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Joint Sparsity Model for Multilook
Hyperspectral Image Unmixing

J. Bieniarz, E. Aguilera, X. X. Zhu, Member, IEEE, R. Miiller, and P. Reinartz, Member, IEEE

Abstract—Recent work on hyperspectral image (HSI) unmixing
has addressed the use of overcomplete dictionaries by employing
sparse models. In essence, this approach exploits the fact that HSI
pixels can be associated with a small number of constituent pure
materials. However, unlike traditional least-squares-based meth-
ods, sparsity-based techniques do not require a preselection of
endmembers and are thus able to simultaneously estimate the un-
derlying active materials along with their respective abundances.
In addition, this perspective has been extended so as to exploit
the spatial homogeneity of abundance vectors. As a result, these
techniques have been reported to provide improved estimation
accuracy. In this letter, we present an alternative approach that
is able to relax, yet exploit, the assumption of spatial homogeneity
by introducing a model that captures both similarities and differ-
ences between neighboring abundances. In order to validate this
approach, we analyze our model using simulated as well as real
hyperspectral data acquired by the HyMap sensor.

Index Terms—Joint sparsity, overcomplete spectral dictionary,
spectral unmixing.

I. INTRODUCTION

YPERSPECTRAL pixels are usually modeled as a linear

combination of spectral signatures typically related to
pure materials. Each of these signatures, which are referred to
as endmembers, is assumed to be weighted by the abundance of
specific pure materials. The basic linear mixing model (LMM)
can be formulated as follows:

y; = Axj + ¢ (D)

where y; € R™ stands for the measurements of the jth hyper-
spectal pixel with m spectral channels, A € RI"*"] is the mix-
ing matrix with n endmembers, x; represents the abundance
vector to be estimated for the jth pixel, and ¢; is a residual
vector due to noise and modeling errors. The mixing matrix can
be either trained from pixels containing pure material or formed
by making use of existing spectral libraries containing field or
laboratory spectrometer measurements [1].

Once the mixing matrix A has been constructed, the abun-
dance vector x can be estimated from the measurement vector y.
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Common approaches include the method of least squares (LS),
nonnegative LS (NNLS), and fully constrained LS (FCLS) [1].
While NNLS ensures the nonnegativity of the abundances,
FCLS additionally enforces that the elements of the abundance
vector sum up to one. However, these techniques are restricted
to overdetermined mixing models that require a preselection
of endmembers from a spectral library based on a priori
knowledge or retrieving them from the image directly [1]. As a
consequence, the amount of allowable endmembers is severely
limited.

Recently, sparsity-based spectral unmixing methods have
been proposed to estimate abundances in the presence of over-
complete spectral dictionaries [2]-[4]. These works make use
of the fact that there are typically only few endmembers inside
a pixel (depending on the pixel size) compared with the large
endmember spectral library [2], i.e., the abundance vector to be
estimated is sparse and has only up to few nonzero elements.
This is usually done by solving sparse minimization problems
using basis pursuit denoising (BPDN) or equivalent the least
absolute shrinkage and selection operator (LASSO) [5], [6].

Tordache et al. [7] introduced the idea of collaborative sparse
unmixing. In this approach, the unmixing is done by minimiz-
ing the residual error for all pixels in the image using the Lo ;
mixed norm as a regularizer. The mixed L2 ; norm promotes
sparsity among columns of the abundance matrix while mini-
mizing the energy along the rows, i.e., the algorithm tends to
select common endmembers for all pixels in the image. This
approach provides good results for homogeneous areas with
few active endmembers because the regularization is performed
globally. The algorithm presented in [4] in addition to the simul-
taneous estimation of all abundances enforces the spatial con-
textual coherence between neighboring pixels. Another concept
of sparse unmixing, i.e., sparse unmixing via variable splitting
augmented Lagrangian and total variation (SUnSAL-TV), has
been introduced in [8], where the Ly/L; minimizer from [2]
is additionally regularized with a total variation accounting for
smooth transitions in the abundances of the same endmember.

The goal of this letter is to exploit spatial homogeneity by
applying a joint sparsity model (JSM) originally introduced in
[9] for unmixing hyperspectral pixels. The JSM model allows
for promoting sparse solutions across processed pixels such
as in [7] by assuming spatial homogeneity between pixels,
i.e., common endmembers, but additionally recovering sparse
innovations in the abundance vector, such as additional end-
members and differences in the abundance. The basic inputs to
the algorithm are then multiple neighboring pixels (hereinafter
referred to as looks) as well as a spectral dictionary. Thus, the
goal will be to take advantage of the fact that the ensemble
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of unknown vectors exhibit both common endmembers and
abundances. As it has been shown, this approach also allows for
capturing their noncommon endmembers. Finally, we validate
the applicability of this technique comparing it with state-
of-the-art methods (BPDN, NNLS, and SUnSAL-TV) using
simulated and real data. Note that the method proposed in
[7] is not to be considered, as it is unable to model common
abundances locally.

II. METHODOLOGY
A. Sparse Spectral Unmixing

Let us assume an LMM as shown in (1). If the unmixing
problem is underdetermined and the vector x; for the jth pixel
is expected to be sparse, i.e., the number of nonzero elements
is much smaller than the length of x;, then x; can be estimated
using L;-regularized LS. Thus

1 .
min [ Az; = y;ll; +]zll,  subjectio x;>0. (@)
°J

Since the L;-norm serves as a proxy for sparsity, the penalty
parameter y can be used to trade sparsity of the solution for
data mismatch. Moreover, in order to ensure physical validity,
the abundance vector is constrained to be nonnegative. The
minimization problem (2) is referred to as the nonnegative
version of BPDN or equivalent sparse LASSO [6].

Spectral unmixing by means of (2) has been studied in [2]
and [3]. These approaches are particularly useful when using
spectral dictionaries containing a large number of endmembers.
The L, term of the minimization (2) imposes a limit on the
support of the = vector and, therefore, minimizes the number
of active endmembers [1]. The probability of reliable sparse
unmixing, however, highly depends on the properties of matrix
A and the noise present in the spectrum [1]-[3], [7].

B. Joint Sparsity Model for Multilook Spectral Unmixing

In order to enhance the detection of the mixed endmembers
and improve the performance in the presence of noise, we
propose using an approach based on the JSM, which uses
an ensemble of neighboring pixels in order to exploit spatial
correlations between them. This concept is based on the fact
that, usually, a pixel will contain a mixture of some spectral
signatures from its neighbors, which is indeed a reasonable
assumption due to, e.g., oversampling effects in line scanner
images [10].

Given the reflectance values of the jth hyperspectral pixel y;
in m hyperspectral bands, the model for joint sparsity unmixing
in a window with size of J pixels can be written as

Y; = AX; + Z; 3)

and Z; € R7™ is an additive residual vector, where Y; € RZ
is an ensemble of neighboring hyperspectral pixel, i.e.,

}/j:(yhyQaySV'wy.])T (4)

and A € R;g”(‘ul)n is a JSM dictionary [9] containing end-

members, and X; € R(Z‘{)H)n is an abundance vector. Both A

and X; are composed as follows:

A A 0 0 -+ 0 T
A0 A0 0]
A0 0 0 -+ A ¥/
In particular, the model for the jth pixel can be written as
y; = Az = Az, + Ax/j (6)

where x. is a part of an abundance ensemble X; containing
only common abundance, and :Z?; contains abundances present
in the jth pixel with 1 < j < J, A is the original dictionary
containing n endmembers.

The design of matrix A promotes joint sparsity. The first
column of the dictionary Ais responsible for recovery of the
common accounts for z. contained in all .J pixels. The diagonal
part of A reconstructs the endmembers, which are not present
in all pixels and are referred to as innovations. As a result, the
multilook JSM reconstruction (MLJSR) can be accomplished
by means of the previously introduced nonnegative version of
BPDN, i.e.,

1 -
min 2| AX; = V; I3 + )%, subjectto X, >0 (7)
J

where, again, 7 is responsible for trading sparsity for data
mismatch. In light of previous considerations, we will provide
a numerical evaluation of MLJSR based on (7).

III. EXPERIMENTAL RESULTS

We have tested our algorithm using simulated and real hy-
perspectral data. The algorithm least angle regression/LASSO
used for optimization problems (2) and (7) is reported in [S]. We
considered two sliding windows for MLJSR, namely, a square-
shaped (with J = 9) and a cross-shaped (with J = 5) window.
For both, the unmixed pixel y; was located in the center of
the window. Additionally, we compared the results with the
SUnSAL-TV algorithm using the solver from [11].

A. Simulated Scenario

In this experiment, we used n = 240 spectra selected from
the United States Geological Survey Digital Spectral Library
(splib06) [12] to form the dictionary A € RI™*" with m =
224 spectral channels such as in [8]. The simulated images were
created as follows.

mxn’]

1) Form a mixing matrix M € RI by selecting n’ = 10
endmembers at random from A.

2) Create an abundance cube X'(c, r,n’), where columns ¢
and rows r are ¢ = r = 100. For all layers n’, randomly
set 144 elements to 1.

3) Blur all layers n’ using a Gaussian filter with standard

deviation o = 0.025.
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Fig. 1. Simulated data. Subfigures (a)—(d) present a central pixel spectrum from

the simulated image with (a) no noise and with SNR of (b) 40 dB, (c) 30 dB,
and (d) 20 dB. Similarly, the false color composition of bands 50, 100, 150 con-
taminated with different noise levels is shown in (e)—(h). The bar plot (i) shows
the distribution of pixels according to the number of endmembers mixed in it.

4) Normalize Ve, r,n' : X'(c,r,n') = X'(¢,r,n")/ >, X'
(c,r,n).

5) Create a hyperspectral data cube Y (¢, ,m) by means of
LMM Ve, r:Y'(e,r,m) = MX'(c,r,n') + & (c,r,m),
where &’(c, r, m) is Gaussian noise with a signal-to-noise
ratio SNR[dB] = 101log |Y(c, 7, m)||§/|\s’(c7 T, m)||§

In our simulations, we considered three test cases with SNR

values of 20, 30, and 40 dB [see Fig. 1(a)—(h)]. The simulated
images contained mixtures of from two to ten endmembers
distributed as shown in Fig. 1(i). In order to evaluate the
abundance recovery performance, we considered two measures.
First, the signal-to-reconstruction error (SRE) is defined as

1L sl
SRE|[dB] = 101log;, MZ I 12

Jj=1

()

[E2 —leli

where z7 is the ground truth abundance of the jth z; pixel,
and M is the total number of pixels. Second, the mean absolute
error (MAE) is given as

1
MAE; = — |2 — ], ©)

where n is the number of endmembers.

For each test case, we calculated solutions using NNLS,
BPDN, SUnSAL-TV, and MLJSR with 60 uniformly dis-
tributed ~ parameter settings such that v = ¢, i € (—1,11).
Additionally, since SUnSAL-TV requires two regularization
parameters, we have tested the second parameter Ay [7] with
values 0.0001, 0.0005, 0.001, 0.005, 0.01, and 0.05 resulting in
360 different parameter settings for each test case.

Fig. 2 shows the SRE for different v settings using the
MLIJSR, BPDN, and SUnSAL-TV methods. In this particular
case, MLJSR exhibits better performance than BPDN and
SUnSAL-TV. In Fig. 3, the mean SRE is shown as a function
of SNR. For all SNR values, the v parameter has been chosen
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—4— SUNSAL-TV (Aqvy,=5-10~3) —+— MLISR (J=9)

SRE (dB)
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Fig. 2. Plot of the SRE values as a function of the «y regularization parameter.
Results for SNR = 30 dB using BPDN, SUnSAL-TV, and MLJSR methods.
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Fig. 3.  Comparison of NNLS, BPDN, SUnSAL-TV, and MLIJSR algorithms

using SRE measure for signal with different SNR values.

from the set of solutions so as to favor each particular algorithm
(see, for example, Fig. 2). In terms of SRE, both settings of the
MLIJSR algorithm outperformed NNLS and BPDN at all noise
levels. MLISR with J =9 window is reported to have higher
SRE than SUnSAL-TV for low SNR values of 20 and 30 dB.

We have used the MAE to evaluate the accuracy of abun-
dance estimation at the pixel level for whole abundance vectors
[see Fig. 4(a)-(e)], only abundance of present endmembers
[see Fig. 4(f)—(j)], and false recovery of nonpresent endmem-
bers, i.e., endmembers present in recovered abundance but
not present in the ground truth abundance [see Fig. 4(k)—(0)].
For the 20-dB test case, all L;-regularized algorithm exhibit
significantly lower overall MAE than NNLS (mean MAE for
the whole test image was equal to 1.43 for MLJSR with J =9,
1.44 for MLJSR with J =5, 1.47 for SUnSAL-TV, 1.49 for
BPDN, and 3.42 for NNLS). Both settings of MLJSR (mean
MAE = 0.38) along with BPDN (mean MAE = 0.34) have
lower MAE for nonpresent endmembers when compared with
SUnSAL-TV (mean MAE = 0.48) and NNLS (mean MAE =
2.36). All algorithms were able to recover abundances of
present endmembers with relatively similar MAE.

We have compared the computation time for all algorithms
implemented in MATLAB using Intel(R) Core(TM)2 Quad
CPU Q9550 at 2.83 GHz with 8 GB of RAM. In this exper-
iment, MLJSR and BPDN are solved with [5], SUnSAL-TV
using [11], and NNLS with MATLAB built-in function Isqnon-
neg. The computation time for the 30-dB test case resulting in
highest SRE was, respectively, 24.97 s using MLJSR (J =9,
~v = 0.05), 39.04 s using MLJSR (J = 5, v = 0.049), 382.17 s
using SUnSAL-TV (v = 0.0045, Apy = 0.005), 4.12 s using
BPDN (v = 0.05), and 101.5 s using NNLS.
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Fig. 4. Comparison of NNLS, BPDN, SUnSAL-TV, and MLJSR algorithms using the SNR = 20 dB test case and the MAE measure for (a)—(e) all endmembers,
(f)-(j) endmembers present in the image only, and (k)—(0) endmembers not present in the image (false abundance recovery). The color bar range, for all subfigures

in a row, has been set at maximum MAE of one of the L1-regularized methods.

B. Real HyMap Image

For the experiment with real data, we used a hyperspectral
scene acquired over Munich, Nymphenburg district, with the
airborne sensor HyMap [13]. The scene has a size of 100 x 100
pixels with originally 126 spectral channels reduced to 96 after
discarding noisy and absorption bands. The image has been
atmospherically [14] and geometrically [10] corrected with a
ground resolution of 4 m. To form a spectral library, we used
90 man-made materials, vegetation, and soil spectra selected
from the splib06 [12], merged with 39 endmembers from a roof-
material dictionary [15]. The dictionary had finally m = 129
endmembers.

We have performed the reconstruction of abundances by
means of NNLS; BPDN with v = 0.5; SUnSAL-TV with v =
e 3 and Apy = e 3 [8]; and MLJSR with v = 1.5 and J = 9.
Again, we have chosen the regularization parameters so as
to favor each particular algorithm and, thus, allow for a fair
comparison. All unmixing results have been overlaid on a high-
resolution image (see Fig. 5), henceforth employed as a pseudo-
ground truth. NNLS, BPDN, SUnSAL-TV, and MLJSR have
detected, respectively, 107, 22, 98, and 38 active materials.
Fig. 5(a)—(k) shows the estimated abundances for red roof
shielding, lawn grass, and trees, respectively.

When compared with BPDN and NNLS, the MLJSR al-
gorithm leads to smoother transitions from one material to
another, which is consistent with the assumption of localized
spatial homogeneity. For example, Fig. 5(d) shows a gradual
decrease in the roof abundance from the middle of the roof

toward the edges. Noticeably, this is not the case for SUnSAL-
TV [see Fig. 5(c)], which tends to exhibit very similar neighbor-
ing abundances. Also, whereas BPDN [see Fig. 5(b)] is unable
to detect the roof edges, NNLS misses a great deal of roof
endmembers [see Fig. 5(a)]. Moreover, NNLS seems to provide
reliable results only for abundances associated with tree [see
Fig. 5(e)]. Finally, note that, while NNLS [see Fig. 5(i)] and
BPDN [see Fig. 5(j)] fail for grass detection, MLJSR provides
satisfactory results [see Fig. 5(k)].

IV. CONCLUSION

In this letter, we have proposed a multilook joint sparse re-
construction for sparse spectral unmixing. The proposed model
takes advantage of the neighboring information by means of
joint approximation of abundances in a sliding window and
particularly a joint approximation of common endmembers.

Compared with the standard sparse BPDN or NNLS method,
experiments with simulated data demonstrate that the pro-
posed method restores abundances for pixels sharing common
endmembers more accurately in terms of the SRE measure
and overall MAE. Compared with the SUnSAL-TV method,
our approach exhibited higher SRE for SNR values equal to
20 and 30 dB. The fact that our method requires only one
regularization parameter, it is easier to use compared with
SUnSAL-TV. Additionally, MLJSR in both settings performs
faster than SUnSAL-TV or NNLS. The outcome of MAE
comparison shows that the MLJSR approach recovers end-
members with similar accuracy as state-of-the-art algorithms



700 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 4, APRIL 2015

Fig. 5.

cooooooo000k
OFRLNWRARUIONOOWOO

000000000 0OH
oRNwhULON®LLO

ocoooo0o0o00O0OkR
O NWAUIONOOWOO

Unmixing results using NNLS [(b), (g), ()], BPDN [(c), (h), (m)], SUnSAL-TV [(d), (i), (m)], and MLIJSR [(e), (j), (0)], respectively. The first row of

images presents the abundance map for red roof shielding. In the second row are the abundances for the tree spectrum, and in third row are the abundances for
lawn grass. (a) RGB composition (channels 7, 5, 3) from the HyYMAP image, (f) false RGB composition (channels 96, 60, 16), (k) high-resolution Google Earth

Image of the corresponding area.

with low detection of nonpresent endmembers. The qualitative
analysis of the results on the HyMAP image shows the MLJSR
approach to be competitive with respect to BPDN and NNLS
or SUnSAL-TV methods and visually provides more consistent
results.

For the future work, we address tests on real hyperspectral
data including quantitative analysis, different ensemble sizes
and shapes, and dependence from the spatial resolution. The
JSM can be extended to a more complex design, e.g., by
incorporating shared endmembers between singular pixels in
the window by weighting of the central pixel or by different
weighting factors for the pixels according to the point spread
function of the hyperspectral sensor.
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