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Data-Enabled Predictive Iterative Control

Kai Zhang, Riccardo Zuliani, Efe C. Balta, and John Lygeros

Abstract—This work introduces the Data-Enabled Predictive
iteRative Control (DeePRC) algorithm, a direct data-driven
approach for iterative LTI systems. The DeePRC learns from
previous iterations to improve its performance and achieves the
optimal cost. By utilizing a tube-based variation of the DeePRC
scheme, we propose a two-stage approach that enables safe
active exploration using a left-kernel-based input disturbance
design. This method generates informative trajectories to enrich
the historical data, which extends the maximum achievable
prediction horizon and leads to faster iteration convergence. In
addition, we present an end-to-end formulation of the two-stage
approach, integrating the disturbance design procedure into the
planning phase. We showcase the effectiveness of the proposed
algorithms on a numerical experiment.

Index Terms—Data-driven control, Iterative learning control,
Model predictive control, Active exploration.

I. INTRODUCTION

Direct data-driven control enables decision-making directly

from raw data, bypassing the need for a parametric model,

which received significant attention in the recent literature.

The Fundamental Lemma [1] establishes that all finite-length

trajectories of a linear time-invariant (LTI) system belong

to the span of the Hankel matrix constructed using a suit-

ably persistently exciting input/output trajectory, and has in-

spired numerous novel controller designs in the framework

of behavioral systems theory. For example, [2] focuses on

robustly stabilizing data-driven feedback control design, while

[3], [4] develop a predictive control scheme in a receding-

horizon manner. The celebrated data-enabled predictive control

(DeePC) scheme of [3] enables novel applications and theories

in the field of direct data-driven control. Later extensions

of DeePC provide also closed-loop stability guarantees by

enforcing the last segment of the predicted trajectory to match

the target [4].

The DeePC scheme uses a Hankel matrix representation of

the system dynamics, which is assumed to satisfy a persistency

of excitation condition (PE condition) [1]. The degree of

excitation of the Hankel matrix limits the maximum predic-

tion horizon of the controller; hence, a lack of sufficiently

rich historical input/output data may produce short prediction

horizons, potentially leading to suboptimal performance. Our

approach is to use the measurement data obtained during

system execution to improve the PE condition, thus allowing

for longer prediction horizons. This requires persistently ex-

citing inputs which need careful design to ensure exploration
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without sacrificing performance. We address this problem in

the context of iterative systems by providing a novel scheme

with active exploration and theoretical guarantees.

Iterative systems are those performing repeated tasks, where

all individual tasks, called iterations, start from the same

initial condition and share the same objective. This enables

the possibility of iteratively updating the controller using

data collected from each iteration. In the context of iterative

systems, [5] proposes a learning Model Predictive Control

(LMPC) algorithm that constructs a safe set using past safe

trajectories to be used as terminal constraint. This strategy

ensures asymptotic stability and a non-increasing cost over

iterations, ultimately converging to the optimal cost under suit-

able assumptions. To improve robustness, [6] extends LMPC

to systems with additive uncertainties by leveraging tube-MPC

approaches [7]. In this case, robust safe sets are constructed

using nominal trajectories satisfying tightened constraints to

ensure the nominal cost is non-increasing over iterations.

In this paper, we present the Data-Enabled Predictive iteR-

ative Control (DeePRC), a direct data-driven control approach

for iterative LTI systems. The DeePRC uses an input/output

convex safe set and a terminal cost function designed from pre-

vious trajectories and enjoys recursive feasibility, asymptotic

stability, non-increasing iteration cost, and convergence to the

infinite-horizon optimum, albeit asymptotically. We develop

an active exploration variant of DeePRC, which is able to

increase its maximum prediction horizon in a sample-efficient

way requiring only a single initial safe trajectory through the

design of an input disturbance term. We further present an

end-to-end formulation of the two-stage approach, integrating

the disturbance design procedure into the planning phase.

Notation: [a, b] is the set of integers a to b. ‖x‖p is

the p-norm of x and ‖x‖2A = x⊤Ax. col(x0, x1, ..., xℓ)
and col(A0, A1, ..., Aℓ) denote vertically stacked vector

[x⊤
0 x⊤

1 · · · x⊤
ℓ ]

⊤ and matrix [A⊤
0 A⊤

1 · · · A⊤
ℓ ]

⊤. For

a matrix A, A[:m,:] denotes the submatrix of its first m
rows, while A[m:,:] represents the remaining rows and we use

A[−m:,:] to denote its last m rows. image(A) and leftker(A)
denote the image and left kernel of matrix A, respectively.

For a generic length-N sequence {yk}
N−1
k=0 , we write y[a,b] :=

col(ya, . . . , yb).

II. PRELIMINARIES

A. Problem Setting

Consider the unknown discrete-time LTI system

xt+1 = Axt +But,

yt = Cxt +Dut,
(1)

where xt ∈ R
n is the state, ut ∈ R

m is the input, and

yt ∈ R
p is the output. The state xt is not directly mea-

surable, and needs to be reconstructed using input/output
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information. Denote by ℓ ∈ N>0 the lag of the system, that

is, the minimum integer such that the observability matrix

Oℓ(A,C) := col(C,CA, ..., CAℓ−1) has rank n. We assume

that an upper bound ℓ on the lag ℓ is available.

To represent the state using input/output data, we define the

extended state following [8, Definition 3]:

ξt := col(u[t−ℓ,t−1], y[t−ℓ,t−1]) ∈ R
nξ , (2)

where nξ = (m+ p)ℓ. Here, ξt is the state of a non-minimal

representation of (1) with dynamics

ξt+1 = Ãξt + B̃ut,

yt = C̃ξt + D̃ut,
(3)

which is generally not unique. We refer to [8, Equation 6] for

one possible form of (3).

Suppose system (1) performs iterative tasks, where the

task for each iteration is to steer the system from

a starting equilibrium ξS to a target equilibrium ξF.

We define uj = col(uj
−ℓ, . . . , u

j
−1, u

j
0, . . .) and yj =

col(yj−ℓ, . . . , y
j
−1, y

j
0, . . .), where uj

t = uS, yjt = yS, ∀t ≤ 0
describe the initial state for the associated extended state

sequence {ξjt }
T j

t=0, with ξj0 = ξS.

A trajectory is considered safe if it converges to the target

state ξF := col(uF, . . . , uF, yF, . . . , yF) and satisfies the

convex input and output constraints

uj
t ∈ U , yjt ∈ Y, (4)

for all t ∈ Z[0,T j−1], where U ⊆ R
m and Y ⊆ R

p are

convex sets. Following [5], the control objective is to solve

the following infinite horizon problem.

J∗
∞(ξS) = min

u0,u1,...

∞
∑

k=0

h(yk, uk) (5a)

s.t. ξk+1 = Ãξk + B̃uk, ∀k ≥ 0, (5b)

yk = C̃ξk + D̃uk, ∀k ≥ 0, (5c)

ξ0 = ξS, (5d)

uk ∈ U , yk ∈ Y, ∀k ≥ 0. (5e)

The stage cost is h(uk, yk) = ‖uk−uF‖2R+ ‖yk− yF‖2Q with

Q,R ≻ 0, and we assume (uF, yF) ∈ int(U × Y).

Assumption 1. System (1) is observable and stabilizable.

Problem (5) is not tractable due to the infinite horizon and

the lack of knowledge of the system dynamics. We develop

the DeePRC algorithm as a tractable solution to (5). Our

scheme uses a data-based non-parametric model for (5b)-(5c)

to perform receding horizon control.

B. Review of DeePC

Here, we provide a brief background on the Data Enabled

Predictive Control (DeePC). Let T, L ∈ Z≥0 with T ≥ L > ℓ.
The Hankel matrix of depth L for a signal u = col(u0, . . . , uT )
is defined as

HL(u) :=











u0 u1 · · · uT−L

u1 u2 · · · uT−L+1

...
...

. . .
...

uL−1 uL · · · uT−1











.

We use the identifiability condition presented in [9] for the-

oretical guarantees, which is a slight generalization of the

Fundamental Lemma [1].

Lemma 1 ([9, Corollary 21]). Consider a length T in-

put/output trajectory {ud, yd} of system (1). The image of

HL(u
d, yd) := col(HL(u

d),HL(y
d)) is the span of all length

L trajectories of the system if and only if

rank(HL(u
d, yd)) = mL+ n. (6)

Under condition (6), one could identify a state-space (using

standard system identification techniques) or kernel represen-

tation (following [10]) of the system. The main advantage of

a direct data-driven approach, like the one presented in this

paper, is its simplicity and efficiency, as well as the possibility

to directly deal with noisy data by introducing regularization

terms in the cost function. For a detailed discussion about

the differences between direct and indirect methods, we refer

the reader to [11]. A direct comparison between our approach

and that of [10] is subject of future research. Given an initial

horizon Tini ∈ N>0 and a prediction horizon N ∈ N>0, let
[

UP

UF

]

:= HTini+N (ud),

[

YP

YF

]

:= HTini+N (yd), (7)

where UP ∈ R
mTini×H , UF ∈ R

mN×H , YP ∈ R
pTini×H ,

YF ∈ R
pN×H with H = T − Tini − N + 1. Suppose that

(ud, yd) satisfy the rank condition (6) with L = Tini + N .

According to Lemma 1, {col(uini, u), col(yini, y)} is a valid

trajectory of the system if and only if ∃g ∈ R
H such that









UP

YP

UF

YF









g =









uini

yini
u
y









, (8)

where uini ∈ R
mTini and yini ∈ R

pTini are the Tini-step past

input/output observations. If Tini ≥ ℓ, given any future control

input sequence u ∈ R
mN , the associated output sequence y ∈

R
pN is uniquely determined via (8) thanks to Lemma 1. In

the remainder of this paper, we assume Tini= ℓ.

III. NOMINAL DEEPRC

In this section, we introduce the nominal DeePRC algorithm

and exploration schemes using past trajectory data.

A. Input/Output Convex Safe Set

The input/output convex safe set ioCSj at iteration j is

defined as the convex hull of all extended states along previous

safe trajectories:

ioCSj :=

{

∑

i∈Mj

∞
∑

t=0

γi
tξ

i
t | γ

i
t ≥ 0,

∑

i∈Mj

∞
∑

t=0

γi
t = 1

}

, (9)

where M j := {i ∈ Z[0,j−1] |
∑∞

t=0 h(y
i
t, u

i
t) < ∞, ui

t ∈
U , yit ∈ Y, ∀t} indicates past safe iterations. Finite trajectories

can be extended by appending (yF, uF). For all i ≤ j,

M i ⊆ M j , and therefore ioCSi ⊆ ioCSj . Every ξ ∈ ioCSj

is safe, meaning that it can be steered to ξF without violating



the constraints. Note that ioCSj is updated only in between

iterations. The cost-to-go of ξit is defined as

J i(ξit) =

∞
∑

k=t

h(ui
k, y

i
k).

representing the cost required to steer ξit to ξF. Note that

J i(ξi0) = J i(ξS) is the cost of the entire trajectory i. The

cost-to-go can be extended to any ξ ∈ ioCSj , by defining

P j(ξ) = min
γ≥0

∑

i∈Mj

∞
∑

t=0

γi
tJ

i(ξit)

s.t.
∑

i∈Mj

∞
∑

t=0

γi
t = 1,

∑

i∈Mj

∞
∑

t=0

γi
tξ

i
t = ξ.

(10)

Note that P j(ξ) represents the cost required to safely steer ξ
to ξF under the control policy π(ξ) =

∑

i∈Mj

∑∞

t=0 γ
i,∗
t ui

t,

where γ∗ is the minimizer of (10).

Theorem 2. The set ioCSj is control invariant1 for all j. For

any ξ ∈ ioCSj , P j(ξ+) ≤ P j(ξ)−h(ū, ȳ), ū ∈ U and ȳ ∈ Y ,

where ξ+ = Ãξ + B̃ū, ȳ = C̃ξ + D̃ū, and ū = π(ξ).

Proof. For any ξ ∈ ioCSj , let

ū :=
∑

i∈Mj

∑∞
t=0 γ

i,∗
t ui

t, ȳ :=
∑

i∈Mj

∑∞
t=0 γ

i,∗
t yit,

where ū ∈ U and ȳ ∈ Y because of convexity, and γ∗ is a

minimizer of (10). By linearity we have ξ+ := Ãξ + B̃ū ∈
ioCSj and, recognizing that γ̃, defined for t ≥ 1 as γ̃i

t = γi,∗
t−1,

is a feasible solution of (10) with ξ = ξ+, we have

P j(ξ+) ≤
∑

i∈Mj

∑∞
t=0 γ̃

i
t+1J

i(ξit+1)

=
∑

i∈Mj

∑∞
t=0 γ

i,∗
t

(

J i(ξit)− h(ui
t, y

i
t)
)

≤ P j(ξ)− h(ū, ȳ),

where the last inequality follows from convexity.

B. The Nominal DeePRC Algorithm

The nominal DeePRC algorithm utilizes a single safe trajec-

tory {u0, y0} to construct both the Hankel matrix and the safe

set ioCS1. Since the closed-loop trajectories can potentially

have infinite length, we assume only a finite portion of them

is used to construct the non parametric representation of the

system. We use T j to denote the length of the recorded

trajectory.

Assumption 2. A safe trajectory {u0, y0} is available with

u0
[0,T 0], y

0
[0,T 0] satisfying (6) with L = Tini+N and N ≥ ℓ.

Let col(UP , YP , UF , YF ) = HTini+N (u0, y0), u(t) ∈ R
mN ,

y(t) ∈ R
pN , g(t) ∈ R

H , and

Jj
N (u(t), y(t), ξN (t)) :=

N−1
∑

k=0

h(uk(t), yk(t)) + P j(ξN (t)).

1We refer the reader to [12] for an exact definition.

The nominal DeePRC for time-step t and iteration j is

formulated as follows:

Jj,∗
N (ξjt )= min

g(t),u(t),y(t)
Jj
N (u(t), y(t), ξN (t)) (11a)

s.t.









UP

YP

UF

YF









g(t) =









uini(t)
yini(t)
u(t)
y(t)









,

[

uini(t)
yini(t)

]

= ξjt , (11b)

ξN (t) =

[

u[N−ℓ,N−1](t)
y[N−ℓ,N−1](t)

]

, ξN (t) ∈ ioCSj , (11c)

uk(t) ∈ U , yk(t) ∈ Y, ∀k ∈ [0, N − 1], (11d)

C. Hankel Matrix Update

The DeePRC (11) utilizes a static Hankel matrix. As new

iterations {uj, yj} are measured, we can augment the predic-

tion horizon by modifying the Hankel matrix. At iteration j,

the largest feasible prediction horizon is

N j = max
{

N
∣

∣

∣
rank(Hj

N ) = m(ℓ+N) + n
}

, (12)

with Hj
N =

[

Hℓ+N (u0, y0) . . . Hℓ+N (uj−1, yj−1)
]

. Sup-

pose our goal is to have N j = N̄ ≥ ℓ for some j. The desired

horizon N̄ is a design parameter that can be chosen before the

beginning of the operation, or can be incrementally updated

online until some stopping criterion is met. We assume that

N̄ < T j for all j. To fulfill the objective we require Hj

N̄

to satisfy the rank condition (6) with L = L̄ := ℓ + N̄ . If

N̄ > N j , then we solve (11) with prediction horizon N j and

matrixHj

Nj . The process continues until rank(Hj̄

N̄
) = mL̄+n

for some j̄, after which we initialize (11) with N̄ and Hj̄+1

N̄
.

This type of update takes place at the end of each iteration,

however, we can also study how each new sample, gathered

within the iteration, affects the rank of Hj

N̄
. To this end, let

Hj,t

N̄
= Hj

N̄
for all t < N̄ − 1 and define for all t ≥ N̄ − 1

Hj,t+1

N̄
=

[

Hj,t

N̄

[

uj

[t−L̄+1,t]

yj
[t−L̄+1,t]

]]

. (13)

Ideally, each update in (13) should ensure that rankHj,t+1

N̄
=

1 + rankHj,t

N̄
. Note that the matrices Hj,t

N̄
obtained through

(13) are not used in the DeePRC problem, they are only used

to understand how newly gathered samples affect the rank of

the Hankel matrix of depth N̄ , and will later be used for the

input disturbance design.

IV. SAFE AND ACTIVE EXPLORATION

Update (13) can be inefficient, as new trajectories are not

guaranteed to increase the rank condition and extend the

prediction horizon. In this section, we present an active explo-

ration strategy to safely reach the desired prediction horizon

N̄ . We design the control input as the sum of two components

ut = ũt + dt, where ũt is chosen to optimize closed-loop

performance, and dt is an artificial input disturbance ensuring

active exploration.



A. Safe Exploration: Tube DeePRC

To ensure safety, we assume dt is chosen from a known,

user-designed bounded set D, and develop a tube-based

DeePRC scheme given by

min
g(t),v(t),z(t)

Jj
N (v(t), z(t), ζN (t)) (14a)

s.t. (g(t), v(t), z(t), ζN (t)) ∈ C, (14b)

vk(t) ∈ Ū , zk(t) ∈ Ȳ, ∀k ∈ [0, N − 1], (14c)

where C denotes the constraints (11b)-(11c) with (u, y, ξ)
replaced with (v, z, ζ), and zt, vt, and ζt are the nominal

output, input, and extended state, respectively. The tightened

constraints Ū = U ⊖ Eu and Ȳ = Y ⊖ Ey are obtained using

a robust positive invariant set E by Eu = {eu ∈ R
m | ∃e ∈

E , s.t. eu = Tue} and Ey = {ey ∈ R
p | ∃e ∈ E , s.t. ey =

Tye}, with Tu and Ty selecting the entries associated to the

last input and the last output of the error e between the true

and the nominal extended state. We then choose

ũj
t = K(ξjt − ζjt ) + v∗0(t), (15)

where K is a stabilizing output feedback gain (which can be

computed either using [2, Theorem 8] or, under less restrictive

conditions, using the techniques of [13]).

One way to obtain E is to consider the nominal system

ζt+1 = Ãζt + B̃vt

zt = C̃ζt + D̃vt.

and obtain (Ã, B̃) from (8) with N = 1 as

ξt+1=

[

col(UP[m:,:], UF)
col(YP[p:,:], YF)

]





UP

YP

UF





† 



uini(t)
yini(t)
u(t)



= Ãξt + B̃ut,

which always admits a solution under Assumption 2 thanks

to [2, Theorem 1]. Assuming (Ã, B̃) is stabilizable (sufficient

conditions for stabilizability have been studied in [2, Theorem

3], alternatively, one can perform a change of coordinates to

obtain the extended-state of [13]) we can choose E (either

polytopic or ellipsoidal) to satisfy

et+1 = (Ã+ B̃K)et + B̃dt ∈ E , ∀et ∈ E , ∀dt ∈ D, (16)

where et := ξt − ζt. One practical way to avoid the (Ã, B̃)
parameterization, at the expense of a potential violation of the

theoretical guarantees, is to choose E to be a sufficiently large

ball centered at the origin. Data-driven techniques to estimate

E are an active area of research and represent an interesting

direction for future work.

For safe planning, any element in the ioCS of problem (1)

is required to meet the tightened constraints Ū , Ȳ . As in [6],

we need to strengthen Assumption 2 as follows.

Assumption 3. A robustly safe trajectory {v0, z0} (i.e., with

v0t ∈ Ū , z
0
t ∈ Ȳ, ∀t ∈ Z≥0) is available with v0[0,T 0], z

0
[0,T 0]

satisfying (6) with L = Tini+N and N ≥ ℓ.

To ensure robust constraint satisfaction, we construct the

ioCS in (14) using the nominal trajectories {vj , zj}.

B. Active Exploration: LKB Input Disturbance Design

Since ũj
t in (15) satisfies the nominal constraints for all

djt ∈ D (compare Corollary 4), we can design djt to ensure

the Hankel matrix update (13) always produces an increment

in the rank of the matrix. Choosing djt independently and

uniformly from D at each time step may be inefficient, since

the control input ũj
t may already contain sufficient information

to excite the system. We propose a left-kernel-based (LKB)

disturbance design inspired by [14] as a sample-efficient

exploration strategy.

For the first N j − 2 time-steps of iteration j we set djt =
0. Next, for t ≥ N j − 1, let col(Ū j,t, Ȳ j,t) := Hj,t

N̄
, where

Ū j,t ∈ R
mL̄×Hc , Ȳ j,t ∈ R

pL̄×Hc with Hc = t − N̄ + 1 +
∑j−1

i=0

(

T i − N̄ + 1
)

, and let Ȳ j,t
up = Ȳ j,t

[:p(L̄−1),:]
. If

col(yj
[t−L̄+1,t−1]

, uj

[t−L̄+1,t−1]
, ũj

t) /∈ image

[

Ȳ j,t
up

Ū j,t

]

, (17)

then the candidate control input ũj
t will excite the trajec-

tory and thus we set djt = 0. Otherwise, consider any

κ ∈ R
p(L̄−1)+mL̄ in the left kernel of col(Ȳ j,t

up , Ū
j,t) with

κ[−m:] 6= 0 and take any djt satisfying

κ⊤col(yj
[t−L̄+1,t−1]

, uj

[t−L̄+1,t−1]
, ũj

t + djt ) 6= 0, (18)

where κ[−m:] denotes the last m elements of κ [14]. If D is

absorbing (e.g. any norm ball), there always exists some djt
satisfying (18). We then apply the input uj

t = ũj
t +djt with ũj

t

as in (15). This ensures that rank(Hj,t+1

N̄
) = rank(Hj,t

N̄
) + 1

for all t ≥ N j−1, meaning that the desired horizon N̄ can be

reached in exactly mL̄+n−rank(H1
N̄
) time steps. Afterwards,

djt ≡ 0 and the nominal DeePRC (11) can be used instead of

(14). The DeePRC scheme with LKB active exploration is

summarized in Algorithm 1.

C. An End-to-End Formulation

Algorithm 1 presents a two-stage approach for designing

the control input. We also provide an end-to-end formulation,

which integrates the online disturbance design procedure into

the optimization problem

min
g(t),v(t),z(t),d(t)

Jj
N (v(t), z(t), ζN (t))+λ‖d(t)‖1 (19a)

s.t. (g(t), v(t), z(t), ζN (t)) ∈ C, (19b)

vk(t) ∈ Ū , zk(t) ∈ Ȳ , ∀k ∈ [0, N − 1], (19c)

u0(t) = v0(t) +K(ξjt − ζjt ), (19d)

‖







yj
[t−L̄+1,t−1]

uj

[t−L̄+1,t−1]

u0(t) + d(t)







⊤

Kj,t‖∞ ≥ ǫ, d(t) ∈ D. (19e)

Condition (17) is here enforced through the excitation con-

straint (19e), where ǫ ∈ R>0 and Kj,t is an orthogonal

basis of col(Ȳ j,t
up , Ū

j,t). We further add 1-norm penalty on the

disturbance to ensure that its magnitude is kept to a minimum.

(19) can be formulated as a mixed-integer quadratic program

(MIQP). The end-to-end formulation should generally perform

better than the two-stage, as d(t) is part of the optimization

problem. Similar to the two-stage approach, we only solve

(19) until N̄ is reached, then we utilize (11).



Algorithm 1 DeePRC with LKB Active Exploration

1: Init: {u0, y0}, ξS, ξF, N̄ ≥ ℓ, D, ioCS1, j = 1.

2: while yj 6= yj−1 do

3: t = 0, ξj0 = ξS, ζj0 = ξS.

4: if N̄ has been reached then

5: Setup (11) using Hj̄+1
N̄

.

6: while not converged to ξF do

7: Solve (11) and apply uj
t . Get yjt and ξjt+1.

8: end while

9: ioCSj+1 = ioCSj ∪ {uj, yj}.
10: else

11: Compute N j using (12).

12: Setup (14) using Hj
Nj

.

13: while not converged to ξF do

14: Solve (14) and get ũj
t from (15).

15: if t ≤ N̄−2 or (17) holds then

16: djt = 0.

17: else

18: Select any djt satisfying (18).

19: Update Hj,t

N̄
with (13).

20: end if

21: Apply uj
t = ũj

t + djt . Get yjt and ξjt+1.

22: end while

23: ioCSj+1 = ioCSj ∪ {vj , zj}.
24: end if

25: j ← j + 1.

26: end while

V. PROPERTIES AND GUARANTEES

A. Closed-Loop Properties

We first prove that the scheme in (11) enjoys recursive

feasibility and stability. We require the following.

Assumption 4. There exists cu > 0 such that Jj,∗
N (ξ) ≤

cu‖ξ‖
2
2 for all ξ for which (11) is feasible.

Proposition 3. Under Assumptions 1, 2, and 4, the following

hold for all j ≥ 1: i) Problem (11) is feasible for all t ∈ Z≥0;

ii) (uj, yj) satisfy the constraints U , Y; iii) ξjt exponentially

converges to ξF.

Proof. Assumption 2 ensures ξ0τ ∈ ioCSj , ∀τ ∈ [0, T 0 − 1].
At t = 0, as ξj0 = ξS = ξ00 , the length-N trajectory

û(0) = u0
[0,N−1], ŷ(0) = y0[0,N−1] taken from {u0, y0} is

a feasible solution. Next, suppose u∗(t), y∗(t), g∗(t) is the

solution of (11) at time step t. At time step t + 1, let

û(t+ 1) = col(u∗
[1,N−1](t), ū), ŷ(t + 1) = col(y∗[1,N−1](t), ȳ),

where ū = π(ξ∗N (t)) ∈ U . According to Theorem 2,

(û(t + 1), ŷ(t + 1)) satisfies all constraints and there exists

some ĝ(t + 1) satisfying (11b) since (û(t + 1), ŷ(t + 1))
is a valid trajectory of the system. This proves recursive

feasibility. Using the candidate solution û(t+ 1), ŷ(t+ 1) and

Theorem 2, we can prove exponential stability by following

the arguments in [4].

As the Tube DeePRC (14) solves a similar problem to the

nominal DeePRC, it inherits similar closed-loop properties.

Corollary 4. Under Under Assumptions 1, 3, and 4 (with ξ
replaced with ζ and (11) replaced with (14)) the following

holds for all j ≥ 1: i) Problem (14) is feasible for all t ∈
Z≥0; ii) (vj , zj) satisfy the tightened constraints Ū , Ȳ , and ζjt
exponentially converges to ξF; iii) (uj , yj) satisfy the nominal

constraints U , Y , and ξjt → ξF + E for all djt ∈ D.

B. Recursive Feasibility of the End-to-End Formulation

Let D = {d ∈ R
m | ‖d‖∞ ≤ d̄} for some d̄ ∈ R>0, and let

Kj,t
u = Kj,t

[−m:,:].

Proposition 5. Under Assumption 3, if d̄ ≥ ǫ and the 1-norm

of each non-zero column of Kj,t
u is 1, then (19) is recursively

feasible.

Proof. Let Kj,t

u[:,i] denote the i-th column of Kj,t
u , and suppose

it is non-zero. Given any û0(t), we have

‖col(yj
[t−L̄+1,t−1]

, uj

[t−L̄+1,t−1]
, û0(t) + d̂(t))⊤Kj,t‖∞

= ‖c+ d̂(t)⊤Kj,t
u ‖∞ ≥ |ci + d̂(t)⊤Kj,t

u[:,i]| (20)

where c is a constant row vector and ci denotes its i-th element.

By choosing d̂(t) = d̄ · sign(Kj,t

u[:,i]) if ci ≥ 0 and d̂(t) =

−d̄ · sign(Kj,t

u[:,i]) otherwise, with sign(·) is applied element-

wise, it holds that (20) ≥ d̄ ·‖Kj,t

u[:,i]‖1 ≥ ǫ. In other words, for

any û0(t), we can construct the disturbance d̂(t) such that the

excitation constraint (19e) is satisfied. The rest of the proof

constructs a candidate input/output sequence similar to that of

Proposition 3, such that constraints (19b)-(19c) are satisfied.

C. Convergence Properties

From the discussion in Subsection IV-B, we immediately

have the following.

Proposition 6. Both the DeePRC with LKB active exploration

in Algorithm 1 and the end-to-end formulation (19) reach the

desired prediction horizon N̄ in exactly mL̄+n− rank(H1
N̄
)

time steps.

Proposition 6 implies that we can obtain finite horizon

approximations of (5) in finitely many time steps and a direct

data-driven fashion. Moreover, if ξt in (5) reaches the origin in

finitely many time-steps c, and c ≤ N̄ , then (uj , yj) converges

to the solution of (5) in finitely many iterations. Using the

arguments in [15], we further have the following.

Theorem 7. Let Assumption 2 hold, and suppose the desired

prediction horizon N̄ is achieved at iteration j̄. Then Jj(ξS) ≥
Jj+1(ξS) for all j > j̄. Moreover, if uj+1 = uj in Algorithm 1

for some finite j and the LICQ condition in [15, Assumption

3] holds, then uj solves (5).

Proof. The first point follows from [5, Theorem 2]. The

second point follows from [15, Theorem 2].

For j ≤ j̄, we can also prove that the nominal cost of (14)

is non-increasing over iterations. Theorem 7 guarantees that

the solution of (5) be reached asymptotically for any horizon

N . However, controllers with larger horizons generally lead to



faster convergence, as showcased in the simulations of Section

VI, and exhibit overall better performance.

VI. NUMERICAL EXAMPLES

We consider the following four-dimensional system

A =









1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1









, B =









0.1 0
0 0.1
0 0.1
0.1 0









, C =

[

1 0 0 0
0 1 0 0

]

,

with D = 0, subject to U = [−1.5, 1.5]2, Y = [−1.5, 1.5]2.

We assume the true lag ℓ = 2 is unknown and set ℓ = 4.

The initial and target states are (uS, yS) = ([0 0]⊤, [0 0]⊤)
and (uF, yF) = ([0 0]⊤, [0.4 −0.4]⊤). The cost matrices are

Q = I
4 and R = 0.1 ·I2. In this setting, the desired prediction

horizon is N̄ = 50. The initial safe trajectory {u0, y0} is

obtained using the LQR controller (Q̄ = I
4, R̄ = I

2). To meet

Assumption 3, small random disturbances are added to the

LQR control input for the first 20 time steps. Using (12), we

verify that {u0, y0} produces a prediction horizon of N1 = 8.

In Figure 1, we compare the performance of passive Han-

kel update (Passive), two-stage with LKB design (2s-LKB),

end-to-end approach (end-to-end). The figure illustrates the

relationship between the rank of the matrix Hj

N̄
and its

number of columns. Without exploration, the rank increment

is considerably slower, indicating that many added trajectories

to the matrix lack sufficient information. Meanwhile, for the

methods with exploration, the trend is approximately linear,

as expected. In Table I we further compare the closed-

loop costs of the 2-stage LKB and the 1-stage approaches

against a nominal DeePRC scheme with fixed horizon N = 8
(without exploration) and againts the passive scheme. The

methods with active exploration achieve worse cost in j = 1
due to constraint tightening, but outperform the nominal and

the passive schemes later thanks to the extended prediction

horizon. In the first iteration, the end-to-end performs better

than the LKB, since disturbance design is incoroprated in the

MPC problem, however, it requires an average computation

100 150 200 250 300 350 400
40

60

80

100

Number of columns

R
an

k Passive
2s-LKB
end-to-end

N̄ max. rank

Fig. 1. Evolution of the rank of the Hankel matrix.

TABLE I
PREDICTION HORIZON AND TRAJECTORY COSTS OVER ITERATIONS

Nominal Passive 2s-LKB End-to-end
j

N Jj N Jj N Jj N Jj

0 \ 8.635158 \ 8.635158 \ 8.635158 \ 8.635158
1 8 7.784081 8 7.818932 8 7.827334 8 7.826908
2 8 7.765810 17 7.756467 50 7.748497 50 7.748497
3 8 7.761973 19 7.749598 50 7.748497 50 7.748497
4 8 7.760775 20 7.748698 50 7.748497 50 7.748497

time of 0.757s, as opposed to the 0.058 seconds of the two-

stage methods. The difference in performance between active

and passive methods in our example is small, highlighting

that further research is required to understand the impact

of prediction horizon on closed-loop performance. Indeed,

Theorem 3 guarantees that the desired prediction horizon will

be reached through active exploration, but provides no claims

about the relative performance improvement.

VII. CONCLUSION

In this work, we presented the DeePRC algorithm, a direct

data-driven approach to control LTI systems performing itera-

tive tasks. The DeePRC requires only an initial safe trajectory

with a low excitation order and it guarantees sample-efficient

rank-increment while maintaining safety in closed-loop. Under

suitable conditions, DeePRC is guaranteed to converge to the

best achievable performance. Extending the formal guarantees

for systems with process disturbances, measurement noise,

nonlinearities, and non-identical initial conditions are promis-

ing directions for future work.
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