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Reweighted Infrared Patch-Tensor Model With Both
Non-Local and Local Priors for Single-Frame Small
Target Detection

Yimian Dai, Yiquan Wu

Abstract—Many state-of-the-art methods have been proposed
for infrared small target detection. They work well on the im-
ages with homogeneous backgrounds and high-contrast targets.
However, when facing highly heterogeneous backgrounds, they
would not perform very well, mainly due to: 1) the existence of
strong edges and other interfering components, 2) not utilizing
the priors fully. Inspired by this, we propose a novel method to
exploit both local and non-local priors simultaneously. Firstly, we
employ a new infrared patch-tensor (IPT) model to represent the
image and preserve its spatial correlations. Exploiting the target
sparse prior and background non-local self-correlation prior, the
target-background separation is modeled as a robust low-rank
tensor recovery problem. Moreover, with the help of the structure
tensor and reweighted idea, we design an entry-wise local-
structure-adaptive and sparsity enhancing weight to replace the
globally constant weighting parameter. The decomposition could
be achieved via the element-wise reweighted higher-order robust
principal component analysis with an additional convergence
condition according to the practical situation of target detection.
Extensive experiments demonstrate that our model outperforms
the other state-of-the-arts, in particular for the images with very
dim targets and heavy clutters.

Index Terms—infrared small target detection, infrared patch-
tensor model, reweighted higher-order robust principal com-
ponent analysis, non-local self-correlation prior, local structure
prior.

I. INTRODUCTION

NFRARED small target detection is a key technique for

many applications, including early-warning system, preci-
sion guided weapon, missile tracking system, and maritime
surveillance system [1l], [2l], [3]. Traditional sequential de-
tection methods, such as 3D matched filter [4], improved
3D filter [S], and multiscan adaptive matched filter [6], are
workable in the case of static background, exploiting the target
spatial-temporal information. Nevertheless, with the recent
fast development of high-speed aircrafts [7] like anti-ship
missiles, the imaging backgrounds generally change quickly
due to rapid relative motion between the imaging sensor and
the target. The performance of the spatial-temporal detection
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method degrades rapidly. Therefore, the research of single-
frame infrared small target detection is of great importance
and has attracted a lot of attention in recent years.

Different from general object or saliency detection tasks, the
main challenge of infrared small target detection is lacking
enough information. Due to the long imaging distance, the
target is always small without any other texture or shape
features. As the target type, imaging distance, and neighboring
environment differ a lot in real scenes, the target brightness
could vary from extremely dim to very bright (see Fig. [3] for
example). In the absence of spatial-temporal information and
the target features like shape and size, the characteristics of the
background [8]] and the relation between the background and
target are very important priors for single-frame infrared small
target detection. Thus how to design a model to incorporate
and exploit these priors is vital for infrared small target
detection in a single image.

A. Prior work on single-frame infrared small target detection

The previously proposed single-frame infrared small target
detection methods could be roughly classified into two cate-
gories. In the first type, a local background consistent prior is
exploited, assuming the background is slowly transitional and
nearby pixels are highly correlated. As a result, the target is
viewed as the one that breaks this local correlation. Under this
assumption, the classical methods, such as two-dimensional
least mean square (TDLMS) filter [9] and Max-Median filter
[10], enhance the small target by subtracting the predicted
background from the original image. Unfortunately, besides
the targets, they enhance the edges of the sky-sea surface or
heavy cloud clutter as well, since these structures also break
the background consistency as the target does. To differentiate
the real target and high-frequency change, some edge analysis
approaches [11], [12] have been proposed to extend these
methods to estimate the edge direction in advance and preserve
the edges. Bai et al. [13]] designed a new Top-Hat transforma-
tion using two different but correlated structuring elements.
Another class of local prior based methods exploits the local
contrast, which is computed by comparing a pixel or a region
only with its neighbors. The seminal work of Laplacian of
Gaussian (LoG) filter based method [14] has motivated a broad
range of studies on the Human Visual System (HVS), and has
led to a series of HVS based methods, e.g., Difference of Gaus-
sians (DoG) [I15]], second-order directional derivative (SODD)
filter [16l], local contrast measure (LCM) [[17], improved local
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contrast measure (ILCM) [18], multiscale patch-based contrast
measure (MPCM) [19]], multiscale gray difference weighted
image entropy [20], improved difference of Gabors (IDoGb)
[21]], local saliency map (LSM) [22], weighted local difference
measure (WLDM) [23]], local difference measure (LDM) [24],
etc.

The second type of single-frame infrared small target detec-
tion methods which has not been explored extensively, exploits
the non-local self-correlation property of background patches,
assuming that all background patches come from a single
subspace or a mixture of low-rank subspace clusters. Then,
target-background separation can be realized with the low-
rank matrix recovery [25]. Essentially, this type of methods
attempts to model the infrared small target as an outlier in
the input data. To this end, Gao et al. [20] generalized the
traditional infrared image model to a new infrared patch-
image model via local patch construction. Then the target-
background separation problem is reformulated as a robust
principal component analysis (RPCA) [27] problem of recov-
ering low-rank and sparse matrices, achieving a state-of-the-art
background suppressing performance. To correctly detect the
small target located in a highly heterogeneous background,
He et al. [28] proposed a low-rank and sparse representation
model under the multi-subspace-cluster assumption.

B. Motivation

Existing methods detect the infrared small target by either
utilizing the local pixel correlation or exploiting the non-local
patch self-correlation. From our observation, the unsatisfying
performance of local prior methods [20], [23] in detecting the
dim target under complicated background mainly lies in their
imperfect grayscale based center-difference measures. The
saliency of a dim but true target would be easily overwhelmed
by the measured saliency of some rare structures. We call this
phenomenon the rare structure effect. In contrast, the non-
local prior methods [26], [29], [30] suffer from the salient
edge residuals. Its intrinsic reason is because the strong edge
is also a sparse component as the same as the target due to
lack of sufficient similar samples. Since the target might be
dimmer than the edge, they would simultaneously be wiped
out by simply increasing the threshold.

Our key observation is that the non-local prior and local
prior are not equivalent, and in fact they are complementary
for the problem of infrared small target detection, as illustrated
in Fig. |1} The often appearing false alarm components in local
(non-local) prior methods could be well suppressed by the non-
local (local) prior methods. For example, the stubborn strong
edges in the non-local prior based methods, can be easily
identified by the local edge analysis approaches. Naturally,
an intuitive way to solve above-mentioned dilemma is to
extract the local structure information and merge it into the
non-local prior based detection framework. Therefore, how to
simultaneously and appropriately utilize both the local and
non-local priors has been an important issue for improving
the detection performance under very complex backgrounds.
To the best of our knowledge, very few single-frame infrared
small target detection methods concern this problem.

Residuals Residuals
via True via
Non-Local1arget [ ocal
Prior Prior

Figure 1. Illustration of our motivation behind exploiting both non-local and
local priors.

To address this issue, we propose a single-frame small
target detection framework with reweighted infrared patch-
tensor model (RIPT). Our main contributions consist of the
following three folds:

1) To dig out more information from the non-local self-
correlationship in patch space, we generalize the patch-
image model to a novel infrared patch-tensor model
(IPT) and formulate the target-background separation
task as an optimization problem of recovering low-rank
and sparse tensors.

2) To incorporate the local structure prior into the IPT
model, an element-wise weight is designed based on
structure tensor, which helps to suppress the remaining
edges and preserve the dim target simultaneously.

3) To reduce the computing time, we adopt a reweighted
scheme to enhance the sparsity of the target patch-
tensor. Considering the particularity of infrared small
target detection, an additional stopping criterion is used
to avoid excessive computation.

The proposed RIPT model is validated on different real
infrared image datasets. Compared with the state-of-the-art
methods, our proposed model achieves a better background
suppressing and target detection performance.

The remaining of this paper is organized as follows. We
propose the non-local correlation based IPT model in Section
The details of the local structure weight construction are
described in Section In Section we further propose the
reweighted IPT model and its detailed optimization scheme is
also provided. Section [V]presents detailed experimental results
and discussion. Finally we conclude this paper in Section

II. NON-LOCAL CORRELATION DRIVEN INFRARED
PATCH-TENSOR MODEL

To dig out more spatial correlationships, we develop a
novel target-background separation framework named infrared
patch-tensor model in this section. Before describing the
details, several mathematical notations are defined first in
Tab. [l

Given an infrared image, it could be modeled as a linear
superposition of target image, background image and noise
image:

fre=fe+ fr+ (D

where fg, fg, fr, and fx represent the input image, back-
ground image, target image, and noise image, respectively.
Via a window sliding from the top left to the bottom right
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Table I
MATHEMATICAL NOTATIONS

Notation Explanation

X, X, x, x tensor, matrix, vector, scalar.

X(n) mode-n matricization of tensor X € RT1X12X*XIN obtained by arranging the mode-n fibers as the columns of the resulting matrix
of size R *TTkstn Tk

vec(X) vectorization of tensor X.

(X,Y) inner product of tensor X and ), which is defined as (X, Y) := vec(X) T vec(Y).

1%]lo £o norm of tensor X’ which counts the number of non-zero elements.

[| ] 1 £1 norm of tensor X.

X Frobenius norm of tensor X', which is defined by || X||r := /(X, X).

fold; (X) returns tensor 2 that Z(;y = X.

[ X || nuclear norm of matrix X, which is defined by || X ||« = 3=, o;, where the SVD of X = Udiag(o)V .

Su(x) element-wise shrinkage operator is defined as S, (x) := sign(x) max(|z| — p, 0). S, (x) is the closed-form solution of the problem:
§ = argminy [l — y[|7 + |yl BII.

Du(X) matrix singular value thresholding operator: D, (X) := Udiag(3)V T, where X = Udiag(c)V' T is the SVD of X and
& := max(o — ,0). Dp(X) is the closed-form solution of the problem: ¥ = arg miny | X — Y'||2 + SIY] 1320

Ton(2) T () 1= fold, (D, (X ).

over an image, we stack the patches into a 3D cube (see the
construction step in Fig. f). Then Eq. (I) is transferred to the
patch space with spatial structure preserved:

F=B+T+N, 2)

where F, B, T,N € RIX/XP are the input patch-tensor,
background patch-tensor, and target patch-tensor, respectively.
I and J are the patch height and width, P is the patch number.

Background patch-tensor B. Generally, the background is
considered as slowly transitional, which implies high correla-
tions among both the local and non-local patches in the image,
as illustrated in Fig. Ja). Although patches pi,p2,ps locate
in the different region of the image, they are equivalent. Based
on this non-local correlationship, the state-of-the-art IPI model
imposed the low-rank constraint to background patch-image.
As a patch-image is the mode-3 unfolding matrix of a patch-
tensor, the patch-image model could be viewed as a special
case of the proposed patch-tensor model essentially. Since
the main difficulty of detecting the infrared small target in a
single image is lacking enough information, only considering
the low-rank structure in one unfolding is insufficient to deal
with highly difficult scenes. Naturally, it motivates us to
think whether we can utilize the other two unfolding modes.
Actually, the mode-1 and mode-2 unfolding matrices of the
infrared patch-tensor are also low-rank. In Fig. |Zkb) — (d), the
singular values of all the unfolding matrices rapidly decrease
to zero, which demonstrates that every unfolding mode of the
background patch-tensor is intrinsically low-rank. Therefore,
we can consider the background patch-tensor B as a low-
rank tensor, and their unfolding matrices are also all low-rank
defined as:

rank(B()) < rq, rank(Byg)) < 72, rank(B(3)) <r3, (3)

where ri, 7o, and r3 all are constants, representing the
complexity of the background image. The larger their values
are, the more complex the background is.

Target patch-tensor 7. Since the small target merely
occupies several pixels in the whole image, the target patch-
tensor is an extremely sparse tensor in fact. That is:

1T lo < &, @)
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Figure 2.
property of the mode-: (¢ = 1,2, 3) unfolding of the patch-tensor. (a) Four
representative background images. (b) — (d) Singular values of the mode-1,
mode-2, and mode-3 unfolding matrices of the corresponding background
patch-tensors.

The illustration of the non-local similarity and the low-rank

where k is a small integer determined by the number and size
of the small target.

Noise patch-tensor N . In this paper, we just assume that
the noise is additive white Gaussian noise and |A||r < § for
some & > 0. Thus we have

|[F—B—Tle<é &)

It should be noted that although the values of parameters &, r, §
are different depending on the images, we would not directly
use them in the following sections.

Ideally, we would like to obtain a low-rank and sparse
decomposition and solve the following problem:

%1171_1 rank(B) + A||T |lo, st. B+ T = F. (6)

)
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Unfortunately, the rank computation of a given tensor is a
NP-hard problem in general [33]. In Ref. [34]], Goldfarb and
Qin proposed the Higher-order RPCA (robust tensor recovery)
through replacing the rank by a convex surrogate Tucker-rank
CTrank(B), and ||T |lo by || T ||1 to make the above problem
tractable. In the singleton model, the tensor rank regularization
term is defined as the sum of all the nuclear norms of the
mode-i unfoldings, i.e., CTrank(B) = > B+, i =
1,2,3. With this relaxation, our proposed IPT model with
random noise assumption can be solved by minimizing the
following convex problem:

3
i Bl + A st |F—B-— <6 (7
g{ggll @l + ATl st |F=B=Tle <6 (7

A is a weighting parameter that controls the global trade-off be-
tween the background patch-tensor and the target patch-tensor.
Larger A\ can shrink those non-target but sparse components
to zeros in the target patch-tensor. Nevertheless, it will also
over-shrink the dim target which should be preserved. On the
contrary, a smaller A does retain the dim target, but it keeps
the strong cloud edges as well. Therefore, adopting a global
constant weighting parameter A is not a reasonable scheme
for detecting the infrared small target in a complex scene.
Naturally, it motivates us to design an entry-wise weighting
scheme.

III. INCORPORATING LOCAL STRUCTURE PRIOR

In this section, we focus our emphasis on combining the
local structure prior and non-local correlation prior together
into our model. we construct a local structure weight and
interpret it as an edge salience measure. For the sake of
simplicity, the local structure weight is designed on the basis
of the image structure tensor. Structure tensor is widely used in
many partial differential equation (PDE) based methods [35]],
[36] to estimate the local structure information in the image,
including edge orientation. To integrate the local information,
the structure tensor is constructed based on a local regulariza-
tion of a tensorial product, which is defined as

J 12) )
Jaz )’

Ji

J21
where u, is a Gaussian-smoothed version of a given im-
age u. 0 > 0 is the standard deviation of the Gaussian
kernel which denotes the noise scale, making the edge de-
tector ignorant of small details. J, is a symmetric and
positive semi-definite matrix, which has two orthonormal

eigenvectors denoted as w and v = w', where w =

-
2J12,J22*J11+\/(JQQ*J11)2+4J122 yw = w/|wl.

w points to the maximum contrast direction of the geometry
structure while v points to the minimum direction [37]]. Their
corresponding eigenvalues A\; and Ay can be calculated via

Jo(Vuy) = Gy * (Vu, ® Vu,) = (

A1, Ao = (JH + JQQ) + \/(J22 — J11)2 + 4J122 ©))

These two values can be used as two feature descriptors of
the local geometry structure, where at the flat region, \; ~
Ao =~ 0; at the edge region, A\; > Ay ~ 0; at the corner

region, Ay > Ay > 0. For the sake of low computational
cost, we take \; — Ao as the edge awareness feature since its
value of the edge pixel is much larger than that belongs to
the flat region and corner. By applying Eq. (8) and Eq. (9) to
every pixel in the input image fg, two matrices Ly and Ly can
be obtained, which consists of the large and small structure
tensor eigenvalues of all the pixels, respectively. Then we can
transform L; and Lo to their corresponding patch-tensors £
and L. Finally, we define the local structure weight patch-
tensor as follows

(10)

Wes = exp (h~ (L1 —£o) — dmin)

dmax - dmin

where h is a weight stretching parameter, dy,,x and d,,;, are
the maximum and minimum of £; — L, respectively. Fig. 3]
displays the edge awareness maps of Fig. [5| which demon-
strates that the structure tensor based local structure weight
has a good performance in identifying the edges. It should be
noticed that for the sake of displaying effect, Fig. [3]is created
via a normalized version of —exp (—h - %

the proposed algorithm, we still calculate the local structure
weight via Eq. (I0).

). In

.-

Illustrations of the structure tensor based local structure weight
map for Fig. 5fa) — (d).

Figure 3.

With the help of Wryg, we can rewrite Eq. into a
weighted IPT model:
3

i By; * y Ol - - S )
%}7{1;” @Ol FAWLs O T |1, st [[F =BTl <6
/ (11)

where © is the notation of Hadamard product. Thanks to the
weighted IPT model (TI), the strong edges could be well
suppressed in the target image.

IV. REWEIGHTED INFRARED PATCH-TENSOR MODEL AND
ITS SOLUTION

A. Reweighted infrared patch-tensor model

The computing time is also a major concern in infrared
small target detection. Generally, the stopping criterion of
a RPCA algorithm is that the reconstruction error is less
than a certain small value. To meet this criterion, WIPT
needs dozens of iterations, which is still time-consuming. An
interesting phenomenon we find is that the non-zero entry
number in the target patch-tensor has ceased to grow before
the algorithm converges. In fact, in the target image, true
target merely occupies the brightest of the few. In the second
half of the iteration, their values barely change. Therefore,
considering the particularity of infrared small target, it is
reasonable to replace the reconstruction error with the target
patch-tensor sparsity in our proposed model. The algorithm
stops iteration once the non-zero entry ceases to grow. Then
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the sparsity of the target patch-tensor becomes critical in
reducing the computing time. We hope the non-zero entries
keep decreasing as the iteration goes on, leaving the final
target image the sparsest. Unfortunately, the real situation is
against our expectation in IPT and WIPT, where the target
image deteriorates as the algorithm converges. Naturally, it
motivates us to take a sparsity enhancing approach to solve
this problem.

In Ref. [38]], Candes proposed a reweighted ¢; minimization
for enhancing sparsity. By minimizing a sequence of weighted
¢1 norm, a significant performance improvement is obtained
on sparse recovery. Inspired by it, many improved RPCA
models have been proposed [39], [40], [41], [42]]. Motivated
by these state-of-the-art models, we adopt a similar reweighted
scheme for the values in the target patch-tensor. The large
weights discourage non-zero entries, and the small weights
preserve non-zero elements. The sparsity enhancement weight
is defined as follows

1
[T G G.p) + e

where € > 0 is a preset constant to avoid division by zero.
Then besides the relative error || F — BT — 7% /|| Fllr <
e, we could add a new end condition that counts the non-zero
entry element, namely ||[7%"|o = ||[7%||o. With the help of
this empirical observation, the computing time could be largely
decreased, as illustrated in Fig. [I0] and Tab. [[V]

Another intrinsic characteristic that both Ref. [26] and Ref.
[29] neglect is the fact that the small target is always brighter
than its neighborhood environment in infrared images due to
the physical imaging mechanism [43]]. Therefore, besides the
sparsity constraint [44]], [45] of the target patch-tensor, it is
reasonable to assume that all the entries in 7~ are non-negative.
To this end, we incorporate this target non-negative prior into
the reweighted IPT model via rewriting Eq. (I2) as follows

WEL (i, 4, p) = (12)

WS G,.p) = 8 (T*(.4.p))

1
— { T*(i,5,p)+e€’

o0,

if T%(i,5,p) > 0;

13
if 7%(i,4,p) <0, (1

where ¢ () is an indicator function. We combine the local

structure weight Wi,g and sparsity enhancing weight W’§E

to get the adaptive weight as follows
W =Wis © Weg. (14)

Finally, we generalize the proposed IPT model and WIPT
model to a novel reweighted infrared patch-tensor model
(RIPT) as follows

3
i B« =F.
g{g@;\\ @l FAW O T, s.t. B+T =F. (15)

B. Solution of RIPT model

In this subsection, we show how to solve the proposed RIPT
model as a reweighted robust tensor recovery problem via an

Alternating Direction Method of Multipliers (ADMM) [46].
The augmented Lagrangian function of Eq. is defined as

N
L= Bl +AWo T+

i=1

N

1
> @HBi +T -FI?P- Y, B:+T —-F), (16)
i=1

where Y; € RI*/XP i = 1,2 3 are the Lagrange multiplier
tensors, and p is a positive penalty scalar. ADMM decomposes
the minimization of £ into two subproblems that minimize
B, and T, respectively. More specifically, the iterations of
ADMM go as follows:

Updating B; with the other terms fixed.

1 2

k1 _ : ke k
B = argmin [ Byl + 5 |B:— (F w2l =T,
(17)

Updating T~ with the other terms fixed.

R

NS k k1) |2
S Lir(restom) o

k+1

Updating the multiplier ;" with the other terms fixed.

R VA ik (}'fzsf“ Jrk“) ,i=1,---,N.
I
(19)
The subproblems and (I8) can be solved via the
following two operators, respectively.

B = T (F 4 0 - £ 20)
N
T = S |+ 3 (F+i—B4)| @
FW N ; ( )

From Eq. (ZI), it could be observed that the weighting
parameter determines the soft-threshold, controlling the trade-
off between the target patch-tensor and background patch-
tensor. Therefore, our element-wise adaptive weight tensor
could simultaneously preserve the small target and suppress
the strong edges. Finally, the solution of the proposed model
is given in Algorithm

C. Detection Procedure

In Fig. 4} we present the whole procedure of detecting the
infrared small target via the model proposed in this paper. The
detailed steps are as follows:

1) Given an infrared image fg, its local structure feature

map fis is calculated via Eq. (9).

2) The original patch-tensor F and local structure weight
patch-tensor Wrg are constructed from fg and fig.

3) Algorithm[I]is performed to decompose the patch-tensor
JF into the background patch-tensor B and target patch-
tensor 7.

4) The background image fg and target image fr are
reconstructed from the background patch-tensor B and
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Algorithm 1 Target-Background Separation via RIPT model
Input: F, Wis, A, ¢, N
Initialize: 7° := 0; B = F )% := 0,5 := 1,---,N;
W = 1LW° = Wis © Wi p = 5 - std(vee(F)),
k:=0
while not converged do
> Step 1: Fix the others and update B; by
for i =1to N do
Bt = T (F o+ ndk - €Y);
end for
> Step 2: Fix the others and update 7~ by
T = Sy | & I, (F+ 0k - BI);
> Step 3: Fix the others and update Y; by
for i =1to N do
YLk oy ;TC (j:_ BEHL 7-k+1>;
end for
> Step 4: Fix the others and update W by
for (i,7,p) € [1,..., I} x[1,...,J] x[1,...
vv&;U@JJOF:5CTW@LPb

, P] do

s

W= Wis o W

> Step 5: Update y by

P =k

> Step 6: Check the convergence conditions
]

fe or e =7
0

[ o
> Step 7: Update &k
k=k+1;

end while
Output: + (21‘1\;1 Bf) , T"

target patch-tensor 7, respectively. For the sake of im-
plementation convenience, we adopt the uniform average
of estimators (UAE) reprojection scheme [47]].

5) The target is segmented out as the same as Ref. [26].
The adaptive threshold is determined by:

tup - maX(vmina fT + ]{;U)a (22)

where fr and o are the average and standard deviation of
the target image fr. k and v,;, are constants determined
empirically.

V. EXPERIMENTAL VALIDATION

To fully evaluate the proposed algorithm, we conduct a
series of experiments using images of various scenarios and
include ten state-of-the-art methods for comparison.

A. Experimental setup

Datasets. We test the proposed model on extensive real
infrared images to cover different scenarios, as illustrated in
Fig. [5l varying from the flat backgrounds with salient targets
to complex backgrounds with heavy clutters and extremely
dim targets. All targets are labeled with red boxes. Since
some targets are so dim that could hardly be observed by
human eyes directly, we enlarge the demarcated area. Taking

into account that the biggest difficulty of current infrared
small target detection is how to detect those very dim targets
with strong clutters, a good detection performance on those
extremely complex images is more convincing than the sat-
isfying result on relatively simple images. Therefore, in the
following experiments, our main focus is put on the datasets
with complex scenes that Fig. [5{a) — (d) and (1) belong to. The
detailed characteristics of these five sequences are presented
in Tab.

Baselines and Parameter settings. The proposed algo-
rithm is compared with ten state-of-the-art solutions, including
three filtering based methods (Max-Median [10]], Top-Hat
(48], TDLMS [9]), three HVS based methods (PFT [49],
MPCM [19], WLDM [23])), and four recently developed low-
rank methods (IPI [26]], PRPCA [50], WIPI [29], NIPPS
[30]). Tab. summarizes all the methods involved in the
experiments and their detailed parameter settings. For all the
low-rank methods, i.e. IPI, PRPCA, WIPI, NIPPS, IPT, and
RPIT, they are all solved via ADMM. All the algorithms are
implemented in MATLAB 2016b on a PC of 3.4 GHz and 4GB
RAM. The source code of our method is publicly available at
https://github.com/YimianDai/DENTIST.

Evaluation Metrics. For a comprehensive evaluation, four
metrics including the local signal to noise ratio gain (LSNRG),
background suppression factor (BSF), signal to clutter ratio
gain (SCRG), and receiver operating characteristic (ROC)
curve are adopted in comparison of background suppressing
performance. LSNRG measures the local signal to noise ratio
(LSNR) gain, which is defined as

LSNRy

LSNRG = ————
LSNR;, ’

(23)
where LSNR;, and LSNR,,; are the LSNR values before and
after background suppression. LSNR is given as LSNR =
Pr/Pg. Pr and Py are the maximum grayscales of the target
and neighborhood, respectively. BSF measures the background
suppression quality using the standard deviation of the neigh-
borhood region. It is defined as:
BSF = Jin

Oout

(24)

where o, and oy, are the standard variances of background
neighborhood before and after background suppression. The
most widely used SCRG is defined as the ratio of signal-to-
clutter ratio (SCR) before and after processing:

SCRy¢
SCR;, ’

SCRG = (25)
where SCR represents the difficulty of detecting the infrared
small target, and it is defined by SCR = |y — up|/0b. 1 is the
average target grayscale. up, and oy, are the average grayscale
and standard deviation of the neighborhood region. For all
these three metrics, the higher their values are, the better
background suppression performance the detection method
has. All three metrics are computed in a local region, as
illustrated in Fig. [6] The target size is a x b, and d is the
neighborhood width. we set d = 20 in this paper. Among all
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Figure 4. The overview of the proposed reweighted infrared patch-tensor model in this paper.

Figure 5. The representative infrared images for experiments. For better visualization, the demarcated area is enlarged, which is better to be seen by zooming
on a computer screen.
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Table 11
TARGET AND BACKGROUND CHARACTERISTICS OF REAL INFRARED IMAGE SEQUENCES

# Frame Image Resolution  Target Shape  Target characteristics Background characteristics
Sequence 1-4 400 255 x 320 Gaussian <> Tiny, very dim with low contrast. <> Strong undulant cloud backgrounds.
<> Moves along the cloud edges or <> Approximately noise-free.
buried in the cloud.
Sequence 5 30 200 x 256 Rectangular <> Small due to long imaging distance. <> Heavy cloudy-sky background clutters

<> Brightness, contrast, and size vary a lot.

in uniform backgrounds with noise.

Table III
DETAILED PARAMETER SETTINGS FOR TWELVE TESTED METHODS

No. Methods Acronyms Parameter settings
1 Max-Median filter [10] Max-Median  Support size: 5 X 5
2 Top-Hat method [48] Top-Hat Structure shape: square, structure size: 3 X 3
3 Phase spectrum of Fourier Transform [49] PFT Disk radius: 3
4 Multiscale Patch-based Contrast Measure [19] MPCM N=13,...,9
5 Weighted Local Difference Measure [23] WLDM L=4m=2n=2
6 Two-Dimensional Least Mean Square filter [9] TDLMS Support size: 5 X 5, step size: p =5 x 1078
. Tme . e . _ L _ —10-7
7 Infrared Patch-Image Model [26] IPI Patch size: 50 x 50, sliding step: 10, A Tem TP L=3,=10
. el i Tidine sten: _ L _ —10-7
8 Patch-level RPCA method [50] PRPCA Patch size: 50 x 50, sliding step: 10, A N L=3¢=10
9 Weighted Infrared Patch-Tensor Model [29] WIPIL Patch size: 51 x 51, sliding step: 10, smoothing parameter h = 15, ¢ = 10~7
10 Non-negative IPI model via Partial Sum NIPPS Patch size: 50 x 50, sliding step: 10, A = —L ___ L=2r=5x10"3
minimization of singular values [30] vmin (17,FP)
. . . qe . _ L _
11 Infrared Patch-Tensor Model IPT Patch size: 50 x 50, sliding step: 10, A = 7@’ L=3
. . . . qe . _ L _ _ _
12 Reweighted Infrared Patch-Tensor Model RIPT Patch size: 50 x 50, sliding step: 10, A = NETYINAk L=1,h=10,e=0.01,
e=10"7
1) Robustness to various scenes: In Fig. [/| we show the
separated target images for the images of Fig. [5] Observing
Background ; Fig. it can be clearly seen that the background clutters
Neighborhood | are completely wiped out, leaving the target the only sole
I{afge’f {7 component in the target image. Since Fig. [5] contains a lot of
ceslon |y different scenarios, it is fair to say that the proposed method
A d is quite robust to various scenes.
2) Robustness to noise: Noise is another key influence
Whole Image factor. In Fig. [8] we evaluate the proposed method’s perfor-

Figure 6. The target and background neighborhood regions of a small target.

the existing metrics, the detection probability Py and false-
alarm rate F), are the key performance indicators, which are
defined as follows

number of true detections
P, d — )
number of actual targets

number of false detections

(26)

F, = 27

number of images
The ROC curve shows the trade-off between the true detections
and false detections.

B. Validation of the proposed method

In this subsection, we take a closer look at the proposed
method by validating their robustness against various scenes
and noisy cases. At last, the roles of the patch-tensor, local
structure weight, and sparsity enhancement weight are exam-
ined in depth to evaluate each prior individually.

mance in the case of noise with different levels. When the
noise standard deviation is 10, the proposed method could
well enhance the targets and suppress the clutters and noise.
As the noise standard deviation increases to 20, RIPT still
detects the target in Fig. m) — (n) and (q) — (1), but fails in
Fig. B(0) — (p). Nevertheless, this failure is acceptable, since
the target is totally overwhelmed by the noise in Fig. [§[0) — (p)
(see the enlarged box). Therefore, the noise influence depends
not only on the intensity of the noise itself but also on the
original contrast of the target. As long as the polluted target
can maintain a weak contrast like Fig. [§[c) — (d), the proposed
method is still able to detect it.

3) Roles of components in the proposed model: To further
understand the effects of the components in the proposed RIPT
model, we evaluate each prior individually with experiment
to investigate how these priors influence the final detection
performance. The ROC curves of IPI, IPT, IPT with sparsity
enhancement weight (SIPT), WIPT, and RIPT for Sequence 1
— 4 are given in Fig. 0] leading to the following observations.
(1) The four patch-tensor based methods outperform the state-
of-the-art IPI method, which demonstrates that the patch-
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Figure 7. The separated target images by the proposed RIPT model for Fig. B} For better visualization, the demarcated area is enlarged, which is better to
be seen by zooming on a computer screen.

Figure 8. The first and third rows are images contaminated by additive white Gaussian noise with standard deviation of 10 and 20, and the second and fourth
rows are the corresponding detection results by the proposed method.
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tensor model, involving mode-1 and mode-2 unfolding matri-
ces, does contribute to the final detection performance. (2) By
comparing WIPT and RIPT with IPT and SIPT, we see that
incorporating local structure prior significantly improves the
detection probability. (3) Although the sparsity enhancement
weight does not contribute to the final detection performance,
it significantly reduces the iteration number, as illustrated in
Fig. These observations indicate that the introduced priors
are effective, and, when combined together, lead to excellent
performance as reported in the next subsections.

C. Algorithm Complexity and Computational Time

The proposed model is solved via ADMM, which has
been proved a O(1/k) convergence [31]], [52]. Therefore,
our solving algorithm is ensured to converge. The algorithm
complexity and computational time for Fig. [5(a) with various
methods are given in Tab. The image size is M x N, and
m,n are the rows and columns of the patch-image or mode-3
unfolding. Although the computational complexities of these
methods seem the same, their computing time differs a lot.
For the filtering and HVS based methods, the difference in
computing time lies in whether the code could be vectorized.
For the low-rank methods, the dominant factor is the iteration
number. It can be seen from the data in Tab. [V] that the low-
rank methods are generally slower than the filtering and HVS
based methods. Nevertheless, considering low-rank method
could handle more difficult scenes, this trade-off is acceptable.
Among the low-rank methods, the RIPT costs the least time.
The underlying reason is that both the local structure weight
and sparsity enhancement weight help to reduce the iteration
number. In addition, unlike the weight in WIPI, the time for
constructing the weight is neglectable in RIPT.

D. Parameters analysis

For the proposed model, the related parameters, such as
the patch size, sliding step, weight stretching parameter h,
weighting parameter A, and penalty factor y, are all important
factors, which usually affects the model fitness on the real
databases. Therefore, a better performance can be obtained by
finely tuning these parameters. Nevertheless, the optimal val-
ues are always related to the infrared image content. In Fig.
we give the ROC curves for different model parameters on
Sequence 1 — 4 to evaluate their influence. These parameters
are validated to obtain a local optimal value with other
parameters fixed. The stepped shape of our ROC curves might
seem a bit odd. It is because we have adopted a much larger
weighting parameter A than normal RPCA-based foreground-
background separation tasks in order to better fit the actual
situation of single-frame infrared small target detection.

1) Patch size I x J: It not only has a large impact on the
separation, but also influences the computational complexity.
The matrix size of mode-1 and mode-2 unfoldings of the
patch-tensor is I x (J- P); the matrix size of mode-3 unfolding
is J x (I - P). Obviously, a smaller patch size will lead to a
smaller computational complexity. On one hand, we hope a
larger patch size to ensure that the target is sparse enough. On
the other hand, a larger patch size reduces the correlationships

between the non-local patches, which degrades the separation
results. To seek a balance between a low computational bur-
den, target sparsity, and background correlationship, we vary
the patch size P from 10 to 60 with ten intervals and provide
the ROC curves in the first row of Fig. [T} By observing the
ROC curves, we can have the following conclusions. Firstly, a
smaller patch size is easier to raise false alarms while a larger
patch size may lead to a relatively lower detection probability,
which just demonstrates our above analysis about the patch
size. Secondly, the proposed RIPT method is not very sensitive
to the patch size. The detection result of the patch size among
20 — 60 is acceptable. Thirdly, 30 seems a good choice for
Sequence 1 — 4 since it achieves the best performance in ROC.

2) Sliding step: The sliding step influences the patch-tensor
size as well. To reduce the computational complexity, we
prefer a larger sliding step, which means smaller matrices to
perform SVD. Nevertheless, a larger sliding step also reduces
the redundancy of the original patch-tensor 7~ and undermines
the final detection results since our proposed model is based on
the non-local repentance of correlated patches. To investigate
its influence, we vary the sliding step S from 8 to 16 with
two intervals. The results are displayed in the second row of
Fig. It could be observed that the ROC curve of small
sliding step like 8 tends to have a more sharp shape, but its
overall detection probability remains relatively low. The best
value for sliding step is among 12 to 14, here we pick 12. In
addition, by comparing the first row with the second row of
Fig. we can conclude that the algorithm is quite robust to
the variation of step length.

3) Weight stretching parameter h: It controls the local
structure weight’s suppression degree to the clutter edges.
We vary h from 6 to 22 in the experiment and illustrate the
ROC curves in the third row of Fig. Generally, we would
like a larger i which suppresses the undesirable non-target
components thoroughly. Nevertheless, since the target-clutter
distinguishing scheme is not always perfect, an overlarge h
would also wipe out some targets. A typical example is the
different performance of h = 18 or 22 among four sequences.
For Sequence 2 and 3, h = 18 or 22 achieves the best
performance. But, they perform the worst for Sequence 1
and 4. It is because the target moves along the cloud edge
in many frames of Sequence 1 and 4, and an overlarge h
would easily mistake the target as the edge and suppress it
completely, resulting in a lower detection probability. On the
contrary, a smaller h might preserve the small target, but it
also retains some non-target components, making the false-
alarm ratio relatively high. For Sequence 2 and 3, when the
detection probability is fixed, the false-alarm ratio of h = 6 is
the largest. In order to seek a balance, we set the optimal h
as 10 in the following experiment.

4) Weighting parameter \: Despite the usage of local
structure weight, fine tuning of A is still of great importance.
We show the effects of A in the fourth row of Fig. Since
Ais set as L/y/min(7, J, P) in our model, instead of directly
varying A, we vary L from 0.3 to 1.5. From the illustration, it
can be observed that a large A does keep the false-alarm ratio
being quite low like. For example, the ROC curves of L = 1.0
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Figure 9. Illustration for the effects of the introduced priors. (a) — (d) are the ROC curves on Sequence 1 — 4.
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Table IV
ALGORITHM COMPLEXITY AND COMPUTATIONAL TIME COMPARISONS OF DIFFERENT METHODS

TDLMS PFT MPCM

WLDM

IPI WIPL NIPPS IPT WIPT RIPT

Complexity O(L2MN) O(MNlog MN) O(L3MN) O(L*MN) O(mn?) O(mn2?) O(mn2?) O(mn?) O(mn?) O(mn?)

Time (s) 0.162 0.025 0.083 6.059

16.998 52.995 15.515 8.598 6.932 3.169

and L 1.5 for Sequence 2 are straight line segments.
But their detection probabilities are also low because many
dim targets are suppressed by the overlarge threshold. On the
contrary, when the detection probability is fixed, the false-
alarm ratio of L = 0.3 is always higher than the others,
suggesting that a too small L is also not a good choice.

5) Penalty factor p: It is precisely the shrinking threshold
of Eq. (ZI), which influences the low-rank property of the
background patch-tensor. With a smaller p, more details are
preserved in the background patch-tensor. Thus fewer non-
target components are left in the target patch-tensor. Never-
theless, the small target might be preserved in the background
patch-tensor as well, resulting no target in the target image.
On the contrary, a larger ¢ would lead to more non-target
components lying in the target patch-tensor. Thus, it is neces-
sary to choose an appropriate value for i to keep the balance
between detection probability and false-alarm ratio. Since we
set ;1 = C,std(vec(F)), instead of varying p directly, we
investigate the influence of the penalty factor on Sequence 1
— 4 by varying C, from 0.5 to 3. The results are shown in
the last row of Fig. [IT]} from which we can observe that an
overlarge or too small p is not an optimal choice and the best
value for our four sequences is about 0.7.

E. Comparison with State-of-the-Arts

In this subsection, we first compare the proposed model
with the other state-of-the-art methods on the ability of clutter
suppression. Fig.[T2]— Fig.[T3|show the separated target images
by twelve tested methods for four representative frames of
Sequence 1 — 4 in Fig. 5} It can be seen that the classical
Max-Median filter does enhance the tiny targets in Fig. [T2|(b)
- Fig. [T3b). Nevertheless, many non-target pixels are also en-
hanced simultaneously, especially in Fig.[T3|b) and Fig. [T4|b),
which would raise many false alarms. In Fig.[I2(a) - Fig. [I5(a)
produced by TDLMS, the phenomenon of enhancing non-
target isolated points does not exist, but the cloud edges are
highlighted, making them much brighter than the small target.
Since the given target size matches the real target size exactly,
the Top-Hat operator succeeds to enhance the target region. If
not match, the Top-Hat operator is likely to lose the target.
No matter whether the given and real target sizes match,
Top-Hat cannot well suppress the background clutters. Many
strong clutters still remain in resulting images, as illustrated in
Fig. [T2(c) - Fig. [[3[c). Although PFT can retain the target to
a certain extent, the target is not necessarily the brightest and
there are also many non-target salient residuals, as shown in
Fig. [I2[d) - Fig. [13]d). MPCM and WLDM failed to achieve
good results because they suffered from a phenomenon we
named rare structure effect which is caused by the inaccuracy
of the local dissimilarity measure and often happens when the
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Figure 11. The ROC curves for Sequence 1 — 4 with respect to different patch sizes, sliding steps, h, weighting parameters and penalty factors. Row 1:
Different patch sizes, Row 2: Different sliding steps, Row 3: Different h, Row 4: Different weighting parameters, Row 5: Different penalty factors.

target is extremely dim. In next subsection, we will further
discuss this phenomenon.

In fact, the common and intrinsic reason behind the unsat-
isfactory performance of all these six methods lies in their
pre-set assumption about the target shape, namely a hot spot
brighter than its neighborhood. Nevertheless, when the target
is too dim to maintain its significant contrast over non-target
components, just like Fig. 5{a) — (d), they might not perform
as well as they usually do.

The last six tested methods are all low-rank based methods.
Comparing with above six methods, their results contain fewer
background details. Relatively speaking, the effects of PRPCA
and WIPI are not as good as the other four methods. Different

from the other low-rank based methods that all build their low-
rank assumptions on the data structure composed of patches,
PRPCA supposes the individual patch is low-rank. Thus in
PRPCA, each patch is applied to an individual RPCA process.
Then all the separated target patches are synthesized into a
target image. By comparing Fig. [[3(g) and Fig. [I5[g) with
Fig. [I3(h) and Fig. [I5(h) , it can be seen that fewer edges
were left by IPI than PRPCA. It is because the rare structure
in a patch is not necessarily rare in the patch-image due to the
redundancy of the whole image. Therefore, the results of IPI
and IPT are much better than those of PRPCA. As to WIPI,
considering the targets in Sequence 1 — 4 is much dimmer
than those in Ref. [29], it is fair to say that the steering kernel
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Figure 12. The separated target images of the 65th frame in Sequence 1 by twelve tested methods. For better visualization, the demarcated area is enlarged
in the left bottom corner. It is better to be seen by zooming on a computer screen.
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Figure 13. The separated target images of the 52th frame in Sequence 2 by twelve tested methods. For better visualization, the demarcated area is enlarged
in the left bottom corner. It is better to be seen by zooming on a computer screen.
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Figure 14. The separated target images of the 53th frame in Sequence 3 by twelve tested methods. For better visualization, the demarcated area is enlarged
in the left bottom corner. It is better to be seen by zooming on a computer screen.

based patch-level weight is still not robust enough to handle
all of the complex infrared backgrounds. From Fig. [T2(1)
and Fig. [T3[1), we can see that with the help of the local
structure weight, the non-target components were suppressed
completely via our proposed model. For example, the cloud
residuals in Fig. [T2{g) by IPI is brighter than its target, while
in Fig. [I2[1), it is wiped out thoroughly. Based on above
comparisons, it is fair to conclude that the proposed RIPT
model achieves the most satisfying performance in infrared
background suppression among twelve tested methods.

For infrared small target detection, the biggest difficulty is
the interference of complex backgrounds. These undesirable
background clutters raise the false alarm rates, and might

even overwhelm the dim targets. Therefore, the ability of
successfully suppressing the background clutters is a ma-
jor concern in evaluating an infrared small target detection
method. Quantitative evaluating indices are also widely used
to assess this ability. Tab. shows the experimental data
of all twelve tested methods for Fig. Bla) — (d). The gray-
scale of every separated target image is rescaled to the range
0— —255. It could be observed that our proposed method gets
the highest scores among all indices and all tested images.
Different from the filtering based methods, for the low-rank
based methods, Inf, namely infinity, is quite common, which
just means that the target neighborhood completely shrinks
to zero. In addition, it should be noted that the high scores
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Figure 15. The separated target images of the 56th frame in Sequence 4 by twelve tested methods. For better visualization, the demarcated area is enlarged
in the left bottom corner. It is better to be seen by zooming on a computer screen.

in these three quantitative indices merely reflect the good
suppression performance in a local region, and not necessarily
mean a good global suppression ability.

To further reveal the advantage of the proposed model, we
display the ROC curves of Sequence 1 and Sequence 3 —
5 for comparison in Fig. [[6] The most interesting point is
the performances of the state-of-the-art WLDM on Sequence
1, 3, 4 and Sequence 5 are very different. For Sequence 5,
WLDM performs very well but fails in Sequence 1 — 4. We
believe the reason lies in the rare structure effect which is a
born problem for local contrast method. NIPPS’s performance
is slightly better than the IPI model. Finally, the proposed
algorithm achieves the highest detection probability for the
same false-alarm ratio, meaning that the proposed RIPT model
has a better performance than the other models.

VI. CONCLUSION

To further suppress the strong edges while preserving the
spatial correlation, a reweighted infrared patch-tensor model
for small target detection is developed in this paper, simultane-
ously combining non-local redundant prior and local structure
prior together. A local structure weight is designed based on
the structure tensor and served as an edge indicator in the
weighted model. In addition, a sparsity enhancement scheme
is adopted to avoid the target image being contaminated.
Then the target-background separation task is modeled as
a reweighted robust tensor recovery problem, which can be
efficiently solved via ADMM. Detailed experimental results
show that our proposed model is robust to various scenarios
and obtains the clearest separated target images compared with
the state-of-the-art target-background separation methods.
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