
1

LOG-LIO2: A LiDAR-Inertial Odometry with Efficient Uncertainty Analysis
Kai Huang1, Junqiao Zhao∗,2,3, Jiaye Lin2,3, Zhongyang Zhu2,3, Shuangfu Song1, Chen Ye2, Tiantian Feng1

Abstract— Uncertainty in LiDAR measurements, stemming
from factors such as range sensing, is crucial for LIO (LiDAR-
Inertial Odometry) systems as it affects the accurate weighting
in the loss function. While recent LIO systems address uncer-
tainty related to range sensing, the impact of incident angle on
uncertainty is often overlooked by the community. Moreover,
the existing uncertainty propagation methods suffer from com-
putational inefficiency. This paper proposes a comprehensive
point uncertainty model that accounts for both the uncertain-
ties from LiDAR measurements and surface characteristics,
along with an efficient local uncertainty analytical method for
LiDAR-based state estimation problem. We employ a projection
operator that separates the uncertainty into the ray direction
and its orthogonal plane. Then, we derive incremental Jacobian
matrices of eigenvalues and eigenvectors w.r.t. points, which
enables a fast approximation of uncertainty propagation. This
approach eliminates the requirement for redundant traversal of
points, significantly reducing the time complexity of uncertainty
propagation from O(n) to O(1) when a new point is added.
Simulations and experiments on public datasets are conducted
to validate the accuracy and efficiency of our formulations.
The proposed methods have been integrated into a LIO system,
which is available at https://github.com/tiev-tongji/LOG-LIO2.

I. INTRODUCTION
Uncertainty stemming from sensor limitations, measure-

ment noises, and unpredictable physical environments plays
a crucial role in robotic state estimation, as it affects the
accurate weighting of distance metrics in the loss function
[1]. One common approach is to model the measurement
uncertainty using zero-mean Gaussian noise with respect to
point coordinates and integrate these noises into the state
estimation. However, such uncertainty modeling of LiDAR
measurements lacks sufficient accuracy.

To address this issue, [2] develops a point uncertainty
model that incorporates both range and bearing, while [3] fur-
ther includes surface roughness. These uncertainties are then
propagated to the geometric elements such as planes, which
are utilized for weighting the point-to-element distance in
scan-to-map registration, thereby enhancing the accuracy and
reliability of the system [2], [4], [5].

1Kai Huang, Shuangfu Song and Tiantian Feng are
with the School of Surveying and Geo-Informatics,
Tongji University, Shanghai, China (e-mail:
huangkai@tongji.edu.cn; songshuangfu@tongji.edu.cn;
fengtiantian@tongji.edu.cn).

2Junqiao Zhao, Jiaye Lin, Zhongyang Zhu and Chen Ye are with
Department of Computer Science and Technology, School of Electronics and
Information Engineering, Tongji University, Shanghai, China, and the MOE
Key Lab of Embedded System and Service Computing, Tongji University,
Shanghai, China (e-mail: zhaojunqiao@tongji.edu.cn;
2233057@tongji.edu.cn; 2310920@tongji.edu.cn;
yechen@tongji.edu.cn).

3Institute of Intelligent Vehicles, Tongji University, Shanghai, China.
Digital Object Identifier (DOI): see top of this page.

However, range uncertainty is also influenced by the
incident angle [6], [7], a factor often overlooked by existing
studies. Additionally, continuous propagation of uncertainty
from numerous points, which exhibits linear time complexity
O(n), can be computationally expensive, particularly for
dense point cloud and real-time applications. Therefore, an
efficient uncertainty propagation method is highly desirable.

In this paper, we present a comprehensive point uncer-
tainty model that incorporates all relevant factors affecting
LiDAR measurements, including range, bearing, incident
angle, and surface roughness. This model leverages the
projection operator [7] to separate the uncertainty into the
ray direction and its orthogonal plane.

To accelerate the propagation of uncertainty from points to
the geometric elements, we derive the incremental Jacobian
matrices for eigenvalues and eigenvectors corresponding to
specified points from Welford’s formulation [8]. The para-
metric uncertainty of the geometric elements is then updated
incrementally by fast approximations.

We validate the efficiency and accuracy of the fast uncer-
tainty approximation through simulation experiments. Subse-
quently, we integrate these methods into a LIO system named
LOG-LIO2. By comparing the performance of LOG-LIO2
with state-of-the-art LIO systems, i.e. VoxelMap [5], LOG-
LIO [9], and FastLIO2 [10], we demonstrate the performance
improvement achieved by the proposed techniques.

The main contributions of this work are as follows:
• A comprehensive point uncertainty model with a fast

calculation method, incorporating the uncertainty of
range and bearing measurements from LiDAR, as well
as incident angle and roughness concerning the target
surface.

• A fast approximation of uncertainty propagation from
points to eigenvalues and eigenvectors by leveraging
the incremental Jacobian matrices, reducing the time
complexity from O(n) to O(1) by eliminating the need
for repetitive calculations when a new point is added.

• We demonstrate the efficiency and accuracy of our
methods from both simulation and public datasets.
The methods proposed in this paper are incorpo-
rated into a LIO system which is available at
https://github.com/tiev-tongji/LOG-LIO2.

II. RELATED WORKS
The integration of IMU has significantly improved the

practical robustness of LIO systems [10]. However, a critical
limitation persists in these systems: the uncertainty of each
point is treated homogeneously, neglecting potential spatial
and environmental variations that can significantly impact
accuracy.

ar
X

iv
:2

40
5.

01
31

6v
2 

 [
cs

.R
O

] 
 5

 A
ug

 2
02

4

https://github.com/tiev-tongji/LOG-LIO2
https://github.com/tiev-tongji/LOG-LIO2


2

[2] investigates the physical measuring principles of Li-
DAR and derives the uncertainty model for each laser beam
encompassing range and bearing uncertainties. Specifically,
the bearing uncertainty is modeled as a S2 perturbation [11]
in the tangent plane of the ray. However, the calculation of
S2 perturbation requires the construction of two bases in the
tangent plane, leading to increased computational cost.

[4] introduces a novel adaptive voxelization method that
iteratively divides voxels until the point distribution matches
the line or plane geometry. The paper derives the Jacobian
and Hessian matrices of eigenvalues and eigenvectors w.r.t.
the points within the voxel, leveraging these matrices for
LiDAR bundle adjustment.

Building on these prior works, VoxelMap [5] integrates
the point uncertainty model and adaptive voxelization tech-
nique into a LiDAR-based odometry system. The uncertainty
associated with each point is then propagated to the plane
parameters to apply weights to the point-to-plane distance
in the state estimation. However, the traversing of all points
during propagation reduces the real-time performance of the
system.

In addition to inherent laser range and bearing uncertain-
ties, the geometrical properties of the target surface also
contribute significantly to observed point uncertainty. [6] and
[7] analyze the geometrical relationship between the laser
beam and the surface normal, incorporating the uncertainty
arising from the incident angle into the ray direction. While
they obtain a closed-form approximation of this uncertainty,
it is overlooked by the SLAM community.

Distinct from prior works, [3] introduces a principled
uncertainty model for LiDAR scan-to-map registration. This
model incorporates the roughness of the measured uneven
planes, thereby enhancing robustness but also introducing
complexity in estimation.

Having the above, our focus is on developing a com-
prehensive point uncertainty model and deriving efficient
uncertainty propagation methods, aiming to strike a balance
between accuracy and computational efficiency.

III. PRELIMINARY
In this paper, we assume the transformation between

LiDAR and IMU is calibrated in advance. We denote the
statistics of point cloud P = {pi, i = 1, ..., k} by (·)k,
where the subscript k indicates the point cloud with k points.
For simplicity, the parentheses "()" may be omitted when
there is no ambiguity. The sum of the outer products of all
points deviating from the center m is denoted by S, which
is normalized to obtain the covariance matrix, A.

mk =
1

k

k∑
i=1

pi;Ak =
1

k
Sk =

1

k

k∑
i=1

(pi−mk)(pi−mk)
T .

(1)
For the symmetric matrix A, eigenvalue decomposition is

performed as follows:

A = VΛVT ,V =
[
v1 v2 v3

]
,Λ = diag(λ1, λ2, λ3)

(2)
where vi is the eigenvector corresponding to the eigenvalue
λi with λ1 < λ2 < λ3.

IV. POINT UNCERTAINTY MODEL

The point-wise uncertainty model quantifies the reliability
of each input point, allowing SLAM systems to handle real-
world complexities more effectively. Modeling the point un-
certainty derived from the range and bearing measurements
as [2], [4], [5] is natural since the coordinate is obtained
from the relative position w.r.t. the LiDAR. However, the
geometric properties of the target surface, i.e. incident angle
and roughness, also contribute to the uncertainty of the
LiDAR measurements [3], [6], [7]. Our uncertainty model
takes into account both the properties of the sensor itself
and the observed geometry.

We assume the point-wise uncertainty follows a Gaussian
distribution. Inspired by [7] and as shown in Figure 1(a),
we denote the magnitude of uncertainty along the ray vri

direction as σ2
ri while the magnitude of uncertainty on the

plane orthogonal to vri is denoted as σ2
ϕi

. Note that the
orientation of σ2

ϕi
is not specified in order to simplify the

calculations, as further explained in Section IV-B.

(a) point uncertainty model (b) incident angle and roughness

Fig. 1. Illustrations of geometric relationship for the point uncertainty
model.

A. Uncertainty Factors

1) Range and bearing: Similar to [2], [5], but with a
different calculation approach, we assume that the magnitude
of the range and bearing uncertainty to each laser beam are
both constant factors, σ2

d and σ2
ω , respectively. In a 3D space,

the σ2
d extends in the vri direction, while σ2

ω is isotropic in
the orthogonal plane of the vri .

2) Incident Angle: As illustrated in Figure 1(b), the
incident angle α between the laser beam and the surface
normal plays a pivotal role in the range sensing [6], [7]. As
α increases from 0 to π/2, the range uncertainty also rises.
We adopt the uncertainty model caused by the incident angle
σini

along the ray direction from [6], [7]:

σini
= diσω tanαi (3)

where di is the distance from pi to the LiDAR.
3) Roughness: We account for the impact of surface

roughness on the point in a simpler and faster manner
compared to [3]. To achieve this, we estimate the normal of
the target surface by analyzing two different neighborhood
scales. As shown in Figure 1(b), the angle β formed between
these two normals serves as a metric for quantifying the
uncertainty introduced by the roughness:

σo = η sinβ, β = arccos(nr,nv) (4)

where η is a preset value, nr and nv are normals estimated
under different neighborhood scales.



3

B. Fast Uncertainty Calculation
Assuming the roughness is isotropic in 3D space, we

integrate the aforementioned three factors to compute the
covariance of the point pi as follows:

Api = σ2
rivriv

T
ri + σ2

ϕi
(I3×3 − vriv

T
ri) + σ2

oI3×3 (5)

where σ2
ri = σ2

d + σ2
ini

, σϕi = diσω , and vri is the
unit vector in ray direction. The first term captures the
uncertainty arising from the range measurement and incident
angle. We use the projection operator (I − vrv

T
r ) from

[7] to isotropically project bearing uncertainty onto the 2D
plane orthogonal to vri . Note that considering only the
uncertainty of range and bearing, our method aligns with [2],
[4], [5], which is proved in Appendix I-A. We present a more
comprehensive point uncertainty model accompanied by an
efficient method that offers greater geometric interpretability.

V. LUFA: LOCAL UNCERTAINTY FAST APPROXIMATION

LiDAR SLAM systems maintain statistics of localized
map regions, such as mean position, eigenvalues, and eigen-
vectors, which are crucial for state estimation. Deriving
Jacobian matrices for these statistics is vital for uncertainty
propagation using linear Gaussian principles [1]. As outlined
in BALM [4] and VoxelMap [5] , computing these Jacobian
matrices involves traversing all points in P , resulting in O(n)
time complexity, which can impact real-time performance.

To relieve this computation burden, we propose an in-
cremental update approach for computing these statistics in
O(1) time complexity when adding a new point. This ensures
real-time performance, ideal for SLAM applications.

A. Incremental Center and Covariance
Using Welford’s formula [8], we incrementally update the

center m and covariance S of P as follows:

mk =
(k − 1)

k
mk−1 +

1

k
pk (6)

Sk = Sk−1 +
k − 1

k
(pk −mk−1)(pk −mk−1)

T (7)

where mk and Sk are updated from mk−1 and Sk−1, pk

is the newly added point. Define D = (pk − mk−1)(pk −
mk−1)

T and combine (1), the normalized covariance A can
be updated incrementally as follows:

Ak =
k − 1

k
Ak−1 +

k − 1

k2
D (8)

The updated covariance Ak decomposes into two terms:
the former scales the existing point cloud’s covariance, while
the latter captures the contribution from the new point pk.

B. Incremental Jacobian of Eigenvalues
Deducing from (8), the partial derivative of the j-th

eigenvalue λj w.r.t. the point pi, i < k, can be updated
incrementally as follows:

∂λj,k

∂pi
=

k − 1

k

∂λj,k−1

∂pi

− du
k2 cos θj

(cosφj,k−1v
T
j,k + cosφj,kv

T
j,k−1)

(9)

where du is the distance between pk and mk−1, θj is the
angle between vj,k and vj,k−1. Define vu = (pk −mk−1),
then φj,k and φj,k−1 are the angles from the direction of vu

to the j-th eigenvector vj,k derived from k points and the j-
th eigenvector vj,k−1 derived from k−1 points, respectively.
The proof of (9) is provided in Appendix I-B.

Fig. 2. An illustration of geometric relationship for the mk−1 local frame.

Figure 2 visually depicts the geometric relationships in-
volved in (9). To clarify the geometric meaning, let’s consider
v1, the normal of a plane, as an example, which determines
the direction for calculating the point-to-plane distance.
Suppose we have sampled a sufficiently large number of
points from the plane and pk lies on it, then, θ1 ≈ 0 and
φ1,k−1 = φ1,k ≈ π/2. Consequently, the second term of
∂λ1,k/∂pi is approximately equal to 0.

Furthermore, the second term (incremental terms) of (9)
are identical for the first k − 1 points. This characteristic
allows for their efficient computation without the need to
traverse P . We take the magnitude of the second term of (9)
to determine the updated form of the Jacobian matrix of the
eigenvalues. If the magnitude is smaller than a threshold, we
approximately update the Jacobian of eigenvalues as follows:

Jλj ,pi,k =
∂λj,k

∂pi
≈ k − 1

k

∂λj,k−1

∂pi
, i < k. (10)

Otherwise, the Jacobian is updated as in BALM [4]:

∂λj,k

∂pi
=

2

k
(pi −mk)

Tvj,kv
T
j,k. (11)

Considering that pk is independent of Ak−1, the Jacobian
matrix of eigenvalue w.r.t. pk can be simplified as:

∂λj,k

∂pk
=

du(k − 1)

k2 cos θj
(cosφj,k−1v

T
j,k + cosφj,kv

T
j,k−1),

(12)
which is proved in Appendix I-B.

C. Incremental Jacobian of Eigenvectors

According to BALM [4], the Jacobian matrix of the
eigenvector vj w.r.t. pi can be represented as Jvj ,pi

=
∂vj/∂pi = VC, where V is the eigenmatrix as shown in
(2). For the elements in m-th row and n-th column in C:

Cpi
m,n =


(pi −mk)

T

k(λn − λm)
(vmvT

n + vnv
T
m),m ̸= n

0 ,m = n.

(13)

And (13) can be further simplified as Cpi
m,n =[

Cxi
m,n Cyi

m,n Czi
m,n

]
∈ R1×3,m, n ∈ {1, 2, 3}, where the

subscripts xi, yi, and zi are elements of pi. Since diagonal



4

elements in C are equal to 0, the rest of this section only
specifies the form of the off-diagonal elements.

Analogous to the Jacobian matrix of the eigenvalues, the
above matrix C w.r.t pi, i < k, can be incrementally updated,
which is also divided into scale and increment parts:

(Cpi
m,n)k =

[
(Cxi

m,n)k (Cyi
m,n)k (Czi

m,n)k
]
1×3

= Wpi
m,n(C

pi
m,n)k−1

− du
k2(λn − λm)k

(cosφmvT
n + cosφnv

T
m)k

(14)

where φm and φn are angles from vu to the m-th eigenvector
vm and the n-th eigenvector vn, respectively. We specify the
form of Wpi

m,n and prove (14) in Appendix I-C.
With the assumption that a sufficiently large number of

points are already sampled from the surface, the second term
of (14) is approximately equal to 0. Take v1, i.e. normal n,
of the surface as an example, the partial derivative of the
updated n w.r.t. pi can be approximately updated as follows:

Jn,pi,k = Vk(Cn,pi
)k ≈ VkW(Cn,pi

)k−1

= VkWVT
k−1Vk−1(Cn,pi

)k−1

=

Q︷ ︸︸ ︷
VkWVT

k−1 Jn,pi,k−1

(15)
where we omit some of the subscripts to simplify the
representation.

Considering that pk is independent of Ak−1, the matrix
C w.r.t. pk can be simplified as:

(Cpk
m,n)k =

[
(Cxk

m,n)k (Cyk
m,n)k (Czk

m,n)k
]
1×3

=
du(k − 1)

k2(λn − λm)k
(cosφmvT

n + cosφnv
T
m)k.

(16)

We prove (16) in Appendix I-C and define Jvj ,pi,k =
∂vj,k/∂pi to simplify the representation.

D. Incremental Update of Covariance

Using the above incremental Jacobian matrix of the eigen-
values (10) and the eigenvectors (15), their covariance can
be updated in an approximate form.

We simply divide the covariance of the eigenvalues corre-
sponding to specified points into scale and increment parts
as follows:

Aλj ,k =

k−1∑
i

Jλj ,pi,kApi
JT
λj ,pi,k + Jλj ,pk,kApk

JT
λj ,pk,k

=
(k − 1)2

k2
Aλj ,k−1 + Jλj ,pk,kApk

JT
λj ,pk,k

(17)
Similarly, the covariance of the eigenvector can be updated

as follows:

Avj ,k = QAvj ,k−1Q
T + Jvj ,pk,kApk

JT
vj ,pk,k (18)

where we omit some of the subscripts to simplify the
representation.

This fast covariance approximation method can be seam-
lessly integrated with other statistical metrics that share sim-
ilar scaling properties. Derived from (6), we get the Jacobian

matrix of the center mk w.r.t pi as Jm,pi,k = ∂mk

∂pi
= 1

k I3x3
easily. Furthermore, Jm,pi can be incrementally updated as
follows:

Jm,pi,k =
k − 1

k
Jm,pi,k−1. (19)

Combining (18) and (19), the covariance of the normal n
and the center m can be fast approximated as follows:

An,m,k =

[
QAn,k−1Q

T k−1
k QAnm,k−1

k−1
k Amn,k−1Q

T (k−1
k )2Am,k−1

]
+

[
Jn,pk,kApk

JT
n,pk,k

1
kJn,pk,kApk

1
kApk

JT
n,pk,k

1
k2Apk

] (20)

In contrast to methods like VoxelMap [5], (20) offers a
significant computational advantage by achieving a constant
time complexity of O(1) . This translates to faster execution,
making it well-suited for real-time applications.

VI. INTEGRATION WITH LIO

In this section, we integrate the proposed point uncertainty
model along with LUFA into our prior work [9], namely
LOG-LIO2. The system state x is as follows:

x =
[WRT

I
WpT

I
WvT

I bT
ω bT

a
WgT

]
(21)

where WRT
I , WpT

I , and WvT
I are the orientation, position,

and velocity of IMU in the world frame. bT
ω and bT

a are
gyroscope and accelerometer bias respectively. WgT is the
known gravity vector in the world frame.

Fig. 3. System overview of LOG-LIO2 with enhancements marked in red.

The system structure is depicted in Figure 3. It comprises
three modules: pre-processing, odometry, and map update.
We employ adaptive voxelization from VoxelMap [5] for map
management, leveraging its efficient data association and
incorporating the computation of within-voxel covariance.

A. Pre-processing

For a point pi within the new input scan, we first estimate
its normal nri using Ring FALS [9]. Subsequently, point
cloud undistortion is performed to compensate for LiDAR
motion based on IMU measurements [10].



5

B. Odometry
By incorporating the IMU measurements from the pre-

vious scan as a prediction x̂t for the current scan, we
transform each point into the world frame. Each point is then
assigned to the voxel it resides in if the points within that
voxel satisfy planar geometry (indicated by the minimum
eigenvalue below a threshold). Suppose pi associates with
the l-th voxel vl, we compute the point-to-plane distance as:

zi = nT
vl
(pi −mvl). (22)

where mvl and nvl denote the center and normal of vl,
respectively. Notably, nvl differs from nri in that it incorpo-
rates geometric information from all map points within vl,
making it more suitable for the incident angle calculation
(3), whereas nri focuses on the local geometry of individual
points in the scan. Both nvl and nri contribute to roughness
estimation (4).

We denote the propagated state and covariance by x̂t and
P̂t respectively. By incorporating the prior distribution and
stacking all the point-to-plane associations, we obtain the
maximum a-posterior estimate (MAP) as follows [10]:

min
x̃κ
t

(∥xt ⊟ x̂t∥2P̂−1
t

+
∑

i∈plane

∥zκi +Hκ
i x̃

κ
t ∥2A−1

pi,nvl
,mvl

)

(23)
where ⊟ computes the difference between xt and x̂t in
the local tangent space of xt, x̃κ

t is the error of the κ-th
iterate update at time t, Hκ

i is the Jacobian matrix w.r.t.
x̃κ
t . The point-to-plane distance is weighted by A−1

pi,nvl
,mvl

,
which incorporates point, normal, and center uncertainties.
We initialize the point-wise uncertainty in the LiDAR frame
as detailed in Section IV and then transform it to the world
frame. Normal and center uncertainties are estimated by
LUFA using map points in the corresponding voxel. We
employ iEKF [10] to optimize the system state.

C. Map update
After optimization, each point is assigned to the corre-

sponding voxel with the updated state. A crucial aspect of
this module lies in propagating the uncertainty from the scan
points to the voxel center, as well as its eigenvalues and
eigenvectors. The uncertainty of points is first recalculated
based on the updated state. Apart from increment magnitude
checks (see Section V), we employ LUFA considering two
additional factors:

1) Map stability: To strike a balance between initial map
instability and computational efficiency, we employ LUFA
after points within a voxel exceed a predefined threshold
nmin.

2) Error accumulation: The fast approximation intro-
duces small errors with each iteration. To alleviate the accu-
mulation of these errors, we limit the continuous application
of LUFA to a maximum of nct = 100 iterations.

Beyond the above conditions, the rigorous update forms
(11) and (13) are employed. Additionally, once the point
count reaches nmax, we fix the voxel update using rigorous
forms to ensure the accuracy of the local geometric infor-
mation. This adaptive strategy effectively balances stability
and efficiency during map updates.

VII. EXPERIMENTAL RESULTS

A. Experimental Settings

The experiment focuses on the following two research
questions:

• Can LUFA approximate the uncertainty computed in
rigorous form?

• Can LOG-LIO2 improve accuracy and efficiency by
incorporating our point uncertainty model and LUFA?

We first validate LUFA in a simulation environment and then
further test the performance of LOG-LIO2 on real-world
datasets. Our workstation runs with Ubuntu 18.04, equipped
with an Intel Core Xeon(R) Gold 6248R 3.00GHz processor
and 32GB RAM.

B. LUFA Experiments

Fig. 4. Illustration of the simulation environment.

To assess the accuracy and efficiency of LUFA, we
benchmark it against BALM [4]. Figure 4 illustrates the
validation environment, simulating a 20m× 20m plane with
20 LiDARs, each LiDAR captures 50 points on the plane.
All LiDARs are positioned on the same side of the plane
and remain within a 100m radius of its center. The center
and normal of the plane, the poses of the LiDARs, and
the coordinates of the sampled points on the plane are
all randomly generated. To mimic real-world scenarios, we
corrupt all these parameters with Gaussian noise, accounting
for factors such as the plane’s unevenness, inaccuracies in the
LiDAR poses, and measurement errors. The point uncertainty
is calculated as detailed in Section IV. We set nmin = 200
to define when LUFA is triggered.

1) Accuracy: Figure 5 illustrates the covariance of the
λj and the covariance trace of v1 computed by LUFA
and BALM. As the covariance of the eigenvectors involves
matrices, we compare the trace of the covariance matrices
in our experiments, which provides a measure of the overall
magnitude of the covariance. The results indicate that the co-
variance computed by LUFA is close to that of BALM. This
closeness in covariance values demonstrates the effectiveness
of LUFA in approximating the uncertainty propagation while
maintaining a reasonable level of accuracy.

2) Efficiency: We further plot the processing time w.r.t
the number of points for better evaluation in Figure 6.
As expected, BALM exhibits linear time complexity O(n),
resulting in processing time increases proportionally with the
number of points. In contrast, the processing time of LUFA
remains nearly constant, adhering to O(1) time complexity.
The observed peaks in LUFA’s processing time occur at
intervals of 100 points, which stems from our imposed
limitation on the maximum number of consecutive LUFA



6

Fig. 5. Comparison of covariance calculated by LUFA and BALM.

Fig. 6. Time consumption for computing the covariance. n, m represent
the covariance of the normal and the center.

executions. Utilizing the incremental center (6) and covari-
ance (7) ensures that even at peak processing times, LUFA
remains computationally more efficient than BALM.

By comparing the results obtained using LUFA with those
from BALM, we demonstrate that LUFA achieves compa-
rable accuracy while significantly improving computational
efficiency.

C. LIO Experiments

To evaluate the efficacy of LOG-LIO2 in real-world sce-
narios, we employ the M2DGR dataset [12]. This dataset col-
lects data on a ground platform equipped with Velodyne-32
LiDAR and presents significant challenges for our previous
method, LOG-LIO. To isolate the impact of specific com-
ponents within LOG-LIO2, we introduce LOG2-i. LOG2-
i differs from LOG-LIO2 in its map uncertainty update
mechanism, employing the formulation outlined in BALM
instead of the LUFA approach. We compare the performance
of LOG-LIO2 against two leading LIO methods: FAST-
LIO2 [10] and PV-LIO 1. PV-LIO is the reimplementation of
VoxelMap [5] integrating IMU, showing promising results in
practice. Both PV-LIO and VoxelMap use BALM’s formu-
lation for uncertainty propagation.

1https://github.com/HViktorTsoi/PV-LIO

To ensure a fair comparison, LOG-LIO2, LOG2-i, and PV-
LIO use identical parameters across all dataset sequences:
maximum voxel size of 1.6m and maximum octree layer of
3, resulting in a minimum voxel size of 0.2m. FAST-LIO2
and LOG-LIO are run with a map resolution of 0.4m using
ikd-tree. Additionally, we set nmin and nmax to 200 and
1000 respectively, defining the thresholds for when LUFA
is triggered and when it is no longer necessary. Due to the
instability in the RTK signal, the first and last 100 seconds
of sequences street_07 and street_10 are excluded from the
evaluation. Note that all the LIO systems above perform
scan-to-map registration by minimizing point-to-plane dis-
tances and loop closure was disabled for all experiments.

1) Accuracy Evaluation: Table I reports the root-mean-
square-error (RMSE) of absolute trajectory error (ATE).
LOG-LIO2 and LOG2-i stand out as the most accurate LIO
systems, exhibiting comparable performance, with LOG-LIO
and PV-LIO following behind. The advantages of LOG-
LIO2, LOG2-i, and PV-LIO stem from a combination of
an adaptive voxel map and uncertainty-weighted point-to-
plane distance for scan-to-map registration. This approach
offers a more accurate geometric representation, leading
to minimal registration errors. Conversely, LOG-LIO and
FAST-LIO2 depend on a fixed-scale tree structure for map
management and implement isotropic noise-weighted point-
to-plane distance. Notably, LOG-LIO distinguishes itself
from FAST-LIO2 by incrementally maintaining normal and
point distribution within map nodes, thereby enabling the
capture of geometric complexities.

TABLE I
THE TRANSLATION RMSE(M) RESULTS OF POSE ESTIMATION

COMPARISON ON THE M2DGR DATASET

LOG-LIO2 LOG2-i LOG-LIO PV-LIO FAST-LIO2

walk_01 0.131 0.132 0.117 0.135 0.112
door_01 0.264 0.262 0.266 0.262 0.271
door_02 0.197 0.197 0.196 0.194 0.200
street_01 0.343 0.303 0.291 0.439 0.272
street_02 2.625 2.541 3.252 3.540 2.754
street_03 0.104 0.104 0.092 0.093 0.106
street_04 1.032 1.079 0.697 1.081 0.552
street_05 0.426 0.370 0.306 0.543 0.377
street_06 0.355 0.338 0.355 0.494 0.434
street_07 0.358 0.339 0.422 0.651 3.512
street_08 0.166 0.156 0.140 0.138 0.170
street_09 1.822 1.861 2.380 1.678 3.648
street_10 0.314 0.369 0.349 0.464 0.956

mean 0.626 0.619 0.682 0.747 1.028

The best and second-best results are bolded and underlined respectively.

LOG2-i and LOG-LIO2 outperform PV-LIO in most se-
quences due to our comprehensive point uncertainty model.
PV-LIO’s model suffers from limitations: constant uncer-
tainty in the ray direction and neglecting surface geom-
etry. In contrast, our model considers incident angle and
surface roughness, providing a more precise environmental
representation. This advantage is evident in large outdoor
environments like the street sequences. In smaller indoor
spaces like door sequences, all systems achieve comparable
performance due to lower point uncertainty and well-defined



7

structural planes. Figure 7 compares the trajectories in the
street_07 sequence, highlighting the performance difference.

Fig. 7. Localization estimates in sequence street_07 of the M2DGR dataset.

2) Efficiency Evaluation: Table II details the processing
times of LOG-LIO2, LOG2-i, and PV-LIO for the street
sequence, highlighting map update and runtime behavior
across different thread configurations. Note that Ring FALS
introduces an additional 6ms overhead within the pre-
processing module of LOG-LIO2 and LOG2-i. Despite this
overhead, comparing the average time consumption with 4
threads, LOG2-i exhibits a slightly shorter duration than PV-
LIO, mainly benefiting from the fast uncertainty calculation
(IV-B), increment center, and covariance (V-A). LOG-LIO2
stands out for its efficiency with LUFA, significantly reduc-
ing map update times compared to PV-LIO, operating nearly
half the time of PV-LIO with a single thread and two-thirds
the time with four threads.

TABLE II
THE AVERAGE TIME CONSUMPTION(MS) OF STREET SEQUENCE IN THE

EXPERIMENTS

LOG-LIO2 LOG2-i PV-LIO
thread(s) 1 4 1 4 1 4

map update 19.13 9.29 28.67 11.92 37.98 14.56
total 59.20 50.77 68.68 52.83 80.27 59.47

The best and second-best results are bolded and underlined respectively.

VIII. CONCLUSION

This paper presents a comprehensive point uncertainty
model alongside a fast calculation method utilizing the pro-
jection operator. This model incorporates not only the range
and bearing uncertainty of LiDAR but also the uncertainty
arising from incident angle and surface roughness. Further-
more, we derive the incremental Jacobian matrices of the
eigenvalues and eigenvectors, enabling the application of the
local uncertainty fast approximation (LUFA). The accuracy
and efficiency of our formulations are first demonstrated
through simulation experiments, benchmarking against the
rigorous form derived by BALM. Subsequently, we integrate
all aforementioned methods into the LIO system LOG-LIO2.

Ablation experiments conducted on a public dataset validate
the accuracy and efficiency of LOG-LIO2 compared to state-
of-the-art LIO systems.

APPENDIX I

A. Consistency of Projection Operator with S2 Perturbation

In [2], [4], [5], the point uncertainty model considering
range and bearing is derived from the perturbation of the
true range dgt

i and true bearing ωgt
i as:

pgt
i = dgt

i ω
gt
i = (di + σdi) (ωi ⊞S2 σωi) (24)

where di and ωi is range and bearing measurements respec-
tively, ⊞-operation encapsulated in S2 [11], σdi

∼ N (0,Σdi
)

and σωi ∼ N (02×1,Σωi) are range and bearing noise,
respectively. The Jacobian matrix of pi w.r.t. di and σωi can
be further obtained as Jdi,ωi

=
[
ωi −di ⌊ωi⌋× N(ωi)

]
,

where ⌊ ⌋× denotes the skew-symmetric matrix mapping
the cross product, and N(ωi) = [N1 N2] ∈ R3×2 is
the orthogonal basis of the tangent plane at ωi. Then the
covariance of the point leads to:

Aωi = Jdi,ωi

[
σ2
di

01x2

02x1 Σ2
ωi

]
JT
di,ωi

(25)

Despite constructing N(ωi) arbitrarily in the tangent plane
of ωi is feasible, this approach incurs a computational cost.
We show that utilization of the projection operator simplifies
the computation while maintaining consistency:

Aωi
= σ2

di
ωiω

T
i + d2iσ

2
ω ⌊ωi⌋× N(ωi)I2x2N(ωi)

T ⌊ωi⌋T×
= σ2

di
ωiω

T
i + d2iσ

2
ω ⌊ωi⌋× (−⌊ωi⌋×)

= σ2
di
ωiω

T
i + d2iσ

2
ω(I3×3 − ωiω

T
i ).

(26)
Therefore, by eliminating the need for constructing N(ωi),
our approach results in a more efficient method.

B. Proof of The Incremental Jacobian of Eigenvalue

Similar to BALM [4], in this section, eigenvectors are
viewed as constant. Multiplying (8) by vT

j,k−1 on the left
and vj,k on the right, and combine with (2), we get:

λj,kv
T
j,k−1vj,k =

k − 1

k
(λj,k−1v

T
j,k−1vj,k +

1

k
vT
j,k−1Dvj,k)

λj,k =
k − 1

k
λj,k−1 +

k − 1

k2 cos θj
vT
j,k−1Dvj,k,

(27)
where θj is the angle between vj,k and vj,k−1.

Then the partial derivative of the updated eigenvalue λj,k

w.r.t. pi is given by:

∂λj,k

∂pi
=

k − 1

k

∂λj,k−1

∂pi
+

k − 1

k2 cos θj

∂vT
j,k−1Dvj,k

∂pi
. (28)

Given the value of ∂λj,k−1/∂pi in the last update, only the
second term of the above equation needs to be solved.



8

For i = 1, ..., k − 1, the second term of (28) is:

k − 1

k2 cos θj

∂vT
j,k−1Dvj,k

∂pi

=
k − 1

k2 cos θj
[−

vT
uvj,k−1v

T
j,k

(k − 1)
−

vT
uvj,kv

T
j,k−1

(k − 1)
]

=− du
k2 cos θj

(cosφj,k−1v
T
j,k + cosφj,kv

T
j,k−1)

(29)

where du is the distance between pk and mk−1. φj,k and
φj,k−1 are the angles from the direction of vu to the j-
th eigenvector vj,k derived from k points and the j-th
eigenvector vj,k−1 derived from k − 1 points, respectively.

For pk, which is independent of λj,k−1, (28) simplifies
to:

∂λj,k

∂pk
=

k − 1

k2 cos θj

∂vT
j,k−1Dvj,k

∂pk

=
k − 1

k2 cos θj
(vT

uvj,k−1v
T
j,k + vT

uvj,kv
T
j,k−1)

=
du(k − 1)

k2 cos θj
(cosφj,k−1v

T
j,k + cosφj,kv

T
j,k−1).

(30)

C. Proof of The Incremental Jacobian of Eigenvectors

We first revisit the derivations of BALM [4] from (31) to
(34). Reformulating (2), we get:

Λ = VTAV;VΛ = AV;ΛVT = VTA. (31)

Utilizing the orthogonality property VTV = I, we can
further obtain:

VT ∂V

∂qi
+

(
∂V

∂qi

)T

V = 0. (32)

Denoting an element of pi by qi and combining (31), the
derivative of Λk w.r.t. qi leads to:

∂Λk

∂qi
= VT

k

∂Ak

∂qi
Vk + (

∂Vk

∂qi
)TAkVk +VT

k Ak
∂Vk

∂qi

= VT
k

∂Ak

∂qi
Vk +Λk V

T
k

∂Vk

∂qi︸ ︷︷ ︸
(Cq)k

+

(
∂Vk

∂qi

)T

Vk︸ ︷︷ ︸
(Cq)Tk

Λk.

(33)
Given that Λ is diagonal, the off-diagonal elements in (33)

can be combined with (32) to yield:

0 = vT
m,k

∂Ak

∂q
vn,k + λm,k(C

q
m,n)k − (Cq

m,n)kλn,k.

Here, (Cq
m,n)k represents the element at the m-th row and

n-th column of (Cq)k, defined as:

(Cq
m,n)k =


1

(λn − λm)k
vT
m,k

∂Ak

∂q
vn,k,m ̸= n

0 ,m = n

(34)

To derive the incremental form of the matrix C as described
above, we derive the partial derivatives in (34) using (8):

∂Ak

∂q
=

k − 1

k

∂Ak−1

∂q
+

k − 1

k2
∂D

∂q
. (35)

The specific form of (Cq
m,n)k−1, m ̸= n, derived from

BALM is given by:

(Cq
m,n)k−1 =

1

(λn − λm)k−1
vT
m,k−1

∂Ak−1

∂q
vn,k−1. (36)

Similar to (29), for j = 1, ..., k−1, we can further obtain:

vT
m,k

∂D

∂pj
vn,k = − du

k − 1
(cosφmvT

n + cosφnv
T
m)k (37)

where φm and φn denote angles from the direction of vu to
vm and vn, respectively.

Substituting (35), (36) and (37) into (34) yields:

(Cpi
m,n)k =

[
(Cxi

m,n)k (Cyi
m,n)k (Czi

m,n)k
]
1×3

=

W
pi
m,n︷ ︸︸ ︷

(k − 1)(λn − λm)k−1

k(λn − λm)k
cos θm cos θn(C

pi
m,n)k−1

− du
k2(λn − λm)k

(cosφmvT
n + cosφnv

T
m)k

(38)

where θm denotes the angle between vm,k and vm,k−1.
For pk, which is independent of Ak−1, (34) simplifies to:

(Cpk
m,n)k =

[
(Cxk

m,n)k (Cyk
m,n)k (Czk

m,n)k
]
1×3

=
k − 1

k2(λn − λm)k
vT
m,k

∂D

∂p
vn,k

=
du(k − 1)

k2(λn − λm)k
(cosφmvT

n + cosφnv
T
m)k.

(39)

REFERENCES

[1] T. D. Barfoot, State estimation for robotics. Cambridge University
Press, 2024.

[2] C. Yuan, X. Liu, X. Hong, and F. Zhang, “Pixel-level extrinsic
self calibration of high resolution lidar and camera in targetless
environments,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7517–7524, 2021.

[3] B. Jiang and S. Shen, “A lidar-inertial odometry with principled
uncertainty modeling,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 13 292–
13 299.

[4] Z. Liu and F. Zhang, “Balm: Bundle adjustment for lidar mapping,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–3191,
2021.

[5] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang, “Efficient and prob-
abilistic adaptive voxel mapping for accurate online lidar odometry,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8518–8525,
2022.

[6] T. Tasdizen and R. Whitaker, “Cramer-rao bounds for nonparamet-
ric surface reconstruction from range data,” in Fourth International
Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003.
Proceedings. IEEE, 2003, pp. 70–77.

[7] K.-H. Bae, D. Belton, and D. D. Lichti, “A closed-form expression of
the positional uncertainty for 3d point clouds,” IEEE transactions on
pattern analysis and machine intelligence, vol. 31, no. 4, pp. 577–590,
2008.

[8] B. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[9] K. Huang, J. Zhao, Z. Zhu, C. Ye, and T. Feng, “Log-lio: A lidar-
inertial odometry with efficient local geometric information estima-
tion,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 459–
466, 2023.

[10] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-
inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp.
2053–2073, 2022.

[11] D. He, W. Xu, and F. Zhang, “Kalman filters on differentiable
manifolds,” arXiv preprint arXiv:2102.03804, 2021.

[12] J. Yin, A. Li, T. Li, W. Yu, and D. Zou, “M2dgr: A multi-sensor and
multi-scenario slam dataset for ground robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 2266–2273, 2021.


	INTRODUCTION
	sec:relatedwork
	PRELIMINARY
	Point Uncertainty Model
	Uncertainty Factors
	Range and bearing
	Incident Angle
	Roughness

	Fast Uncertainty Calculation

	LUFA: Local Uncertainty Fast Approximation
	Incremental Center and Covariance
	Incremental Jacobian of Eigenvalues
	Incremental Jacobian of Eigenvectors
	Incremental Update of Covariance

	Integration with LIO
	Pre-processing
	Odometry
	Map update
	Map stability
	Error accumulation


	EXPERIMENTAL RESULTS
	Experimental Settings
	LUFA Experiments
	Accuracy
	Efficiency

	LIO Experiments
	Accuracy Evaluation
	Efficiency Evaluation


	CONCLUSION
	Appendix I
	Consistency of Projection Operator with S2 Perturbation
	Proof of The Incremental Jacobian of Eigenvalue
	Proof of The Incremental Jacobian of Eigenvectors

	References

