2109.05413v2 [cs.RO] 23 Dec 2021

arxXiv

Learning Selective Communication for Multi-Agent Path Finding

Ziyuan Ma'*, Yudong Luo?* and Jia Pan?

Abstract— Learning communication via deep reinforcement
learning (RL) or imitation learning (IL) has recently been
shown to be an effective way to solve Multi-Agent Path Finding
(MAPF). However, existing communication based MAPF solvers
focus on broadcast communication, where an agent broadcasts
its message to all other or predefined agents. It is not only
impractical but also leads to redundant information that could
even impair the multi-agent cooperation. A succinct commu-
nication scheme should learn which information is relevant
and influential to each agent’s decision making process. To
address this problem, we consider a request-reply scenario and
propose Decision Causal Communication (DCC), a simple yet
efficient model to enable agents to select neighbors to conduct
communication during both training and execution. Specifically,
a neighbor is determined as relevant and influential only when
the presence of this neighbor causes the decision adjustment
on the central agent. This judgment is learned only based on
agent’s local observation and thus suitable for decentralized
execution to handle large scale problems. Empirical evaluation
in obstacle-rich environment indicates the high success rate with
low communication overhead of our method.

I. INTRODUCTION

Multi-Agent Path Finding is the problem of arranging a
set of collision-free paths for a set of agents on a given
graph. Although MAPF is NP-hard to solve optimally on
graphs [1] and even 2D grids [2], many optimal MAPF
algorithms have been developed in recent years. Some reduce
MAPF to other well-studied problems, e.g., ILP [3] and
SAT [4], others solve it with search-based algorithms, e.g.,
enhanced A* search [5], [6], Conflict-Based Search [7] and
its improved variants [8]. However, the limitation of these
centralized planning methods is that they do not scale well
to a large number of agents.

RL and IL methods with decentralized execution have
been applied to address this issue [9], [10], [11], [12], [13],
[14], [15]. During execution, each agent takes action based
on its individual decision model with its own observation
(may also include messages from other agents) as input,
which avoids the scalability problem. For RL-based meth-
ods [9], [10], [12], [15], MAPF is generally modeled as
a Markov Game [16] with partial observability, where a
reward function is designed for each agent, and the goal of
each agent is to maximize its expected total return. Usually,
expert guidance is applied to guide the RL during training
in terms of behavior cloning [9], shaped reward [12], or
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heuristic map [15]. For IL-based methods [11], [13], [14],
partial observability is still considered, but the objective is to
minimize the divergence between expert demonstrations and
generated trajectories, so that the learned policy can mimic
the expert behavior.

Recently, researchers focus on trainable communication
channels between agents for MAPF, where extra informa-
tion can be obtained during both training and execution to
enhance multi-agent cooperation [13], [14], [15]. However,
these methods focus on broadcast communication in which
messages will be transmitted to all other or predefined set
of agents. For instance, in [13] and [14], the messages
are broadcast to all other agents within a distance (com-
munication radius). In [15], the central agent takes the
messages from the two nearest neighbors after getting all
the broadcast messages from its neighbors inside the field
of view (FOV). Although empirical results have shown great
improvements of communication based methods compared
with non communication ones [15], the drawback is that
broadcast communication requires lots of bandwidth and
incurs additional system overhead and latency in practice.
More importantly, not every agent provides useful informa-
tion for cooperation, and redundant information can even
impair the learning process.

Plenty of methods on reducing communication overhead
or learning selective communication have been proposed in
the literature of RL [17], [18], [19], [20], [21], [22]. But
most of them are designed for centralized training framework
on cooperative Markov Game, where agents share the same
team reward. In contrast, each agent has its individual reward
in MAPF, and thus more information needs to be swapped
for cooperation. Therefore, selective communication is much
more important in this case. To design a succinct communica-
tion protocol for MAPF, we consider a request-reply commu-
nication scenario where messages are updated in two stages,
and propose Decision Causal Communication, a simple yet
efficient mechanism to enable agents to select other members
in the swarm for communication during both training and
execution. More specifically, before communication, each
agent is capable to figure out which neighbors in its FOV are
relevant and influential by just using local observation. The
agent makes two temporary decisions based on its raw local
observation and the modified local observation by masking
out a neighbor. For any neighbor that can cause difference
between these two temporary decisions, that neighbor is
considered as relevant and influential, and the agent will
send a request to that neighbor for communication purpose.
This communication protocol is also naturally capable for
decentralized execution. Empirical results show the high suc-



cess rate with low communication overhead of our method
compared with its counterparts.

Contributions. In this work, we propose DCC for MAPF.
Unlike broadcast communication, DCC learns selective com-
munication, and hence encourages agents to focus only on
relevant information. We demonstrate that, on one hand,
selective communication can remove temporal redundant
messages, which is beneficial to multi-agent cooperation. On
the other hand, communication overhead is greatly cut down
due to the reduction of communication frequency.

II. RELATED WORK
A. Reinforcement Learning based MAPF

RL-based planners generally formulate MAPF as a multi-
agent reinforcement learning (MARL) problem to learn
decentralized policies for agents (robots). Compared with
centralized planning methods, learning decentralized polices
scales well to a large number of agents. Collision free
policies are usually learned by guiding RL with constraints
or demonstration data [23], [9], [10], [12]. Incorporating
demonstration guidance with RL can be divided into two
categories, using demonstrations generated by a central-
ized planner, or by a single-agent planner. For instance, a
well known framework named PRIMAL [9] builds on the
asynchronous advantage actor critic (A3C) network [24] as
its RL part and uses behaviour cloning to supervise the
training of RL. So it requires demonstrations generated by
a centralized planner named ODrM* [6]. The limitation of
using a centralized planner is that it requires solving a MAPF
problem and is thus time-consuming, especially in a complex
environment with a large number of agents. For methods
using single-agent planner as guidance, MAPPER [12] and
Globally Guided RL (G2RL) [10] use A* search for single-
agent path generation and apply an off-route penalty if agents
fail to follow the path. The potential issue is that, as single-
agent shortest paths are usually not unique and not globally
optimal for multi-agent environment, forcing agents to follow
these paths by extra shaped rewards can mislead agents.

To tackle the above issues, our previous method DHC [15]
does not require a centralized planner. Although single-agent
shortest paths are still adopted as guidance, DHC embeds all
the potential choices of shortest paths as heuristic into the
input of the model, instead of forcing agents to follow a
specific path. Thus, no special shaped rewards are required.

Even though empirical results have shown that enhancing
RL with guidance can help to learn collision free policies
for MAPF, the cooperation among agents is not directly
modeled. Communication via graph convolution is a promis-
ing way to achieve multi-agent cooperation, where an agent
aggregates information from its neighbors, including itself,
and makes decisions based on this augmented informa-
tion [25], [26], [27]. This idea is recently deployed for
MAPF. By treating each agent in the environment as a
node and connecting neighboring nodes (agents) if they are
inside the FOV of each other, a graph is formulated by
DHC and multi-head dot-product attention [28] serves as the
convolutional kernel to compute interactions among agents.

Similar ideas are applied by the work described in [13] and
Message-Aware Graph Attention neTwork (MAGAT) [14],
where the communication part is a graph neural network
(GNN) [29]. However, it is worth noting that both [13]
and [14] are IL-based methods, which train the model
to imitate the demonstrations generated by Conflict-Based
Search (CBS) [7] and Enhanced CBS [30], respectively.
Thus, MAPF instances still need to be pre-solved while
extreme scenarios may fail to be solved and collected into
the training data. Also, none of these communication based
methods consider the efficiency of communication, resulting
in high communication overhead and latency.

B. Efficient and Selective Communication for MARL

Most existing works on communication in MARL, includ-
ing those described above, focus on broadcast communica-
tion, i.e., broadcasting the messages to all other or prede-
fined agents. To improve efficiency, a number of strategies
have been proposed. Individualized Controlled Continuous
Communication Model (IC3Net) [17] considers that full
communication is not always necessary and agents can
determine whether to send messages to others indicated by a
gating function. However, this gating function can block all
communication channels of an agent. Cases where an agent’s
message is instructive to some agents but useless or harmful
to others can not be handled. Schedule Communication
(SchedNet) [18] only allows a limited number of agents to
broadcast messages, who are chosen by some importance
weights assigned. The shortcoming is that a central scheduler
is required to gather all individual weights and decide
which agents should be entitled to broadcast their messages.
Variance Based Control (VBC) [19] lets agents transmit their
messages only when the variance of the message vector is
high (high variance implies that the message is informative).
And agents decide whether to request messages based on
local ambiguity. Temporal Message Control (TMC) [20]
stores agent messages in the buffer and new messages are
sent out only when they contain relatively new information
compared with old ones. Nearly Decomposable Q-functions
(NDQ) [21] optimizes communication via minimizing the
entropy of messages between agents. Individually Inferred
Communication (I2C) [22] learns a prior network, which
takes local observation and identity of another agent as input,
to predict a belief of whether to communicate. All VBC,
TMC, NDQ and I2C are designed on the centralized training
methods that factorize the joint action-value function, such
as QMIX [31], different from MAPF settings.

III. PROBLEM FORMULATION
A. MAPF Problem Definition

MAPF has many variants as summarized in [32]. In this
paper, we consider the classical MAPF case defined in [32]
that (a) each agent performs an action in every time step, and
may cause vertex and swapping conflicts, (b) agents “stay
at target” until all agents have reached their goals, and (c)
optimizes the sum of cost. This definition differs from the
environments used in PRIMAL and MAPPER, which are



Fig. 1. (a) Broadcast communication: agent % broadcasts its message to all
neighboring agents j, k, and p. And agents j, k, p will also broadcast their
messages to agent 7. If predefined scope is set, agent % can decide whose
message to be used in calculation, e.g., DHC takes the nearest two agents.
There is no communication between agent ¢ and u, as agent u is outside
agent 7’s FOV. (b) Request-reply based selective communication: agent %
omits irrelevant agent k, and only communicates with relevant agent j and
p. After determining which agent to communicate, the communication is
conducted in two rounds. At the first round, agent ¢ sends out messages
(requests) to agent j and p. At the second round, agent j and p reply with
their updated messages to agent %.

much simpler. In PRIMAL, agents take actions in turn (only
one agent takes action at a time), although we can treat this as
all agents act simultaneously but only one agent can move
while all others choose no-op action. In MAPPER, agents
are removed from the environment upon reaching their goal
locations, which simplifies the problem, as there will be no
livelocks when an agent reaches its goal but obstructs other
agents from getting to their goals. We also notice that the
environment in [33] is specially designed where obstacles
compose narrow corridors that only allow one agent to pass
at a time. We do not consider an environment like this.

Formally, we define MAPF as follows. Given an undi-
rected graph G = (V, E) and a set of n agents, each agent
indexed by % has a unique start vertex s; € V' and a unique
goal vertex g; € V. Time is discretized into time steps. At
each discrete time step, each agent can either move to an
adjacent vertex or wait at its current vertex. A path for i-
th agent is a sequence of adjacent (indicating a moving)
or identical (indicating a waiting) vertices starting at s;
and terminating at g;. Agents remain at their goal vertices
(g;) after they complete their paths. There are two kinds of
collisions, either vertex collision or edge collision. A vertex
collision is a tuple (i,j,v,t) where i-th and j-th agents
reaching at the same vertex v at time ¢. An edge collision is
a tuple (i, j,u,v,t) where i-th and j-th agents traverse the
same edge (u, v) in opposite directions at time ¢. A solution
to MAPF is a set of collision-free paths, one for each agent.
The quality of a solution is measured by the sum of arrival
time of all agents at their goal vertices.

B. Environment Setup

In line with standard MAPF tasks, we focus on 2D 4-
neighbor grids where agents, goals, and obstacles occupy one
grid cell respectively. Formally, the map is a m X m matrix,
where O represents a free location and 1 is an obstacle.
Each map is chosen n start positions and n corresponding
goal positions for n agents from free locations. We make
sure each goal is reachable from its start point and there
is no overlap among 2n selected positions. At each time

TABLE I
REWARD FUNCTION DESIGN

Actions Reward
Move (Up/Down/Left/Right) -0.075
Stay (on goal, away goal) 0, -0.075
Collision (obstacle/agents) -0.5
Finish 3

step, agents move simultaneously to neighboring locations
or wait at their current locations. Thus, the size of the action
space is 5 (move to four directions or stay still). Agents
may hit obstacles or conflict with others during simulation.
We handle the collision by recursively resetting the related
agents to previous states until no collision exits.

We consider a partially observable environment, which is
more compatible with the real world problem. Each agent can
only access the information inside its FOV with size ¢ x /¢
(¢ < m), where ¢ is an odd number to make sure agents are
at the center of FOV.

The reward design is adopted from DHC [15], shown in
Table |II Generally, negative rewards are given to agents for
each movement to facilitate goal reaching. No shaped reward
is required in our method.

IV. SELECTIVE COMMUNICATION FOR MAPF

In this paper, we propose DCC E], a simple yet efficient
mechanism to reduce communication overhead in multi-
agent systems. DCC can be instantiated by independent Q-
learning [34], or any framework of centralized training and
decentralized execution, such as QMIX [31] and VDN [35].
We consider a request-reply scenario different from the
traditional setup where each agent only sends out an almost
information-less indicator, e.g. a scalar value, as the request
signal. Instead, in our setup, each agent sends out a request
signal with rich information including its own messages
along with the relative positions of neighbors. In this way,
after receiving the request, the agents being requested can
immediately benefit from this query by collecting some
information from the query agent. Fig. [T|shows the difference
between broadcast and our request-reply based selective
communication. In the following part, We first introduce
DCC communication mechanism and then instantiate DCC
with independent Q-learning.

A. Decision Causal Communication

Our communication mechanism is motivated by 12C [22],
where causal inference is utilized to derive a threshold to trig-
ger communication. Specifically, I2C defines the causal effect
of agent j to agent 7 as the KL-divergence [36] between two
decision probabilities, Dgr(P(a;|la_;,0)||P(a;la—;;,0)),
where o is the joint observations, a_; denotes the joint
actions except for agent ¢, and similar meaning for a_;;.
The magnitude of this divergence indicates how much agent
1 will adjust its policy if taken into account agent j’s policy. If

Code available at https:/github.com/ZiyuanMa/DCC
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System flow of DCC. It contains four modules: observation encoder (blue), decision casual unit (purple), communication block (green), and Q

network (orange). An example of agent i’s FOV is shown by a 5 X 5 grid, where the blue color represents the agent itself, the green color represents
neighbors, and the gray color represents obstacles. Agent 4’s decision casual unit constructs three modified local observations by masking each neighbor
inside the FOV, represented by a red cross. The embeddings by observation encoder for the raw and modified local observations are fed to Q network
directly to get temporary decisions, which are further used to decide which neighbor is relevant for communication.

the divergence is small, agent ¢ chooses not to communicate
with j as that will hardly affect its own policy.

However, 12C is only effective for centralized training
algorithms as it requires to know the joint observations
and actions of all other agents. In real world problems
such as MAPF, usually an agent with partial observability
can only observe the existence of other agents instead of
their policies. Although agents can broadcast their actions,
that will definitely increase the communication overhead. In
practice, if the policy of an agent requesting communication
conditions on the action of the communicated agent, the
circular dependencies can occur. At last, setting a reasonable
threshold for that KL-divergence highly depends on empiri-
cal experiments and may vary in different problems.

Thus, to design an appropriate communication protocol
for MAPF, in this work, we restrict the strategy in 12C by
triggering communication between agent ¢ and j only when
the existence of agent j causes the policy adjustment on agent
1, and we call this Decision Causal Communication. To get
an intuition of the proposed protocol, consider the learning
based MAPF methods discussed in Section [[I-A] where most
of them guide the RL agent with global or local optimal
demonstrations. In order to diminish the communication cost,
an agent should follow the demonstration guided policy as
often as possible without communicating with others, if the
existence of other agents in its FOV will not affect its current
policy. Otherwise, the agent communicates with those neigh-
bors who will individually affect its policy. Although the
policy may be adjusted after communication and we can not
guarantee the adjusted policy is always better than unchanged
policy during simulation, training the communication part
along with RL in an end to end manner to maximize the
expected total return will force the communication to be
helpful and performed only when it is necessary.

Formally, this communication protocol can be formulated
as follows. Suppose agent j can be seen by agent ¢ (agent

7 is inside the FOV of agent ¢), and the relative position
of agent j in ¢’s FOV is (xj,y;). Agent ¢ gets its local
observation o; from the environment and constructs another
modified observation o; _; (—j means without j) by setting
the information at agent j’s position by some special value,
such as zero: o0; _; < o;(z;,y;) = 0. Then agent ¢ uses
its local decision model, without communication, to predict
two temporary actions a@; and @; —; based on o; and o; _j,
respectively. If these two actions match with each other, im-
plying that the existence of agent j will not affect ¢’s policy,
agent ¢ will not request message from agent j. Otherwise,
agent ¢ sends a request to agent j via a communication
channel, and agent j will respond with a message. In this
work, we consider messages are updated in both request and
reply stages, which is discussed in the following subsection.
The final aggregated messages are further used by policy or
Q-network to generate the final actions.

B. Deep Q-Learning Model Design

We instantiate DCC with independent Q-learning, namely
the model is designed and trained from a single agent’s per-
spective by treating other agents as part of the environment.
We borrow some architecture design from DHC. The whole
model of DCC consists of four main components, including
observation encoder, decision causal unit, communication
block, and Q-network. The model architecture is shown in
Fig.[2| We begin from the model input and describe the four
components one by one.

a) Local observation input: At time step t, agent ¢ gets
a matrix with the shape ¢ x ¢ x 6 as input, denoted by o!.
The first channel is a binary matrix representing the obstacles
inside the FOV. The second channel is a binary matrix
indicating the locations of other agents if within the FOV.
The other four are heuristic channels proposed by DHC [15],
to encode multiple choices of single-agent shortest path. We
refer readers to the DHC paper for further details.



b) Observation encoder: The encoder contains four
stacked convolutional layers with a GRU [37]. The local
observation o} is first encoded into 6! by four convolu-
tional layers. Then by adopting the last step communication
outcome e?]tfl as the hidden state, the GRU gets 6§ and
generates the intermediate message e.

c) Decision causal unit: This unit depends on the
observation encoder to embed modified observations, and
the Q-network (will be discussed later), to get temporary
actions. Let B; denote all neighbors of agent .. Given of,
of _;is constructed according to Section for all j €B,.
Each of _. is passed through the observation encoder as
dlscussed above to get an embedding eg)_ ;- By skipping the
communication, e} and {e{ _;};cp, are directly fed into the
Q-network to compute Q-values. Actions af and {a} _;};cz,
are inferred by applying argmax over Q-values. Based on
these actions, the communication scope of agent ¢ is

Ci = {jlaj # @} _;}jes,. (1)

Note that temporary actions @} and {a} _;} e, are only used
to decide the communication scope, not the final action to
be executed.

d) Communication block: This block is the graph con-
volution with multi-head dot-production as the convolutional
kernel [28] followed by a GRU. We regard the request-
reply as a two-round communication. After defining the
communication scope C;, at the first round, agent % sends
request information to all agent ;7 € C,. This information
includes its own message e’ as well as the relative position
of 4’s neighbors inside i’s FOV, denoted as lf The relative
position of each neighbor is originally represented as a one-
hot vector, i.e. the vector length is £x ¢, and further embedded
by a neural network layer. At the first round, agent j may
receive many requests from different agents, and we define
this request receiving scope for agent j as

C; = {ilj € C;}. )

Then each agent j; who receives requests will update
its message using multi-head attention. Let (CH denote
the set {j,(C }. For every agent i € Cj, agent 7’s own
message e is prOJected to Query by matrix WQ, while the
concatenatlon of e and l* is projected to Key and Value by
matrix W/ 7 and WV in each independent attention head h.
The relation between agent j and i € (CJJr in h-th attention

head is computed as
Whet . (Whiet [t
N?i—softmax< Q7 (\/diK[ t Z]) ), (3)
K

where dg is the dimension of Keys. The Values are weighted
summed by weights u;% over C;, at each head h. And all
head outputs are concatenated over H heads to pass through
a neural network layer f, for the final output

el = f, | concat Z ,uh Wbl YheH | |. @)

’LECJ+

At o e e t
The message € and the initial message €] are first aggregated

by a GRU to generate the first round outcome eg-l]t. Then eg-l]t
acts as the initial message for the next round.

At the second round, agents who received requests will
reply with their updated messages along with the relative
o L . A . [1]t
position of their neighbors, i.e. agent ¢ will receive e and
I from all agent j € C;. Let C;; denote the set {i,C;}.
Agent 7 will update its message in the same manner as
defined in Equations 3-4 by replacing j with ¢, and replacing
i € Cj; with j € C,4. Denote the message generated by
Equations 3-4 at this round as e[ It mt 1)t

. Finally, é and e ;

(21t , the ﬁnal outcome

are aggregated by a GRU to output e;
message of the second round.

e) Q-network: The message e?]t is adopted by a du-
eling Q-network [38], which separates state advantage V(-)

and action advantage A(-), to predict the Q-values.
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where A is the action space.

After we get the () values of agent ¢, the loss function for
training the whole model is a time difference (TD) error. To
stabilize training, we use a multi-step TD error calculated by
the mean square error (MSE)

L(0) = MSE (R} — Q., ,,(9)) (6)

with Ry = r{ + 7 + . +7"QL,,, a,,, (0), Where 7}
is the reward received by agent ¢ at time ¢, R} is the multi-
step expected return,  represents the parameters of the entail
model, and 6 denotes the parameters of the target network,
a periodical copy of the online parameters 6.

C. Training

As mentioned above, we train the model from a single
agent’s perspective using independent Q-learning, where
each agent learns its own action value Q' independently
and simultaneously, treating other agents as part of the
environment. The benefit is that it avoids the scalability
problem in centralized training, which requires learning a
Q-function for joint actions over all agents, as the joint
action space grows exponentially when the number of agents
increases. To further simplify the training process, instead of
training separate models for different agents, we train a single
model by sharing parameters among agents. To facilitate
training, we adopt two training strategies, namely distributed
training and curriculum learning [39], which are discussed
in the following.

a) Distributed training: Distributed training has sig-
nificantly improved the performance of RL compared with
non distributed ones, such as R2D2 [40] and Ape-X [41].
In MAPF, PRIMAL is a distributed RL method by using
A3C. The idea behind this distributed version of algorithm
is to parallelize the gradient computation, to more rapidly
optimize the parameters. Another approach, as proposed
in Ape-X, is to parallelize experience data generation and
selection with a shared replay memory. We adopt the latter



strategy, where we setup multiple runners on CPUs with
their own copy of the environment and up to date model
to generate experience data, and a single learner on GPU to
train. The runners initialize the priorities for the experience
data and feed into a global prioritized reply buffer. The
learner samples the most useful experiences from the buffer
to update the model parameters and also update the priorities
of the experiences. The advantage is that the model training
is allocated to GPU while original A3C is designed for multi-
core CPU. Note that the transitions of all the agents need to
be recorded for communication purpose in the model. As the
priorities are shared among all runners, the good experiences
explored by any runner can benefit the learner.

As we only have a single learner on GPU, the core task
is to efficiently distribute multiple runners on CPUs. Here
we utilize a powerful Python package named Ray [42],
a distributed framework designed for machine learning, to
easily deploy parallel programs on multiple CPUs with little
modification to the deep learning code.

b) Curriculum learning: The ultimate goal of the learn-
ing model is to handle complex cases in a large environment
with high obstacle density and many agents. However, it
would be hard for the model to learn fast and stably if
directly starting from a complicated training environment. As
pointed in [39], presenting training examples not randomly
but in a meaningful order will benefit machine learning
algorithms. Motivated by this idea, we design a training
pipeline to gradually introduce more complex training cases
to the model. Specifically, training starts with a task where
only 1 agent stays in a 10 x 10 environment. Then if the
success rate of the current task exceeds 0.9, two new tasks
are established for training. One is to increase the number
of agents by 1, and the other is to increase the size of the
environment by 5. The final task with 16 agents in a 40 x 40
environment will be reached as the training scale grows.

c) Other training settings: For the environment setting,
the obstacle density for each environment during training is
sampled from a triangular distribution between 0 and 0.5
with a peak at 0.33, which is the same as the obstacle setting
in PRIMAL. The FOV size is 9 x 9 (10 x 10 in PRIMAL,
we make it odd) and the agent is in the middle of the FOV.
The maximum step for the environment is 256.

For training setting, we train the model with a batch size
of 128 and a sequence length of 20. The discount factor
v = 0.99. The multi-step TD error defined in Equation 5
is computed with a length of 2. The number of runners for
distributed training is set to be 16.

V. EXPERIMENTS

The model is trained and tested in classical MAPF en-
vironments as discussed in Section We compare DCC
with one of the most well known RL baselines named
PRIMAL [9], and the most recent RL plus communication
method named DHC [15] in terms of success rate and
average step. For comparing communication overhead, we
build a baseline model, which uses request-reply mechanism
but with predefined communication scope. PRIMAL and

Map size 40x40, obstacle density=0.3 Map size 80x80, obstacle density=0.3
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two different scenarios.
TABLE 11

AVERAGE STEPS IN TWO TYPES OF ENVIRONMENTS WITH OBSTACLE
DENSITY = 0.3

Average steps in 40 x 40 maps

Agents | ODrM* DCC DHC PRIMAL
4 50.00 48.575  52.33 79.08
8 52.17 59.60 63.90 76.53
16 59.78 71.34 79.63 107.14
32 67.39 93.54 100.10 155.21
64 82.60 135.55  147.26 170.48

Average steps in 80 X 80 maps

Agents | ODrM* DCC DHC PRIMAL
4 93.40 93.89 96.72 134.86
8 104.92 | 109.89 109.24 153.20
16 114.75 | 122.24 122.54 180.74
32 121.31 132.99 138.32 250.07
64 13442 | 159.67 163.50 321.63
128 143.84 | 19290 213.15 350.76

DHC are not included in this evaluation because they are
all-to-all communication (more costly than request-reply).

A. Success Rate and Average Step

Success rate measures the ability to complete a MAPF task
within given time steps. Average step measures the average
time step consumed to finish a task, where smaller value
indicates a better policy. We average both successful and
unsuccessful cases to calculate the average steps. We set up
two types of maps, 40 x 40 and 80 x 80 for testing. The
obstacle density is set to be 0.3, the highest testing density
in PRIMAL and DHC. We set up 200 test cases for each
agent number in {4, 8, 16,32, 64}. Additional agent number
of 128 is tested in 80 x 80 maps due to a larger environment
space. The maximum time step for 40 x 40 map is 256, and
386 for 80 x 80 map, the same as the PRIMAL'’s setting.

Fig. [3] shows the success rate of our method compared
with PRIMAL and DHC in two types of environments. In
general, DCC and DHC (RL plus communication) perform
much better than PRIMAL (RL with expert guidance) in
all cases. The performance of PRIMAL downgrades heavily
in relatively larger environments (80 x 80) compared with
smaller ones (40 x 40), which indicates the IL part of
PRIMAL does not deliver good guidance to its RL com-
ponent. Thus it suffers performance degradation on long-
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Fig. 4. Success rate of our method compared with RR-N2 in two different
scenarios.

horizon task. In the environments where the agent density
is low, such as 4, 8, 16 agents in both 40 x 40 and
80 x 80 maps, the difference between the success rate of
DCC and DHC is small. In these environments, agents
have a lower chance to meet and communicate with others,
so the difference between broadcast communication (DHC)
and selective communication (DCC) is not very significant.
However, the success rate of DHC drops rapidly when
agent density further grows. In agent dense environments,
agents have a higher chance of encountering each other,
but agents will obtain irrelevant and redundant information
from others due to broadcast communication, which harms
the cooperation among agents. By selecting and gathering
relevant and influential information for communication, the
cooperation is enhanced by DCC.

Table [l verifies that DCC learns higher quality policies
with respect to average steps. We include ODrM* [6], a
centralized planner, as a reference. Especially compared with
DHC, learning selective communication by DCC leads to
much shorter paths in agent dense environments.

B. Selective Communication vs. Predefined Scope

Generally, selective communication by DCC does not
need to set a communication scope. Any neighboring agent
inside the FOV is possible to be requested by the central
agent for communication. Previous broadcast communication
method DHC defines the communication scope as the nearest
two neighboring agents inside the FOV in order to reduce
temporal redundant information. Although it is reasonable to
assume the nearest agents are most relevant and influential,
we show that selective communication outperforms the pre-
defined scope (nearest two agents) for MAPF in both success
rate and communication overhead.

To make a fair comparison, we develop a baseline model,
named RR-N2 (request-reply, nearest two). The whole model
architecture is similar to DCC. The only difference is that
RR-N2 does not have the decision causal unit in Fig.[2] and in
communication block, each agent only requests information
from its two nearest agents inside the FOV. The training
settings are the same as DCC as discussed in Section

Fig. @ shows the success rate of our method compared with
this baseline. The difference in success rate is significant in
agent-dense environments, i.e., 64 agents in 40 x 40 map and
128 agents in 80 x 80 map, which implies the nearest two
agents are not always the most relevant ones. One may think

TABLE III
COMMUNICATION FREQUENCY IN TWO DIFFERENT ENVIRONMENTS
WITH OBSTACLE DENSITY = 0.3

Average Step Map size 40 x 40 Map size 80 x 80
Agents DCC RR-N2 DCC RR-N2
4 2.42 36.88 1.06 18.36
8 11.56 209.79 5.75 105.86
16 60.47 959.38 24.98 469.58
32 294.69 4111.57 126.685  2125.94
64 1811.33  19490.09 | 562.11 8780.72
128 - - 2915.84  36560.30

that DCC achieves a better performance due to unconstrained
communication scope, where each agent may communicate
with more than two agents inside its FOV and thus gathers
more information than RR-N2. We show that this is not really
the case and DCC actually learns succinct communication. In
particular, we compute the average communication frequency
in these test environments as shown in Table A pair of
request and reply is counted as one time communication. The
average communication overhead of RR-N2 is much more
costly than DCC in all the testing cases, and is extremely
expensive in agent-dense environments. By learning selective
communication, DCC can greatly reduce communication by
only focusing on relevant messages.

Combining these two results, we can conclude that al-
though communication can help multi-agent cooperation for
MAPE, agents should learn to actively select relevant agents
for communication, because even the most nearest agents are
not the relevant ones. Communicating with only two agents
can already lead to huge communication overhead. Thus,
researchers should always devise a succinct communication
mechanism in order to reduce the communication overhead
for easy deployment to real world problems.

Limitations: There is an additional computational cost
associated with selecting neighboring agents. In extreme
cases, the cost is of order of O(n x p). p is the FOV capacity.

VI. CONCLUSION

We propose DCC to learn succinct communication for
MAPF with classical MAPF environment settings. Our aim
is to enable agents to actively select relevant and influential
neighbors for communication, instead of broadcasting. The
selection is learned via the local policy adjustment effect
between agents, which captures the necessity of communi-
cation. Empirical results show that selective communication
with relevant agents improves the policy learning process.
Moreover, DCC also serves as a component for communica-
tion reduction, greatly downscaling the communication over-
head. Future work entails extensions of DCC to centralized
training frameworks and cooperative Markov Game tasks.
Another direction is to explore how to directly exclude sets of
neighbors during neighboring selection to reduce complexity,
and also the maximal number of agents that DCC can handle
in different size of maps.
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