large 8192-dimensional
descriptors.

IV. EXPERIMENTAL SETUP

This section outlines the experimental framework used to
evaluate the structured pruning approach for VPR within
the real-time operational constraints typical of lightweight
mobile robots. The experiments are conducted using the
Nvidia Xavier NX embedded system, selected to represent
the computational limitations and capabilities of modern
autonomous systems, such as drones. The following sub-
sections describe the specific methodologies for structured
pruning, training regimes, and the metrics used to evaluate
resource and efficiency enhancements in VPR systems.

1) Structured Pruning: Our method employs iterative
magnitude pruning (IMP) on a pre-trained VPR model, using
the algorithms outlined in Section III. We choose iterative
magnitude pruning [25] over one-shot pruning because it
impacts the network gradually, thereby enhancing error re-
covery and improving generalization [25].

Since our method prunes both the aggregation method
and backbone width, we introduce a hyperparameter γ to
balance the pruning ratios ri and ro between the network’s
backbone and aggregation module. This parameter is crucial
as it modulates the trade-off between efficiency gains in
feature extraction and retrieval. Pruning the aggregation
module reduces the descriptor dimension, decreasing both
map memory usage and retrieval latency, while backbone
pruning reduces model memory and the latency consumed
by feature extraction. The hyperparameter γ controls this
trade-off by determining the final sparsity value in the linear
pruning rate schedule. The effect is illustrated in Fig. 2,
where a γ of 0.9 leads to the same sparsity in the descriptor
and backbone, whereas a γ of 0.0 prevents any pruning of
the descriptor.

2) Training: We conduct all our training experiments
using a single Nvidia A6000 GPU. Each model under-
goes training on the GSV-Cities dataset, employing multi-
similarity loss with a batch size of 120 over 30 epochs [12].
We utilize the Adam optimizer, initiating at a learning rate
of 1× 10−3 and applying a multiplier of 0.3 every 5 epochs
to adjust the rate.

After training the NetVLAD, ConvAP, MixVPR and GeM
models [13], [12], [6], [5] we begin our IMP fine-tuning
run using our pruning methods outlined in Section III. We
prune all prune-able layers in the backbone to 90% sparsity
pruning every 2 epochs for a total of 50 epochs in total.
We also prune the aggregation methods using our pruning
techniques outlined in Section III to (γ ∗100)% according to
the pruning schedules outlined in Fig. 2. Again similar to the
initial training, we use a learning rate decay multiplier with
a value of 0.3 but initialize the learning rate at 1× 10−4 for
fine-tuning and reset the schedule after each pruning round.

A. Memory
For embedded systems memory consumption is a critical

concern. In order, to maintain VPR system latency con-



Fig. 2: Linear Pruning Schedule Overview. This schedule
shows the backbone pruning schedule ending with a final
sparisty of 0.9. The aggregation pruning hyper-parameter
γ represents the final aggregation and descriptor sparsity,
regulating the sparsity ratio between the network’s backbone
and the descriptor throughout each step of the pruning
process.

Fig. 3: Total memory of the VPR system including the sum
of the model and map embedding consumptions against the
recall@1 score. The curves are created by iterative magnitude
pruning of the feature extraction network.

straints, the model and map must be kept in unified system
memory (DRAM) which for a powerful embedded system
such as the Nvidia Xavier Nx is 8Gb and for other devices
may be much smaller.

As seen in Fig. 3 there is a performance trade-off for
all architectures between recall@1 accuracy and memory
consumption. Each model shows that under small levels of
pruning the recall@1 accuracy drop is minimal in compari-
son to memory reduction, thereby showing pruning’s ability
to produce memory savings. This is particularly the case
for NetVLAD, showing just a 0.7% recall@1 score drop
for a 58Mb drop in memory consumption, which is likely
due to the redundancy present in its large descriptor size
and cluster centers. This is similarly the case for ConvAP,
GeM and MixVPR which show a 14%, 9% and 12% re-
duction in memory consumption for less than a 1% drop
in recall@1 produced via IMP. Interestingly ConvAP has a
higher initial recall@1 score than MixVPR despite requiring
a similar amount of memory. During pruning however the

performance of ConvAP drops off quicker showing that the
pruned architecture has a slightly reduced memory efficiency
trade-off.

B. Latency

Fig. 4: Total latency of the VPR system including the feature
extraction and matching latencyies of a single image against
the recall@1 score. The curves are created by iterative
magnitude pruning of the feature extraction network.

Optimizing latency is crucial for VPR systems because
high latency can result in missed loop closures, increased
drift error, or processing bottlenecks [1]. Lower VPR infer-
ence latency also allows for deployment on cost-effective
hardware with less memory and bandwidth or processing
parallelism. Given that visual place recognition systems
operate at up to 20Hz [20], achieving this rate is essential.

Figure 4 demonstrates that pruning can significantly re-
duce the total system latency of the VPR method below
the real-time perception constraint of 20Hz (50ms). The
latency result displayed in this figure is measured for the
feature extraction and matching of a single keyframe from
the Pittsburgh 30K validation dataset with GPU acceleration.
Fig. 4 also reveals that the recall@1 and system latency
exhibit a trade-off curve similar to the memory efficiency
shown in Fig. 3, suggesting a positive correlation between
memory and latency metrics under our pruning methods,
while emphasizing minimal trade-offs between them. Re-
garding latency measurements, at high levels of pruning,
it can be significantly lowered to 30-45ms, however the
recall@1-latency gradient is steeper. In contrast, at lower
pruning rates, the curve remains relatively flat, indicating
that structural pruning across all network architectures can
enhance VPR system latency with minimal impact on R@1
accuracy, but it is more effective at lower pruning ratios.
For instance, during pruning, the NetVLAD architecture can
reduce system latency from 70ms to 50ms with only a
0.3% reduction in recall@1, effectively meeting the required
latency constraint.

C. Aggregation Pruning Rate

To balance the trade-off between joint optimization of
the feature extraction resource consumption and that of the
retrieval step, we perform experimentation with 5 different γ



Fig. 5: Efficiency-recall@1 trade-off curves for the pruned
ConvAP VPR method [12] on the on Pitts30k Validation
dataset. The hyper-parameter γ shows the effect of altering
the pruning ratio between the backbone and feature aggre-
gation.

rates, controlling the trade-off between retrieval and extrac-
tion efficiencies.

Figure 5 shows the effect of γ on the trade-off between
recall@1, memory and latency during pruning. The bottom
graph shows a strong trend with higher levels of descrip-
tor pruning improving the recall@1-latency trade-off. This
is because as seen by Fig. 6 the retrieval step provides
a substantial source of latency for the VPR system, and
pruning of the aggregation module can effectively reduce this
without having a large impact on the recall@1 score, thereby
emphasizing the redundancy present in the embedding space.
The top graph of Fig. 5 shows a similar trend with an even
more significant impact. Again, higher levels of pruning
in the descriptor lead to an improved memory efficiency
trade-off. This is due to the significant memory consumption
caused by storing the map of descriptors. This highlights
the importance of using pruning to minimize the descriptor
dimension.

V. RESOURCE CONSUMPTION ANALYSIS

The total resource consumption of VPR systems comes
from both the feature extraction and matching sub-tasks. In
order to optimize the resource utilization of the system as a
whole it is important to understand how much each sub-task
contributes to resource usage and which type of resource
usage.

From Fig. 6 it can be seen that IMP is an effective way
of reducing both latency and memory consumption. However
the contributions from each part of the network are different.
For instance, in the lower bar chart, it is seen that the main
source of the VPR system memory consumption is in the

Fig. 6: Breakdown of the Memory and Latency consumption
for the ConvAP [12] VPR system measured across pruning
rounds: this table illustrates the impact of pruning on the
resource consumption of feature extraction and matching
sub-tasks measured on the Pitts30k Validation Dataset.

map storage, whereas for latency it is is the model extraction.
Therefore should memory be more of a concern for the target
device, descriptor pruning will provide a more significant
improvement, whereas for throughput and bandwidth limited
devices where latency is high, backbone pruning will be more
advantageous.

A. Architecture Comparison

Table I presents the resource consumption and accuracy
results on the Pittsburgh 30k and 250k datasets [13], the
Mapillary Street-Level Sequences (MSLS) dataset [33], and
the SpedTest dataset [34]. The results are computed at a
sparsity level of 40%. When comparing the architectures
and their respective pruning methods, NetVLAD consistently
performs the best, achieving the highest recall@1 scores
on three of the four benchmark datasets. This performance
is likely due to the significant redundancy in its cluster
centers after the pre-training stage, which enhances its ro-
bustness under pruning. However, NetVLAD’s descriptor is
the largest, resulting in higher map memory and matching
latency resource consumption. Additionally, although its
model memory consumption is low, the aggregation method,
which requires summing the residuals assigned to clusters,
leads to the highest extraction latency.

GeM, the smallest model in terms of descriptor size,
surpasses MixVPR in performance under our pruning meth-
ods, particularly on the SpedTest dataset. GeM’s ability to
generalize to other test distributions outside the training
distribution, such as SpedTest, is significantly better than
that of MixVPR. The fully convolutional model ConvAP
shows similar generalization, suggesting that the MLP layers
in MixVPR might be overfitting to the training distribution.



TABLE I: Resource consumption and latency of VPR architectures at 40% sparsity. The best metrics per column are
highlighted in bold, demonstrating the trade-off between accuracy and resource efficiency.

Method γ
Extraction

Latency (ms)
Matching

Latency (ms)

Map Memory
(Mb, 10,000
embeddings)

Model
Memory (Mb)

Pitts30K
R@1

Pitts250K
R@1

MSLS
R@1

SpedTest
R@1

ConvAP 0.00 25.0 18.2 156.2 9.7 90.5 89.8 73.1 79.6
ConvAP 0.23 25.0 17.0 146.6 9.7 90.4 89.8 73.1 79.6
ConvAP 0.45 25.5 16.9 137.0 9.7 90.4 89.6 73.5 80.4
ConvAP 0.68 24.9 14.8 127.4 9.7 90.5 89.4 73.2 79.9
ConvAP 0.90 24.8 13.7 117.8 9.6 89.8 89.5 73.2 79.7
GeM 0.00 21.1 8.9 78.1 11.6 89.1 88.8 73.0 82.0
GeM 0.23 21.0 8.2 72.6 11.4 89.0 88.5 73.2 81.7
GeM 0.45 25.0 7.7 68.5 12.0 89.5 89.3 74.5 81.2
GeM 0.68 25.0 7.2 63.7 11.8 89.3 89.3 74.7 80.2
GeM 0.90 25.2 6.7 58.6 11.6 89.3 89.1 74.6 81.1
MixVPR 0.00 21.8 19.7 156.2 11.2 87.7 85.6 78.8 67.7
MixVPR 0.23 22.1 17.4 146.5 11.2 87.6 85.6 78.6 68.5
MixVPR 0.45 21.9 15.8 136.7 11.2 87.4 85.5 77.8 68.7
MixVPR 0.68 22.1 14.7 127.0 11.2 87.4 85.3 77.8 67.5
MixVPR 0.90 21.8 13.0 112.3 11.2 87.3 85.3 77.8 67.9
NetVLAD 0.00 29.0 32.1 278.3 9.4 91.0 90.3 81.8 73.8
NetVLAD 0.23 29.3 32.8 278.3 9.4 91.0 90.2 82.7 73.5
NetVLAD 0.45 28.5 29.3 253.9 9.4 90.8 89.9 82.2 74.6
NetVLAD 0.68 28.6 28.1 244.1 9.4 90.7 89.8 82.0 75.9
NetVLAD 0.90 28.4 26.5 229.5 9.4 90.7 89.5 81.6 75.0

Overall, on average with our methods the models experi-
ence less than a 1.2% performance degradation at moderate
pruning levels (40%) on the Pitts30k benchmark, thereby
demonstrating the effectiveness of our methods in removing
redundancy from the models.

B. Embedding Space Procrustes Analysis

Fig. 7: Embedding space of both the dense and pruned VPR
models. Shown in red is the residuals between the same
image embedded with different models. The image bordered
in red has the greatest embedding space residual and in
green, the smallest. The figure shows pruning changes the
embedding space most for images with perceptual aliasing.

While the recall@1 score is a standard metric for VPR
accuracy, it’s crucial to consider other factors, especially in
deployment environments. A system that performs poorly
in less common environments can significantly reduce its
practical usability. To address this, we empirically investigate
how our pruning methods affect the embedding space and
identify the environments where they might fail.

We begin by selecting a ConvAP model pruned to 40%
with a γ of 0.9 and compare it to its dense counterpart using
embedding space analysis. The dense model’s large descrip-
tor dimension is aligned with the pruned model using PCA
linear projection, followed by Procrustes analysis [35] for
further refinement. These aligned spaces are then projected
into two dimensions using t-SNE [36], as shown in Fig.
7. The figure reveals substantial overlap between the dense
and pruned model embeddings, indicating that pruning has
minimal impact on the overall metric space. To explore subtle
differences, we highlight residuals between the same image
embeddings in red. Further analysis focuses on images with
the largest and smallest residuals, marked in red and green,
respectively. Fig. 7 shows that images with high perceptual
aliasing have the largest residuals, suggesting pruned models
may struggle in environments with repetitive structures like
indoor scenes. However, in more distinct environments such
as woodlands, the pruned models perform robustly

VI. CONCLUSION

This paper presents a novel method for structured pruning
of VPR systems, aiming at significantly enhancing efficiency
without sacrificing accuracy. By employing our architecture-
specific pruning methods, we demonstrated that we can on
average across all models effectively reduce memory usage
and latency by 21% and 16%, respectively, with a marginal
decrease in recall@1 accuracy of less than 1%. Additionally,
our findings indicate that the highest level of redundancy ex-
ists within the embedding space compared to the model itself,
suggesting that the aggregation module should be pruned
more aggressively. These results underscore the feasibility
of deploying efficient VPR systems on low-cost resource-
constrained platforms, such as those used by light-weight
mobile robots. The structured pruning technique introduced



here ensures that the crucial capabilities of robust recognition
are maintained, thus paving the way for practical, real-time
applications of VPR technologies.
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