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Abstract—In this paper, we study the self-healing problem of
unmanned aerial vehicle (UAV) swarm network (USNET) that
is required to quickly rebuild the communication connectivity
under unpredictable external destructions (UEDs). Firstly, to
cope with the one-off UEDs, we propose a graph convolutional
neural network (GCN) that can find the recovery topology of
the USNET in an on-line manner. Secondly, to cope with general
UEDs, we develop a GCN based trajectory planning algorithm
that can make UAVs rebuild the communication connectivity
during the self-healing process. We also design a meta learning
scheme to facilitate the on-line executions of the GCN. Numerical
results show that the proposed algorithms can rebuild the
communication connectivity of the USNET more quickly than
the existing algorithms under both one-off UEDs and general
UEDs. The simulation results also show that the meta learning
scheme can not only enhance the performance of the GCN but
also reduce the time complexity of the on-line executions.

Index Terms—Resilient communication, self-healing, UAV
swarm, graph convolutional network, meta learning

I. INTRODUCTION

Unmanned aerial vehicle (UAV) swarm network (USNET)
that contains hundreds or even thousands UAVs usually works
in open, sometimes even harsh environments and is susceptible
to external disruptions [1]. Since the failure of any part
of UAVs could be a fatal blow to the entire USNET, the
resilient USNETs with the self-healing capacity are urgently
demanded in various applications, such as data collections
[2], [3], rescue [4], security and surveillance [5], [6], etc.
Researchers have studied the self-healing mechanisms for
USNETs in multiple tasks. For example, the authors of [7]
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developed a real-time resilient method based on the commu-
nication connectivity of multi-UAV systems. The authors of
[8] proposed an intrusion detection scheme based on data
exchanging through communication connections to improve
the security resilience of the UAV network. Moreover, the au-
thors of [9] developed the resilient algorithms for localization,
gathering, and network configurations that highly depend on
the communication connectivity of the USNET. Obviously,
the communication connectivity plays an important role in
different kinds of self-healing mechanisms, and thus the self-
healing of the communication connectivity (SCC) becomes a
basic requirement for various resilient USNETs.

Many algorithms have been developed to deal with the SCC
problem for the wireless sensor networks (WSNs) [11]–[21],
and were later extended to the USNETs [22], [23]. However,
there still remain several challenges to the SCC problem in
USNET. Firstly, many existing algorithms [12]–[14], [16],
[17], [21] are heuristic and may not be able to guarantee
the communication connectivity of the USNET. For example,
these algorithms could not work when the number of UAVs is
large, especially under massive destructions. Other algorithms
[15], [18]–[20], [22], [23] could make sure that the UAVs
rebuild the communication connectivity but at the cost of lots
of resources, such as self-healing time and communication
overheads. The second challenge lies in the high time com-
plexities during real-time executions. It is worth noting that the
real-time execution time complexity is an important indicator
to evaluate the resilience of the USNET, since it relates to
the self-healing time and even the degree of destructions [24].
For example, the algorithm in [11] needs to find the global cut
vertexes of the WSN during the self-healing process, which
makes its on-line execution time complexity increase with the
size of the WSN. The algorithm in [19] needs to calculate the
optimal critical sensors for WSNs during on-line executions,
which may consume a lot of time.

The third challenge is the difficulty in dealing with complex
destructions. The external destructions can be divided into
predictable external destructions (PEDs) and unpredictable
external destructions (UEDs). PEDs can be mitigated or even
avoided by finding the pattern of destructions, while UEDs
could have serious impacts on the USNETs and should be
carefully handled [1]. UEDs can be further divided into one-
off UEDs and general UEDs. One-off UEDs happen only
once and can destruct a random number of UAVs simulta-
neously. Almost all the existing UED algorithms [11]–[23]
are proposed for one-off UEDs. Moreover, many of the UED
algorithms [11], [12], [14], [16], [17] were designed regarding
to the failure of only one UAV in one-off UEDs, which is
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TABLE I
THE SUMMARIZATION OF ABBREVIATIONS

Abbreviations Full Name Abbreviations Full Name

UAV unmanned aerial vehicle USNET unmanned aerial vehicle
swarm network

SCC self-healing of the
communication connectivity WSN wireless sensor network

PED predictable external destruction UED unpredictable external destruction

GCO graph convolutional operation GCN graph convolutional network

CCN connected communication network MCL multi-hop of communication link

RUAV remaining UAV A2A air-to-air

CLEC communication link establish
condition FT Fourier transform

CR-MGC
communication-relaxed meta

graph convolution
(dealing with one-off UEDs)

VRG virtual RUAV graph

GCL graph convolutional layer mGCN meta GCN

IDB individual data base IISR individual index set of RUAVs

CR-MGCM

communication-relaxed meta
graph convolution method

(dealing with general UEDs
using monitoring mechanisms)

CR-MGCMglob

communication-relaxed meta
graph convolution method

(dealing with general UEDs
using global information)

relatively basic and simple. Other UED algorithms [13], [15],
[18] were developed for the failure of multiple UAVs in one-
off UEDs, but exclusively focused on the scenarios where a
small number of UAVs were destructed. In fact, a general
UED1 can destruct any number of UAVs at random time steps,
which is more common in practice but more difficult to handle.
However, to the best of our knowledge, the general UEDs have
not been considered in literatures, yet.

In this paper, we study the SCC problem of the USNET
under two types of UEDs, separately. To cope with one-off
UEDs, we propose a graph convolutional operation (GCO)
that can theoretically guarantee the SCC of the USNET. We
then extend the GCO to a graph convolutional neural network
(GCN) to minimize the SCC time of the USNET. Moreover,
we design a meta learning scheme for the GCN to reduce the
time complexity of on-line executions. To cope with general
UEDs, we develop a monitoring mechanism that can detect
UEDs for UAVs and design a self-healing trajectory planning
algorithm based on the GCN and the monitoring mechanism.
The numerical results show that the proposed algorithms can
rebuild the communication connectivity of the USNET much
faster than the existing algorithms under both one-off and
general UEDs. The simulation results also show that the meta
learning scheme can make the GCN converge faster and reduce
the time of on-line executions under both types of UEDs.

The rest parts of this paper are organized as follows.
Section II presents the system models of the SCC problem
for USNET. Section III describes the proposed GCN and meta
learning scheme under one-off UEDs. Section IV focuses on
the monitoring mechanisms and trajectory planning algorithm

1A general UED can also be regarded as a sequence of one-off UEDs
happened at different time steps.

of UAVs under the general UEDs. Simulation results and
analysis are provided in Section V, and conclusions are made
in Section VI. The abbreviations are summarized in Table I.

Notations: x, x, X represent a scalar x, a vector x and
a matrix X, respectively;

∑
, min, max and ∇ denote the

sum, minimum, maximum and vector differential operator,
respectively; (xij) represents a matrix with element xij in the
i-th row and the j-th column, and (X)ij represents the element
of row i and column j in matrix X; ‖·‖2 and ‖·‖∞ denote
the 2-norm and infinite norm of matrices, respectively; ∪, ∩
and \ represent the union operator, the intersection operator
and the difference operator between sets; |S| represents the
number of elements in set S; RN×M , SN and SN+ represent
the N -by-M real matrix space, the N -by-N symmetric matrix
space and the N -by-N positive semi-definite matrix space;
N+ represents the set of positive integers; 1n represents an
n-dimensional vector where the components are all 1’s; 1{·}
represents the indicative function with range {0, 1},← denotes
the assignment from right to left, while → represents the
approximation of the right term by the left term; , defines
the symbol on the left by the equation on the right.

II. SYSTEM MODEL

We consider a USNET with N identical UAVs2, where each
UAV is endowed with a fixed index i ∈ N , {1, 2, ..., N}, as
shown in Fig. 1. Establish an X-Y -Z Cartesian coordinate for
the USNET, and let the position of the i-th UAV at time step
t be pi,t = [xi,t, yi,t, zi,t]

T , i ∈ N , where xi,t, yi,t and zi,t
represent the X , Y and Z axis components, respectively. Each
UAV can transmit signals to other UAVs with constant power

2The UAVs distribute sparsely to reduce the impacts of the UEDs. Dense
gathering can increase the risk of losing more UAVs.
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Fig. 1. The USNET rebuild its communication connectivity under UEDs.

P . The i-th and the i′-th UAVs can establish a communication
link eii′,t (or ei′i,t) at time step t when the powers of the
signals received by the i-th and the i′-th UAV from each other,
denoted as Pb(i, i′) and Pb(i′, i), both exceed a threshold P0,
i.e.,

Pb(i, i
′) ≥ P0 and Pb(i

′, i) ≥ P0. (1)

Any two UAVs with a valid communication link are marked as
neighbors of each other. The initial USNET forms a connected
communication network (CCN), where each UAV can transmit
data to any other UAVs in the USNET through multi-hop of
communication links (MCLs).

Due to the hash environments, the UEDs can destruct
random UAVs at any time step and thus destroy the CCN.
The destructed UAVs are forced to detach from the USNET,
which can be sensed by their neighbors. The remaining UAVs
(RUAVs) react against the destructions and try to restore
the CCN by adjusting their positions. Once RUAVs rebuild
CCN, they stop flying immediately to avoid gathering denser
such that the impact of the next UEDs can be reduced. We
denote the index set of RUAVs at time step t as It ,
{i|the i-th UAV remains at time step t, i ∈ N}. Let us sort
the elements in It in an ascending order, and re-represent
it as It = {r1, r2, ..., r|It|}, where rj represents the j-th
smallest element in It, or equivalently, the j-th smallest index
among all RUAVs, j ∈ {1, 2, ..., |It|}. Denote the RUAV
with index i at time step t as RUAVi,t, and then the set of
RUAVs at time step t can be defined as Rt , {RUAVi,t|i ∈
It} = {RUAVr1,t,RUAVr2,t, ...,RUAVr|It|,t}. Assume the
magnitude of the flying speed of each UAV is a constant
v0 > 0. The speed of RUAVi,t at time step t can thus be
represented as vi,t = v̌i,tv, where v̌i,t is the unit vector of
the flying direction, i.e., ‖v̌i,t‖2 = 1, and v ∈ {v0, 0}.

A. Communication Link Between UAVs
We model the communication channels between UAVs as

air-to-air (A2A) communication links [30], [31]. At each time

step t, the power of the received signals of the i-th UAV from
the i′-th UAV is calculated as3

Pb(i, i
′) = P +G1 +G2 − L(pi,t,pi′,t)− pξ(pi,t,pi′,t),

(2)

where G1 and G2 represent the constant antenna gains of the
receiving and transmitting UAVs, respectively, L(pi,t,pi′,t) is
the large-scale fading effect, and pξ(pi,t,pi′,t) is the small-
scale fading effect. Since there is no ground obstacle for
USNET, the large-scale effect L(pi,t,pi′,t) can be expressed
as

L(pi,t,pi′,t) = 10α log10

(
4π ‖pi,t − pi′,t‖2 fc

vc

)
, (3)

where α > 0 is the path loss exponent, fc is the electro-
magnetic wave frequency, and vc is the speed of light. The
small-scale fading effect pξ(pi,t,pi′,t) is usually modeled as
the Rice function [32], i.e.,

pξ(pi,t,pi′,t) =
‖pi,t − pi′,t‖2

σ2
0

exp

(
−‖pi,t − pi′,t‖22 − ρ

2

2σ2
0

)
I0(2K ‖pi,t − pi′,t‖2), (4)

where ρ and σ0 represent the strength of the dominant and
scattered (non-dominant) paths, respectively, I0 is the 0-th
order modified Bessel function of the first kind, and K = ρ2

2σ2
0

is the Rice factor. Since the received signal power Pb(i, i′)
only relates to the relative distance between the i-th and the
i′-th UAVs, i.e., lii′,t = li′i,t , ‖pi,t − pi′,t‖2, the received
signal power Pb(i′, i) equals to Pb(i, i′), i.e.,

Pb(i
′, i) = Pb(i, i

′). (5)

From (1), (2), (3), (4) and (5), we know that any two distinct
UAVs with index i and i′ can establish a communication link

3Note that the units of the variables in (2) are all dBs.



if their distance lii′,t satisfies:

10α log10

(
4πlii′,tfc

vc

)
+
lii′,t
σ2

0

exp

(−l2ii′,t − ρ2

2σ2
0

)
I0(2Klii′,t)

≤ P +G1 +G2 − P0. (6)

Equation (6) is called as the communication link establish
condition (CLEC).

B. RUAV Graph

RUAVs at each time step t can be viewed as an undi-
rected graph Gt = {Rt, Et,Xt} [23], named as RUAV graph,
where Rt acts as the node set, and Et = {eii′,t|i, i′ ∈ It}
is the edge set containing all the communication links of
RUAVs. The third term Xt ∈ R|It|×3 is the topology ma-
trix that concatenates the positions of RUAVs, i.e., Xt =
[pr1,t,pr2,t, ...,pr|It|,t]

T . We define an RUAV cluster as a
subset of Rt, where RUAVs in an RUAV cluster form a local
CCN but with no communication links to other RUAV clusters.
Denote Ct ∈ N+ as the number of RUAV clusters at time step
t. Due to the UEDs, the RUAV graph Gt contains at least one
RUAV cluster at each time step t, i.e., Ct ≥ 1. For example,
as shown in Fig. 1, the RUAV graph Gt has 3 RUAV clusters
at time step t1, while emerges to one RUAV cluster and forms
a CCN at time step t2.

Define the adjacency matrix of the RUAV graph Gt as At =
(ajj′,t) ∈ S|It|, where ajj′,t ∈ {0, 1}, j, j′ ∈ {1, 2, ..., |It|}.
Note that if j 6= j′ and the communication link erjrj′ ,t exists
between RUAVrj ,t and RUAVrj′ ,t, then ajj′,t = aj′j,t = 1;
otherwise ajj′,t = aj′j,t = 0. The degree matrix of the
RUAV graph Gt is defined as a diagonal matrix Dt =

diag(d1,t, d2,t, ..., d|It|,t) ∈ S|It|,where dj,t =
∑|It|
j′=1 ajj′,t is

the number of the neighbors of RUAVrj ,t. The Laplace matrix
of the RUAV graph Gt is defined as the difference between Dt

and At, i.e.,

Lt = Dt −At. (7)

As the Laplace matrix Lt is a positive semi-definite matrix
[33], we can perform eigenvalue decomposition,

Lt = UtΛtU
T
t , (8)

where Ut = [u1,t,u2,t, ...,u|It|,t] is a unitary matrix com-
posed of |It| mutually orthogonal eigenvectors, and Λt =
diag(λ1,t, λ2,t, ..., λ|It|,t) is a diagonal matrix with non-
negative eigenvalues. Notice that 0 must be one of the eigen-
values of Lt, since

Lt1|It| = (Dt −At)1|It| =


d1,t −

∑|It|
j=1 a1j,t

...

d|It|,t −
∑|It|
j=1 a|It|j,t


= 0 = 01|It|, (9)

and 1|It| is one possible corresponding eigenvector. The
algebraic multiplicity of the zero eigenvalue Ω(λ = 0|Lt)
equals to the number of RUAV clusters Ct of the RUAV set
Rt at each time step t, i.e., Ω(λ = 0|Lt) = Ct [33]. Hence,

if Ω(λ = 0|Lt) = Ct = 1, then RUAVs form a CCN, while if
Ω(λ = 0|Lt) = Ct > 1 otherwise.

C. Problem Formulation

The goal of the SCC problem of resilient USNET is that
RUAVs should try to reform CCNs as quickly as possible after
UEDs. We first study the SCC problem under one-off UEDs,
where the initial USNET is destructed by a random UED only
once at time step t and self-heal afterwards. For a USNET with
N UAVs, there are 2N cases of one-off UEDs, where different
cases of one-off UEDs destruct different number of UAVs with
different indexes. Note that not all cases of one-off UEDs can
destroy the communication connectivity of the USNET, and we
only consider the one-off UEDs that can break up the USNET
into more than one RUAV clusters (see Appendix A). Denote
the flying time of RUAVi,t during the self-healing process as
φ[i]. Then the total self-healing time steps can be expressed
as maxi∈It φ[i]. Since RUAVi,t should fly in a straight line
to reduce φ[i] and since the magnitude of the flying speed is
a constant v0, the self-healing time steps φ[i] is proportional
to the flying distance of RUAVi,t. Hence, the SCC problem
under one-off UEDs is equivalent to finding a topology matrix
X̃t = [p̃r1,t, p̃r2,t, ..., p̃r|Ir,0|,t]

T that can minimize the largest
displacement among all RUAVs, i.e.,

(P1) : min
X̃t

Js = max
i∈It

v0φ[i] = max
i∈It
‖p̃i,t − pi,t‖2 (10)

s. t. G̃t = {Rt, Ẽt, X̃t} forms a CCN under CLEC,
(10a)

where pi,t = pi,0, and Ẽt , {eii′,t|l̃ii′,t =
‖p̃i,t − p̃i′,t‖2 satisfies CLEC,∀i 6= i′, i, i′ ∈ It}.

We next study the SCC problem under the general UEDs,
where the USNET needs to quickly rebuild its commu-
nication connectivity under the general UEDs. Under the
circumstances, RUAVs can only obtain partial information
from each other and need to adjust their flying directions
continuously during the self-healing process. We consider a
period of T time steps. Define the connected time step ratio
Jc = 1

T

∑T
t=1 1{Ct = 1} as the ratio between the number

of time steps when the USNET forms a CCN and the total
time steps T . Let Jc be the performance indicator of the
USNET. Then the SCC problem under the general UEDs can
be formulated as a functional optimization problem

(P2) : max
v1,t,v2,t,...,vN,t
t∈{1,2,...,T}

Jc =
1

T

T∑
t=1

1{Ct = 1} (11)

s. t. pi,t = pi,t−1 + vi,t, ∀i ∈ It, t ∈ {1, 2, ..., T} (11a)
IT ⊆ IT−1 ⊆ ... ⊆ I0, (11c)
(6), (11d)

where (11a) is the dynamic model of RUAVs, (11c) represents
the general UEDs to the USNET, and (11d) is the CLEC.

III. SCC ALGORITHM FOR ONE-OFF UEDS

Let us consider the SCC problem under one-off UEDs
(P1). Inspired from the existing swarm algorithms [34], [35],



one RUAV should pay more attention on the positions of
its neighbors during the self-healing process. Since graph
neural networks (GNNs) [25]–[28] can efficiently gather the
neighbor information for each RUAV, we develop a GNN-
based algorithm for (P1).

Analogous to the Fourier transform (FT) in the time domain,
we can define the FT of the RUAV graph Gt by the eigen-
decomposition of the Laplace matrix Lt in (8), where the
eigenvectors uj,t denote the Fourier modes and the eigenvalues
λj,t denote the frequency of the RUAV graph Gt [28]. Regard-
ing the topology matrix Xt as a signal of the RUAV graph Gt,
we can define the FT of Xt as X̆t = UT

t Xt. Hence, the GCO
between Xt and the convolutional kernel g ∈ R|It|×3 can be
expressed as [36]

g ◦Xt = Ut[(U
T
t g)� (UT

t Xt)], (12)

where ◦ represents the convolutional operator, and � is the
Hadamard product. To decrease the computation complexity
of the convolutional kernel, we approximate (12) by truncated
Chebyshev polynomials of the first class [27], and the GCO
can be expressed as

Ut[(U
T
t g)� (UT

t Xt)] = Ut

( 1∑
s=0

θsFs(∆t)

)
UtXt

= θ0Xt + θ1(Lt − It)Xt, (13)

where Fs represents the s-th term in the Chebyshev polyno-
mials, It ∈ S|Rt| is the identity matrix, θ0 and θ1 are two
constant parameters, and ∆t = 2Λt

λ1,t
− It. Particularly, we

define a hyperparameter Ht , −θ1 > 0 and let θ0 − θ1 = 1.
Then we can define a GCO on the RUAV graph Gt as

g ◦Xt = (It −HtLt)Xt. (14)

Based on (14), we propose a communication-relaxed meta
graph convolution (CR-MGC) algorithm for the SCC problem
under one-off UEDs (P1). The CR-MGC includes the virtual
communication relaxing part and the meta graph convolutional
network part, as will be stated as follows.

A. Virtual Communication Relaxing

After UED at time step t, the RUAV graph Gt cannot form
a CCN under the CLEC (6). Nevertheless, we here build a
virtual RUAV graph (VRG), denoted as Gvt = {Rvt , Evt ,Xv

t },
that has the same node set and topology matrix with the
RUAV graph Gt, but has the different edge set, i.e., Rvt = Rt,
Xv
t = Xt, but Evt 6= Et. We want the VRG to form a CCN.

To this end, we design the edge set as Evt = {evii′,t|lii′,t ≤
dvt ,∀i 6= i′, i, i′ ∈ It}, where dvt > 0 is a hyperparameter,
named as the virtual distance. This indicates that any two
distinct RUAVi,t and RUAVi′,t can establish a communication
link evii′,t in the VRG if their distance is within the range of
dvt . Since the VRG is expected to form a CCN, the virtual
distance dvt should be large enough to make RUAVs establish
sufficient communication links in the VRG. Obviously, there
must exist a minimum threshold dvmin,t that can just guarantee
the VRG to form a CCN. We propose an algorithm to find such
dvmin,t in Algorithm 1. In addition, a meaningful dvt should

Algorithm 1 Find the Minimum Threshold dvmin,t for the
Virtual Distance dvt
Inputs: The topology matrix Xt, the index set of RUAVs It.
Outputs: The minimum threshold dvmin,t.
Initialize: An empty set Mt to store the pair-wise distance.

1: Calculate the distance between each pair of RUAVs and
store them in Mt, i.e., Mt = {‖pi,t − pi′,t‖2 | ∀i 6=
i′, i, i′ ∈ It}, the size of Mt is |Mt| = |It|(|It|−1)

2 ;
2: Sort the elements in Mt in ascending order, i.e., Mt =
{mζ,t|ζ ∈ {1, 2, ..., |It|(|It|−1)

2 }}, where m1,t ≤ m2,t ≤
... ≤ m |It|(|It|−1)

2 ,t
;

3: for ζ = 1 to |It|(|It|−1)
2 do

4: dvmin,t ← mζ,t;
5: Calculate the Laplace matrix Lt of the VRG based on
mζ,t;

6: if the algebraic multiplicity of the zero eigenvalue of
Lt is 1 then

7: Break;
8: end if
9: end for

not be larger than a maximum threshold dvmax,t, by which
any two RUAVs in the VRG can establish a communication
link. The maximum threshold dvmax,t can be calculated as
dvmax,t = maxi,i′∈It{‖pi,t − pi′,t‖2}. Hence, we let the
virtual distance dvt be in the range of [dvmin,t, d

v
max,t], or

equivalently, we let

dvt = ηdvmin,t + (1− η)dvmax,t, (15)

where η ∈ [0, 1] is a hyperparameter. Then the VRG can form
a CCN. The best choice of η, denoted as η?, will be illustrated
in Section III-B2.

We can derive the adjacency matrix of VRG as Av
t =

(avjj′,t) ∈ S|It|, where ajj′,t ∈ {0, 1},∀j, j′ ∈ {1, 2, ..., |It|}.
Note that if j 6= j′ and the communication link evjj′,t exists,
then avjj′,t = avj′j,t = 1, otherwise avjj′,t = avj′j,t = 0; The de-
gree matrix of VRG is Dv

t = diag(dv1,t, d
v
2,t, ..., d

v
|It|,t) ∈ S|It|,

where dvj,t =
∑|It|
j′=1 a

v
jj′,t; The Laplace matrix of VRG is

Lvt = Dv
t −Av

t .

B. Meta Graph Convolutional Network

With the Laplace matrix Lvt of VRG, we can define a GCO
G(·) as

g ◦Xt = G(Xt) = (It −HtL
v
t )Xt. (16)

We then apply the GCO G(·) to the RUAV graph.
1) Theoretical guarantee of GCOs in finding CCNs: The

topology matrix in the k-th iteration of GCO G(·) is calculated
as

Xk
t = (It −HtL

v
t )X

k−1
t = ... = (It −HtL

v
t )
k−1X1

t

= (It −HtL
v
t )
kXt, (17)

or equivalently

Xk
t = G(Xk−1

t ) = ... = Gk−1(X1
t ) = Gk(Xt), (18)
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Fig. 2. The structure of GCN.

where k ∈ N+. We can prove the following proposition on
the GCO G(·).

Proposition 1. Let c ∈ R3 be an arbitrary constant vector.
In the metric space {Xt | 1

|It|
∑
i∈It pi,t = c} ⊂ R|It|×3,

the GCO G(·) is a contraction mapping [37] when 0 < Ht ≤
1

‖Av
t ‖∞

. There exists and only exists one topology matrix Xt ,

[pr1,t,pr2,t, ...,pr|It|,t
]T such that

Xt = G(Xt) = lim
k→∞

Gk(Xt), (19)

where the positions of RUAV in Xt all have the same value
c, i.e., Xt = [c, c, ..., c, ]T .

Proof. See Appendix B.

Therefore, there must exist a k∗ ∈ N+, at which the
obtained topology matrix

Xk∗

t = Gk
∗
(Xt) = (It −HtL

v
t )
k∗Xt

= [pk
∗

r1,t,p
k∗

r2,t, ...,p
k∗

r|It|,t
, ]T , (20)

will make the RUAV graph Gt a CCN under CLEC, where
pk
∗

ri,t is the target position for RUAV Rri,t to move to.
Express Ht as Ht = ε

‖Av
t ‖∞

, where ε acts as a hyperparam-
eter with theoretical convergence range (0, 1]. The best choice
of ε, denoted as ε?, is illustrated as follows.

2) Choice of η? and ε?: The performance of the GCO
G(·) can be evaluated by two indicators. The first indicator
is the number of iterations k∗ needed by the GCO G(·) to
obtain Xk∗

t . The smaller k∗ is, the better performance the
GCO G(·) will be. The second indicator is the maximum
movement distance among all the RUAVs, i.e., Lmax =
maxi∈It

∥∥pk∗i,t − pi,t
∥∥

2
. The smaller Lmax is, the better per-

formance the GCO G(·) will be. As η determines the edge set
of VRG Evt , η will determines Lvt and further influence the
performance of GCO G(·). In addition, since ε determines Ht,
ε will also influence the performance of GCO G(·). Hence, we
conduct numerical experiments in Section V-B to find η? and
ε? that can make the GCO G(·) achieve better performance
on both indicators k∗ and Lmax.

3) Backbones of the GCN: The topology matrix Xk∗

t in
(20) only satisfies the constraint (10a), while does not min-
imize the objective function Js. Therefore, to minimize Js,
we further extend the GCO G(·) to a graph convolutional
network (GCN). As shown in Fig. 2, the GCN is composed
of Q graph convolutional layers (GCLs), where Q ∈ N+ is
a hyperparameter. The q-th GCL receives a topology matrix
Xq−1
gcn,t from the (q−1)-th GCL4 and outputs a topology matrix

Xq
gcn,t to the next GCL, q ∈ {1, 2, ..., Q}. Specifically, in the

q-th GCL, Xq−1
gcn,t is processed by the GCO G(·) as

Xq
gcn,t = (It −HtL

v
t )X

q−1
gcn,t =

(
It −

ε∗

‖Av
t ‖∞

Lvt
)
Xq−1
gcn,t.

(21)

Then the Xq
gcn,t is linearly transformed as

Xq
gcn,t ← Xq

gcn,tΘ
q, (22)

where Θq is the trainable parameter of the q-th GCL. In
addition, nonlinearities are introduced to the q-th GCL by
applying the ReLU activation function to Xq

gcn,t as

Xq
gcn,t ← ReLU(Xq

gcn,t). (23)

Hence, the relationship between Xq
gcn,t and Xq−1

gcn,t can be
expressed as

Xq
gcn,t = ReLU

(
︸ ︷︷ ︸
nonlinearity

(
It −

ε∗

‖Av
t ‖∞

Lvt
)

︸ ︷︷ ︸
GCO G(·)

Xq−1
gcn,tΘ

q

)
︸ ︷︷ ︸

linear transformation

. (24)

Note that dropouts [38] can be added between
two GCLs to increase the generalization ability of
the GCN. The output topology matrix XQ

gcn,t =

[pQgcn,r1,t,p
Q
gcn,r2,t, ...,p

Q
gcn,r|It|,t

]T of the GCN can
form a new RUAV graph GQt = {Rt, EQgcn,t,X

Q
gcn,t},

where the edge set EQgcn,t = {eii′,t|lii′,t =∥∥∥pQgcn,i,t − pQgcn,i′,t

∥∥∥
2

satisfies CLEC,∀i 6= i′, i, i′ ∈ It}.
Denote the number of RUAV clusters of the RUAV graph GQt

4The first GCL takes the topology matrix Xt as the input.
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Fig. 3. Meta learning procedure for the n-th mGCN.

as CQt .

4) Loss function design of the GCN: Denote the loss func-
tion of the GCN as L(Θ,Xt), where Θ = {Θ1,Θ2, ...,ΘQ},
and Xt is the input topology matrix to the GCN. The design
of L(Θ,Xt) should be consistent with (P1). Specifically, we
rewrite (P1) as

(P1†) : min
XQ
gcn,t

Js = max
i∈It

∥∥∥pQgcn,i,t − pi,t

∥∥∥
2

(25)

s. t. CQt − 1 ≤ 0, (25a)

where X̃t in (P1) is substituted by the output of the GCN
XQ
gcn,t, and the constraint (10a) is represented by CQt −1 ≤ 0.

Then, we design L(Θ,Xt) as the Lagrange function of (P1†)
as

L(Θ,Xt) = τ(CQt − 1)︸ ︷︷ ︸
guarantee the CCN

+ max
i∈It

∥∥∥pQgcn,i,t − pi,t

∥∥∥
2︸ ︷︷ ︸

minimize the largest displacement

, (26)

where the Lagrange multiplier τ is set as a positive con-
stant. After training the GCN with the designed loss function
L(Θ,Xt), the output topology matrix XQ

gcn,t of the GCN can
approximate the solution to (P1), i.e., XQ

gcn,t → X̃t.

5) Off-line meta learning scheme: Notice that different
cases of UEDs will result in distinct topology matrices Xt,
leading to different loss functions L(Θ,Xt) for the GCN.
Hence, the GCN should be trained again in an on-line manner
when encountering new cases of UEDs. However, training the
GCN from scratch is time consuming and cannot be executed
in real-time. Moreover, since there are infinite topology ma-
trices, we cannot train the GCN in advance for each topology
matrix. To address these issues, we propose a meta learning
scheme for the GCN. The meta learning scheme can find
promising initial parameters in an off-line manner to facilitate
the on-line trainings [39]. Specifically, for a USNET with N
UAVs initially, the number n of the RUAVs after one-off UEDs
can only be in the range of {0, 1, 2, ..., N}. We do not need

to consider the cases when n = 0 and n = 1, since there
is either no RUAVs or only one UAV that can form a CCN
itself. For the other N − 1 cases, we build N − 1 GCNs with
the same structures as Fig. 2, named meta GCNs (mGCNs).
The n-th mGCN specifically deals with the case where the
number of RUAVs is n, n ∈ {2, 3, ..., N}. For the n-th mGCN,
we construct a support set Sn = {Y(1)

n ,Y
(2)
n , ...,Y

(U0)
n }

with U0 support data Y
(u)
n , where U0 ∈ N+ is the size of

Sn, and Y
(u)
n = [p

(u,1)
n,spt,p

(u,2)
n,spt, ...,p

(u,n)
n,spt]

T is a randomly
generated topology matrix with size n × 3 under the con-
straint that Y

(u)
n cannot make the RUAV graph Gt form a

CCN, u ∈ {1, 2, ..., U0}. Meanwhile, we construct a query
set Wn = {Z(1)

n ,Z
(2)
n , ...,Z

(U0)
n } with U0 query data Z

(u)
n ,

where Z
(u)
n = [p

(u,1)
n,qur,p

(u,2)
n,qur, ...,p

(u,n)
n,qur]T is also a randomly

generated topology matrix with size n×3 under the constraint
that Z

(u)
n cannot make the RUAV graph Gt form a CCN. We

carry out the meta learning in an off-line manner for the n-th
mGCN, as shown in Fig. 3. The number of episodes of the
meta learning equals to the size U0 of Sn (or Wn). In the
u-th episode, we take Y

(u)
n in Sn and Z

(u)
n in Wn to update

the parameter of the n-th mGCN at the u-th episode Γu−1
n .

Specifically, a temporary GCN in Fig. 2 with parameter Πn,u

is endowed with Γu−1
n , i.e., Πn,u ← Γu−1

n . The parameter
Πn,u is updated in the direction of ∇Πn,uL(Πn,u,Y

(u)
n ) by

αmeta > 0 step size, i.e.,

Π‡n,u = Πn,u − αmeta∇Πn,uL(Πn,u,Y
(u)
n )

= Γu−1
n − αmeta∇Πn,u

[
τ(Cu,tempn,spt − 1)+

max
nβ∈{1,2,...,n}

∥∥∥p(u,nβ ,temp)
n,spt − p

(u,nβ)
n,spt

∥∥∥
2

]
, (27)

where Π‡n,u is the updated parameter of the temporary GCN,
p

(u,nβ ,temp)
n,spt is the nβ-th row in the output X

(u,temp)
n,spt of

the temporary GCN, and Cu,tempn,spt is the number of RUAV
clusters of the RUAV graph Gt formed by X

(u,temp)
n,spt . The



parameter of the n-th mGCN is updated in the direction of
∇Π′n,uL(Π‡n,u,Z

(u)
n ) by αmeta step size, i.e.,

Γun = Γu−1
n − αmeta∇Π‡n,u

L(Π‡n,u,Z
(u)
n )

= Γu−1
n − αmeta∇Π‡n,u

[
τ(Cu,tempn,qur − 1)+

max
nβ∈{1,2,...,n}

∥∥∥p(u,nβ ,temp)
n,qur − p

(u,nβ)
n,qur

∥∥∥
2

]
, (28)

where p
(u,j,temp)
n,qur is the u-th row in the output X

(u,temp)
n,qur of

the temporary GCN, and Cu,tempn,qur is the number of RUAV
clusters of the RUAV graph Gt formed by X

(u,temp)
n,qur . After

U0 episodes, we obtain the meta parameters of all the N − 1
mGCNs Γ?n , ΓU0

n that act as the initial parameters for the
GCNs during on-line executions.

6) On-line executions of the GCN: When the USNET is
destructed by one-off UEDs at time step t and the RUAV
graph Gt has N0 ∈ {2, 3, ..., N} RUAVs, we build the VRG
Gvt = {Rvt , Evt ,Xv

t }, and calculate the Laplace matrix Lvt for
the GCN. Then the GCN will load the meta parameter Γ?N0

,
i.e., Θ← Γ?N0

. Next, the GCN will be trained on-line by the
gradient descent of the loss function L(Θ,Xt), i.e.,

Θ← Θ− αmeta∇ΘL(Θ,Xt). (29)

Note that the number of the on-line training episodes, denoted
as M , is a constant positive integer. After the on-line train-
ing, we input Xt into the GCN, and the GCN outputs the
topology matrix XQ

gcn,t that acts as the solution to (P1), i.e.,
X̃t ← XQ

gcn,t. Each RUAVi,t will fly at a constant speed
vi,t = v0

‖pQgcn,i,t−pi,t‖
2

(pQgcn,i,t − pi,t) until reaching point

pQgcn,i,t. The process of the CR-MGC algorithm is briefly
summarized in Algorithm 2.

IV. SCC ALGORITHM FOR GENERAL UEDS

In this section, let us consider the SCC problem under the
general UEDs (P2). To cope with the issue that RUAVs can
only obtain partial information, we build an individual data
base (IDB) model for each UAV and develop a monitoring
mechanism that can detect UEDs and the position changing
of UAVs. We then propose a self-healing trajectory planning
algorithm based on monitoring mechanisms and CR-MGC to
cope with the general UEDs.

A. Individual Database Model and Monitoring Mechanisms

We embed an IDB Di,t = {p̂i1,t, p̂i2,t, ..., p̂iN,t} ∪ Îit inside
the i-th UAV that contains two parts, namely the individual
positions of all UAVs {p̂i1,t, p̂i2,t, ..., p̂iN,t} and the individual
index set of RUAVs (IISR) Îit . The UAVs always know their
own positions. Hence, the individual position p̂ii,t in Di,t
of RUAVi,t equals to the position of RUAVi,t at each time
step t, i.e., p̂ii,t = pi,t. During the self-healing process, the
monitoring mechanism is realized through the updating of
IDBs.

Algorithm 2 CR-MGC Algorithm (A Brief Process Summary)
Inputs: The initial RUAV graph G0 = {R0, E0,X0}, and the
initial index set of RUAVs I0.
Outputs: The solution X̃t to (P1), the flying trajectories of
all RUAVs.
Initializations: The parameters of mGCNs Γ0

n, the param-
eter of the GCN Θ, support sets Sn and query sets Wn,
n ∈ {2, 3, ..., N}. Conduct numerical experiments (shown in
Section V-B) to determine the η? and ε?.
Off-line Meta Training:

1: for n = 2 to N do
2: for u = 1 to U do
3: Build the VRGs based on Y

(u)
n and Z

(u)
n sep-

arately, and derive the corresponding Laplace matrices.
Train one step on parameter Γu−1

n using (27), and update
Γu−1
n using (28).

4: end for
5: end for
6: Obtain all the meta parameters Γ?n, n ∈ {2, 3, ..., N}.

On-line Executions:
1: A random one-off UED happens at time step t, and

the USNET is destructed into a RUAV graph Gt =
{Rt, Et,Xt} with n RUAVs.

2: Build the VRG Gvt = {Rvt , Evt ,Xv
t }, and calculate the

Laplace matrix Lvt for the GCN.
3: The GCN loads the meta parameter Γ?n, i.e., Θ← Γ?n.
4: Train Θ with (29) M episodes, and obtain the output

XQ
gcn,t.

5: Let X̃t ← XQ
gcn,t. Each RUAVi,t flies at a constant speed

vi,t = v0
‖pQgcn,i,t−pi,t‖

2

(pQgcn,i,t−pi,t), ∀i ∈ It until reach

point pQgcn,i,t.

1) Monitoring the position changing of UAVs by updating
the individual positions: At each time step t, RUAVi,t broad-
casts its own position pi,t to other RUAVs in the same RUAV
cluster through MCLs. To better exhibit the SCC algorithm,
we ignore the time delay of data transmissions in MCLs, and
assume the broadcasting can be completed at time step t. If
RUAVi,t receives pi′,t at time step t, it updates the individual
position of the i′-th UAV in Di,t; otherwise, the old individual
position of the i′-th UAV in Di,t−1 of RUAVi,t does not
change, i.e.,

p̂ii′,t ←

{
pi′,t, if receives pi′,t;

p̂ii′,t−1, otherwise.
(30)

2) Monitoring the UEDs by updating the IISR: When the
j-th UAV is destructed at time step t, its neighbor RUAVi,t
will notice the destruction immediately and drop the index j
from Îit , i.e.,

Îit ← Îit−1\{j}. (31)

RUAVs within the same RUAV cluster share their IISRs
through broadcasting, and RUAVi,t updates Îit by taking the



Algorithm 3 CR-MGCM for the i-th UAV based on its IDB

Input: The IDB Di,0 = {p̂i1,0, p̂i2,0 ..., p̂iN,0} ∪ Îi0, the η?, ε?

and Γ?n, n ∈ {2, 3, ..., N}.
Outputs: The speed vi,t of the i-th UAV during t ∈
{1, 2, ..., T}.
Initializations: An inertia counter CI ← 0, a target position
Ξi ∈ R3, and the inertia κ > 0.

1: for t = 1 to T do
2: Update IDBs to monitor the UEDs and position chang-

ing of UAVs with (30), (31), (32).
3: Calculate the Laplace matrix Lt of the RUAV graph

formed by {p̂i1,t, p̂i2,t ..., p̂iN,t}.
4: if Ω(λ = 0|Lt) > 1 then
5: if CI == 0 then
6: Calculate the dvmin,t by Algorithm

1 with inputs [p̂ir1,t, p̂
i
r2,t ..., p̂

i
r|Îit|

,t]
T and Îit ,

calculate the maximum threshold dvmax,t as
dvmax,t = maxi′,i′′∈Îit

{
∥∥p̂ii′,t − p̂ii′′,t

∥∥
2
}, and then

dvt = η?dvmin,t + (1− η?)dvmax,t;
7: Build the VRG Gvt = {Rvt , Evt ,Xv

t },
where Rvt = {RUAVi,t|i ∈ Îir,t}, Xv

t =
[p̂ir1,t, p̂

i
r2,t ..., p̂

i
r|Îit|

,t]
T , and Evt = {evi′i′′,t|i′, i′′ ∈

Îit , i′ 6= i′′,
∥∥p̂ii′,t − p̂ii′′,t

∥∥
2
≤ dvt }. Derive the Laplace

matrix Lvt of the VRG Gvt .
8: Load Γ?

|Îit |
to the GCN, i.e., Θ← Γ?

|Îit |
, train

the GCN M episodes with (29).
9: The GCN outputs XQ

gcn,t =

[pQgcn,r1,t,p
Q
gcn,r2,t, ...,p

Q
gcn,r|Îir,t|

,t]
T with input Xv

i,t.

10: Let Ξi ← pQgcn,i,t, and vi,t ←
v0

‖Ξi−p̂ii,t‖2
(Ξi − p̂ii,t). Let CI ← CI + 1.

11: else
12: vi,t ← v0

‖Ξi−p̂ii,t‖2
(Ξi − p̂ii,t).

13: end if
14: Let CI ← 0 if CI == κ.
15: else
16: vi,t = 0, and CI ← 0
17: end if
18: if the i-th UAV is destructed then
19: break
20: end if
21: end for

intersections of all the received IISRs, i.e.,

Îit ← Îit ∩ Î
i1
t ∩ Î

i2
t ∩ ... ∩ Î

ih
t ∩ ... ∩ Î

i|Ci,t|−1

t , (32)

where Ci,t represents the RUAV cluster containing RUAVi,t,
and Îiht represents the received IISR, ih ∈ It, h ∈
{1, 2, ..., |Ci,t| − 1}.

Define the global information DG,t at time step t as the
union of the positions of all UAVs and the index set of RUAVs,
i.e., DG,t = {p1,t,p2,t, ...,pN,t}∪It. Note that the monitoring
mechanism tries to help RUAVs obtain the latest information
about the USNET as mush as possible, but still cannot help all
the RUAVs obtain the global information Gt at each time step

t. This means that there may exist some certain some time
step t at which Di,t 6= DG,t for some RUAVi,t. Nonetheless,
at the time steps when the RUAV graph Gt forms a CCN,
all the RUAVs can obtain the global information DG,t. For
example, the USNET forms a CCN at t = 0, and then there
is Di,0 = DG,0.

B. Self-healing Trajectory Planning Algorithm

Based on the CR-MGC and the monitoring mechanisms, we
propose a self-healing trajectory planning algorithm, named
CR-MGCM, to cope with the the general UEDs. The details
of CR-MGCM algorithm for each UAV are stated in Algorithm
3. In a nutshell, each UAV first loads η?, ε?, the meta
parameters Γ?n, and the GCN with randomly initialized Θ.
Then during on-line executions, each RUAV monitors the
UEDs and position changing of UAVs by updating its IDB.
RUAVi,t determines its flying directions by carrying out the
on-line execution part of CR-MGC based on the data in Di,t.
Note that for each UAV we set an inertia κ (κ > 0) that
determines the number of time steps to maintain the flying
directions before rerunning the on-line execution part of the
CR-MGC. The outputs of CR-MGCM of all UAVs act as the
solution to (P2).

C. Theoretical Effectiveness of CR-MGCM

If UAVs always have the global information DG,t, then
the CR-MGCM can skip the monitoring mechanism in step
“2” and simply let {p̂i1,t, p̂i2,t ..., p̂iN,t} ← {p1,t,p2,t ...,pN,t}
and Îit ← It for each RUAVi,t in each time step t. We
refer the CR-MGCM algorithm where UAVs always have the
global information DG,t as CR-MGCMglob. Note that CR-
MGCMglob is equivalent to the CR-MGC when coping with
each single one-off UEDs. Due to the effectiveness of CR-
MGC, CR-MGCMglob is effective under one-off UEDs. On
the other hand, since the general UEDs can be viewed as the
combination of several one-off UEDs at different time steps,
the CR-MGCMglob is effective under the general UEDs.

However, since RUAVs cannot obtain DG,t, they may fly
towards wrong directions during the self-healing process,
which can make SCC algorithms ineffective. Nonetheless, we
prove that CR-MGCM can reach the performance of CR-
MGCMglob under the general UEDs.

Proposition 2. When applying the GCOs G(·) to the topology
matrix Xt, the positions of all RUAVs are moving towards their
center 1

|It|
∑
i∈It pi,t.

Proof. See Appendix C.

Since the GCN is mainly composed of GCOs G(·), it tends
to make RUAVs gather towards the center of their positions.
However, CR-MGCM makes each RUAVi,t fly towards the
incomplete center 1

|Îit |

∑
i′∈Îit

p̂ii′,t that is calculated by the
data in Di,t, while the CR-MGCMglob makes each RUAVi,t
fly towards the complete center 1

|It|
∑
i′∈It pi′,t.

We then analyze the difference between the incomplete
center and complete center for RUAVi,t, as shown in Fig.
4. Denote the distance between two centers as $i,t =
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Fig. 4. Individual positions in Di,t and the RUAVs’ positions in global information DG,t.

TABLE II
PARAMETER SETTINGS OF UAVS IN THE SIMULATIONS

Parameter Values Parameter description Parameter Values Parameter description

P
30 dBm
(=1W) Transmitting signal power P0

1.38 dBm
(=1.37mW)

Receiving signal
power threshold

G1,G2 6 dBi
Antenna gain of

receiving and transmitting
signals

α 1 α in (6)

fc 2.4 GHz Carrier frequency vc 3× 108 m/s Speed of light

σ2
0 5 Strength of scattered path K 10 Rice factor

v0 1m/s Magnitude of the
speed of UAVs αmeta 0.01 learning rate in

the meta learning

∥∥∥ 1
|It|
∑
i′∈It pi′,t − 1

|Îit |

∑
i′∈Îit

p̂ii′,t

∥∥∥
2
, which can be ex-

panded as (33). Notice that It ⊆ Îit always holds for ∀i ∈ It
and ∀t ∈ {1, 2, ..., T}, since Îit has no chance to drop the
elements in It. Hence, there is It\Îit = ∅, which indicates∑
i′∈It\Îit

pi′,t =
∑
i′∈∅ pi′,t = 0. As the RUAVs initially

store the global information DG,0, the incomplete center and
complete center coincide at t = 0, i.e., 1

|I0|
∑
i′∈I0 pi′,0 =

1

|Îi0|

∑
i′∈Îi0

p̂ii′,0. Moreover, the distance between p̂ii′,t and

pi′,t is bounded, since
∥∥p̂ii′,t − pi′,t

∥∥
2
≤ vt < vT always

holds. Therefore, we can assume the following three mild
conditions:

• Position bound:
∥∥p̂ii′,t − pi′,t

∥∥
2
≤ b1 < vT , b1 > 0 is

a constant;
• Approximation of RUAV numbers: 1

|It| ≈
1

|Îit |
;

• False RUAVs’ bound:
∥∥∥ 1

|Îit |

∑
i′∈Iir,t\It

p̂ii′,t

∥∥∥
2
≤ b2,

b2 > 0 is a constant.
Then the upper bound of the distance $i,t between incomplete
center and complete center can be calculated as (34), where
Ci,t denotes the index set of RUAVs that are in the same RUAV
cluster with RUAVi,t. Hence, RUAVs using CR-MGCM nearly
fly towards the same position as RUAVs using CR-MGCMglob

at each time step. Besides, the inertia κ in CR-MGCM can
offer RUAVs the latest information of USNET to plan their
trajectories. Therefore, CR-MGCM can reach the performance
of CR-MGCMglob under the general UEDs.

$i,t =

∥∥∥∥∥∥
∑

i′∈It∩Îit

(
1

|It|
pi′,t −

1

|Îit |
p̂ii′,t

)
+

1

|It|
∑

i′∈It\Iir,t

pi′,t −
1

|Îit |

∑
i′∈Îit\It

p̂ii′,t

∥∥∥∥∥∥
2

. (33)

$i,t =

∥∥∥∥∥∥ 1

|It|
∑
i′∈It

pi′,t −
1

|Îit |

∑
i′∈Îit

pii′,t

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i′∈It∩Îit

(
1

|It|
pi′,t −

1

|Îit |
p̂ii′,t

)
− 1

|Îit |

∑
i′∈Îit\It

p̂ii′,t

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i′∈It∩Îit\Ci,t

1

|It|
(pi′,t − p̂ii′,t)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

|Îit |

∑
i′∈Îit\It

p̂ii′,t

∥∥∥∥∥∥
2

≤ b1 + b2. (34)
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Fig. 5. Initial distributions of the 200 identical UAVs .
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Fig. 6. The average number of RUAV clusters versus c.

Fig. 7. The average of k∗ versus η and the average of Lmax versus η. The ε
is 1.

Fig. 8. The average of k∗ versus ε, and the average of Lmax versus ε. The η
is 0.3.

V. SIMULATION RESULTS

In the simulation5, the initial USNET consists of N =
200 identical UAVs that are randomly distributed in a
1,000m×1,000m×100m three-dimensional space, as shown in
Fig. 5. The parameters of UAVs are specified in Table II, and
the CLEC can be calculated as

10 log10

(
96πlii′,t

3

)
+
lii′,t

5
exp

(−l2ii′,t − 100

10

)
I0(20lii′,t)

≈ 10 log10

(
96lii′,t

)
≤ 40.62, (35)

from which we can derive lii′,t ≈ 120m. Hence, the CLEC
can be described as: any two distinct UAVs can establish a
communication link if their distance is smaller than 120m.
The period of the self-healing process is set to be 450 time
steps, i.e., T = 450. The number of GCLs in the GCN is
Q = 8.

5The source codes are available on https://github.com/nobodymx/resilient-
swarm-communications-with-meta-graph-convolutional-networks

A. Verifications of Algorithm 1

Express the virtual distance dvt in the VRG as dvt = 120 +
c(dvmin,t − 120), where dvmin,t is obtained by Algorithm 1
and c ≥ 0 is a coefficient. We randomly destroy 10, 50, 100
and 150 UAVs of the initial USNET 100 times each, and the
average number of RUAV clusters in the VRG versus c is
shown in Fig. 6. When c = 0 and dvt = 120m, the average
number of RUAV clusters is bigger than 1 and the VRG cannot
form CCNs. As c gets closer to 1, the virtual distance dvt
becomes larger and the average number of RUAV clusters in
the VRG decreases. The VRG cannot form a CCN until c = 1
and dvt = dvmin,t. Hence, Algorithm 1 can guarantee to find the
minimal virtual distance dvmin,t that makes the VRG a CCN.

B. Finding η? and ε? of the CR-MGC

We randomly destruct 10, 50, 100, 150 UAVs of the initial
USNET 100 times each. Fig. 7 shows the average of the
number of GCO G(·) iterations k∗ versus η. The average of
Lmax versus η is also shown in Fig. 7. We can see that the
average of k∗ drops with the increase of η, while the average



Fig. 9. Loss function curve of the mGCNs during meta learning. Fig. 10. Loss function during the on-line executions, M = 50.

of Lmax slightly decreases when η ≤ 0.3 and continuously
increases when η > 0.3. Hence, we choose η? = 0.3 as the
best value of η to balance both k∗ and Lmax.

We randomly destruct 10, 50, 100, 150 UAVs of the initial
USNET 100 times each. Fig. 8 shows the average of k∗ versus
ε. The average of Lmax versus ε is also shown in Fig. 8 . When
ε ∈ [0, 1.5], the average of k∗ drops with the increase of ε,
while the average of Lmax increases. However, when ε > 1.5,
the GCO diverges and both the average of k∗ and average
of Lmax go to infinity. Recall that Ht = ε

‖Av
t ‖∞

and the
theoretical range of Kt is 0 < Ht ≤ 1

‖Av
t ‖∞

(or equivalently
0 < ε ≤ 1). Hence, the results in Fig. 8 verify the correctness
of the theoretical range of Ht. We can choose ε? = 1 as the
best value of ε to balance both k∗ and Lmax.

C. Meta Learning of the GCN
We build 199 mGCNs since the initial USNET contains

200 UAVs. For each mGCN, we construct a support set and
query set with U0 = 400 topology matrices each. Fig. 9 shows
the average loss function curve of all mGCNs during the off-
line meta learning. We can see that the loss function starts
from 1000 and drops stably to 500 during the off-line meta
learning. The consistent decrease of the loss function indicates
that the parameters of the mGCNs are gradually moving to
better values.

Fig. 10 shows the loss function curves of the GCN during
the training process in on-line executions, where the param-
eters of GCN Θ are initiated by the meta parameters Γ?k,
the pre-trained parameters, and random values, respectively.
We set the on-line training episode to be M = 50. On
the one hand, the loss function curve of GCN initiated by
meta parameters starts from 570 that is smaller than other
two curves (700 and 900, respectively). This means that the
meta parameters are better initialized values than both the pre-
trained parameters and random parameters. On the other hand,
the loss function curve of GCN initiated by meta parameters
decreases continuously during the on-line training process and
reaches lower values than other two curves, which implies the
meta parameters have great potential in performance.

Fig. 11. Average self-healing time steps Js under different number of
destructed UAVs.

D. SCC of One-off UEDs in (P1)

Fig. 11 shows the average self-healing time steps Js of the
CR-MGC under one-off UEDs. The performances of HERO
[20], SIDR [23], CSDS [19], GCN-2017 [27], and CEN6 are
also displayed for comparisons. We randomly destruct 10, 20,
30, ..., 190 UAVs of the initial USNET 100 times each, and
take the average value of the self-healing time to plot the
curves of different algorithms. The shaded areas represent
the 100% confidential intervals of the average self-healing
time. We can see that with the increase of the number of
destructed UAVs, the self-healing time of all the algorithms
increases. Moreover, the average self-healing time of the CR-
MGC is smaller than those of other four algorithms under any
number of destructed UAVs. Hence, the CR-MGC can rebuild
the communication connectivity of the USNET within shorter
time.

6CEN represents the algorithm that makes each RUAV fly to the center of
their positions directly.



(a) The initial USNET is destructed into 11 RUAV clusters. (b) The changing of the positions when applying the GCO G(·).

(c) Flying trajectories of RUAVs using CR-MGC. (d) The number of RUAV clusters versus the time steps.

Fig. 12. Disruptions to the initial USNET and the self-healing process under different algorithms.

Fig. 12 shows the trajectories of the RUAVs during a certain
self-healing process7, where the one-off UED destroys 100
UAVs at t = 0. As shown in Fig. 12(a), the initial USNET
is destructed into C0 = 11 RUAV clusters, where nodes with
the same color denotes the RUAVs in the same RUAV cluster.
Fig. 12(b) shows that the GCOs can make the RUAVs gather
towards their center to form a CCN, which is consistent with
Proposition 2. Fig. 12(c) shows the flying trajectory of each
RUAV using CR-MGC. The maximum displacement of all
RUAVs is 170m. Fig. 12(d) shows that the number of RUAV
clusters of the RUAV graph Gt decreases with CR-MGC.
Moreover, the CR-MGC makes the RUAVs form a CCN within
the least time steps.

7Note that the motion graphs of the self-healing process are avail-
able on https://github.com/nobodymx/resilient-swarm-communications-with-
meta-graph-convolutional-networks

E. SCC of General UEDs in (P2)

Fig. 13 and Fig. 14 both show the number of RUAV
clusters Ct using different algorithms under the same general
UED. However, the RUAVs in the simulation of Fig. 13 have
global information at each time step, while the RUAVs in
the simulation of Fig. 14 do not and can only utilize the
monitoring mechanism. The UED happens at 10, 90, 100,
131, and 230 time step and destruct 50, 8, 9, 7, and 20
UAVs, respectively. We can see that the RUAVs using CR-
MGCMglob and CR-MGCM both quickly forms a CCN after
each UED, while the RUAVs using other algorithms slowly
forms a CCN after UEDs or even cannot form CCNs. Hence,
CR-MGCMglob and CR-MGCM can effectively rebuild the
communication connectivity of the USNET within shorter time
steps than the existing algorithms.

We destructed the USNET with 10 distinct general UEDs
and depict the distribution of the connected time step ratio



Fig. 13. The number of RUAV cluster versus time steps under the general
UEDs with global information.

Fig. 14. The number of RUAV cluster versus time steps under the general
UEDs with monitoring mechanisms.

Fig. 15. The connected time step ratio JG
c of different algorithms with global

information.
Fig. 16. The connected time step ratio Jc of different algorithms with
monitoring mechanisms.

by boxplots shown in Fig. 15 and Fig. 16. The RUAVs in
the simulation of Fig. 15 have global information at each time
step, while the RUAVs in the simulation of Fig. 16 only utilize
the monitoring mechanism. In order to distinguish from Jc, we
denote the connected time step ratio in Fig. 15 as JGc . We can
see that the average JGc with CR-MGCMglob is larger than
that of other algorithms, which indicates the effectiveness of
the CR-MGCMglob under the general UEDs. We can also see
that the average Jc with CR-MGCM is larger than that of
other algorithms, which indicates the effectiveness of the CR-
MGCM under the general UEDs. Moreover, the ratio between
the average Jc with CR-MGCM and the average JGc with
CR-MGCMglob is Jc

JGc
= 0.311

0.317 = 98.11%, which indicates
that CR-MGCM can reach the performance of CR-MGCMglob

under the general UEDs.

F. Time Consuming Comparisons
Fig. 17 compares the average on-line execution time cost at

one time step of different algorithms. We can see that the
average time cost of CR-MGC have the same magnitudes
with HERO, CEN and SIDR, but is much smaller than CSDS
and GCN-2017. Note that the CR-MGCM and CR-MGCMglob

Fig. 17. Average time consumptions of on-line executions with different
algorithms.

both have the same time costs with CR-MGC, since they use
the same GCN structures. This indicates that CR-MGC, CR-
MGCM and CR-MGCMglob have acceptable on-line execution
time costs.



Fig. 18. Examples of one-off UEDs to the same USNET. The left one-off
UED does not destroy the CCN, while the right one-off UED destroys the
CCN.

VI. CONCLUSION

In this paper, we studied the SCC problem of the US-
NET under one-off UEDs and general UEDs. Specifically,
we proposed a CR-MGC algorithm to cope with the SCC
problem under one-off UEDs and verify its convergence. We
also developed a meta learning scheme to improve the on-
line executions of CR-MGC. For the SCC problem under
the general UEDs, we designed the CR-MGCM algorithm
to plan the trajectories of RUAVs. Numerical results showed
that the proposed algorithms can rebuild the communication
connectivity of the USNET within shorter time than the
existing algorithms under both one-off UEDs and general
UEDs. The experiment results also showed that the meta
learning scheme could not only enhance the performance of
the proposed algorithms, but also reduce the on-line execution
time costs of them.

APPENDIX A
ILLUSTRATIONS OF ONE-OFF UEDS CASES

Consider a USNET composed of N UAVs with fixed initial
positions {p1,0,p2,0, ...,pN,0}. The one-off UED can destruct
any number of UAVs with random indexes in the USNET at
a certain time step. Denote the number of destructed UAVs
as Υ ∈ {1, 2, ..., N}. The number of cases of destructing
Υ UAVs can be calculated as CΥ

N = N !
Υ!(N−Υ)! , where C is

the combinatorial number. Hence, the total number of one-off
UED cases is

∑N
Υ=1 C

Υ
N = 2N .

Note that not all cases of one-off UEDs can destroy the
communication connectivity of the USNET. For example, as
shown in Fig. 18, the one-off UED on the left does not destroy
the CCN, while the one-off UED on the right destroys the
CCN. The RUAVs can stay still if they remain a CCN after
the one-off UED. Therefore, we only consider the one-off

UEDs that can destroy the communication connectivity of the
USNET.

APPENDIX B
PROOF OF PROPOSITION 1

We first prove that the metric space {Xt | 1
|It|
∑
i∈It pi,t =

c} is closed under the GCO G(·), i.e.,

G(·) : {Xt |
1

|It|
∑
i∈It

pi,t = c} → {Xt |
1

|It|
∑
i∈It

pi,t = c}.

(36)

Then we prove that the GCO G(·) satisfies the contraction
mapping theorem [37] when 0 < Ht ≤ 1

‖Av
t ‖∞

. In addition,
we prove that the positions of RUAVs in the topology matrix
Xt (Banach point [37]) of the GCO G(·) all have the same
value c, i.e., Xt = [c, c, ..., c]T .

A. The Closure of GCO G(·) in {Xt | 1
|It|
∑
i∈It pi,t = c}

We need to prove that ∀Xt ∈ {Xt | 1
|It|
∑
i∈It pi,t = c},

X1
t = G(Xt) ∈ {Xt | 1

|It|
∑
i∈It pi,t = c} holds, i.e.,

1

|It|
∑
i∈It

p1
i,t =

1

|It|
∑
i∈It

pi,t = c, (37)

where p1
rj ,t

T is the j-th row of X1
t . Let p1

i,t , [x1
i,t, y

1
i,t, z

1
i,t]

T ,
where x1

i,t, y
1
i,t and z1

i,t denote the X , Y and Z axis compo-
nents of p1

i,t. Then (37) is equivalent to∑
i∈It

x1
i,t =

∑
i∈It

xi,t, and
∑
i∈It

y1
i,t =

∑
i∈It

yi,t,

and
∑
i∈It

z1
i,t =

∑
i∈It

zi,t. (38)

Let us prove
∑
i∈It x

1
i,t =

∑
i∈It xi,t in (38) as an example.

Since X1
t = (It − HtL

v
t )Xt, we have (42) as shown below

in this page, where l1jj′ is the element in the j-th row and the
j′-th column of matrix It −KtL

v
t , we have

∑
i∈It

x1
i,t =

|It|∑
j=1

x1
rj ,t =

|It|∑
j=1

|It|∑
j′=1

l1jj′xrj′ ,t =

|It|∑
j′=1

xrj′ ,t

( |It|∑
j=1

l1jj′

)
.

(39)

Since
|It|∑
j=1

l1jj′ = 1 +Htdj,t −Ht

|It|∑
j′=1

ajj′,t = 1, (40)

we have ∑
i∈It

x1
i,t =

∑
i∈It

xi,t

( |It|∑
j=1

l1jj′

)
=
∑
i∈It

xi,t. (41)


x1
r1,t y1

r1,t z1
r1,t

x1
r2,t y1

r2,t z1
r2,t

...
...

...

x1
r|It|,t

ykr|It|,t
zkr|It|,t

 =


l111 l112 · · · l11|It|
l121 l122 · · · l12|It|
...

...
. . .

...

l1|It|1 l
1
|It|2 · · · l

1
|It||It|




xr1,t yr1,t zr1,t

xr2,t yr2,t zr2,t
...

...
...

xr|It|,t yr|It|,t zr|It|,t

 , (42)



The equalities
∑
i∈It y

1
i,t =

∑
i∈It yi,t and

∑
i∈It z

1
i,t =∑

i∈It zi,t can be proved in the same manner. Therefore, (37)
holds.

B. Satisfaction of Contraction Mapping Theorem
In the metric space {Xt | 1

|It|
∑
i∈It pi,t = c}, we define

the distance between any two topology matrices X′t and X′′t
as

d(X′t,X
′′
t ) = ‖X′t −X′′t ‖∞

= max
j∈{1,...,|It|}

{
3∑
s=1

|(X′t −X′′t )js|}. (43)

The distance between the GCO G(·) of X′t and X′′t can be
calculated as

d(G(X′t), G(X′′t )) = ‖G(X′t)−G(X′′t )‖∞
= ‖(It −HtL

v
t )(X

′
t −X′′t )‖∞ . (44)

Since the matrix infinity norm ‖·‖∞ has the sub-multiplicity
property 8, we have

‖(It −HtL
v
t )(X

′
t −X′′t )‖∞ ≤ ‖It −HtL

v
t ‖∞ ‖X

′
t −X′′t ‖∞ ,

(45)

Thus, we can get

d(G(X′t), G(X′′t )) ≤ ‖It −HtL
v
t ‖∞ ‖X

′
t −X′′t ‖∞

= ‖It −Ht(D
v
t −Av

t )‖∞ ‖X
′
t −X′′t ‖∞

= max
i∈It

[
|1−Htd

v
i,t|+

∑
i′∈It

|Hta
v
ii′,t|

]
‖X′t −X′′t ‖∞

= max
i∈It

[
|1−Ht

∑
i′∈It

avii′,t|+
∑
i′∈It

Hta
v
ii′,t

]
‖X′t −X′′t ‖∞ .

(46)

When Ht ≤ 1
‖Av

t ‖∞
, there is

1−Ht

∑
i′∈It

avii′,t ≥ 1− 1

‖Av
t ‖∞

∑
i′∈It

avii′,t

≥ 1− 1

‖Av
t ‖∞

‖Av
t ‖∞ = 0, (47)

and we have

d(G(X′t), G(X′′t ))

≤ max
i∈It

[
|1−Ht

∑
i′∈It

avii′,t|+
∑
i′∈It

Hta
v
ii′,t

]
‖X′t −X′′t ‖∞

= max
i∈It

[
1−Ht

∑
i′∈It

avii′,t +Ht

∑
i′∈It

avii′,t

]
‖X′t −X′′t ‖∞

= max
i∈It

[1] ‖X′t −X′′t ‖∞
= d(X′t,X

′′
t ). (48)

The condition for (48) to be equal is that (45) takes the equal
sign, i.e.,

‖(It −HtL
v
t )(X

′
t −X′′t )‖∞ = ‖It −HtL

v
t ‖∞ ‖X

′
t −X′′t ‖∞ .

(49)

8We prove the sub-multiplicity of ‖·‖∞ in Appendix D.

As shown in Appendix D, when (49) holds, we can draw two
inferences:

1) inference 1: ∀j′ ∈ {1, 2, ..., |It|}, s ∈ {1, 2, 3}, when j =

arg maxj
∑3
s=1

∣∣∣∑|It|j′=1(It −HtL
v
t )jj′(X

′
t −X′′t )j′s

∣∣∣,
we have (It −HtL

v
t )jj′(X

′
t −X′′t )j′s ≥ 0;

2) inference 2:
∑3
s=1 |(X′t − X′′t )j′s| = C ′, ∀j′ ∈

{1, 2, ..., |It|}, where C ′ ∈ R is a constant.

When Ht ≤ 1
‖Av

t ‖∞
, each element in It−HtL

v
t is not smaller

than 0, i.e., (It −HtL
v
t )jj′ ≥ 0,∀j, j′. Hence, from inference

1, we can derive (X′t −X′′t )j′s ≥ 0,∀j′, s. With inference 2,
we have
|It|∑
j′

3∑
s=1

|(X′t −X′′t )j′s| =
|It|∑
j′

3∑
s=1

(X′t −X′′t )j′s = |It|C ′.

(50)

Since X′t,X
′′
t ∈ {Xt | 1

|It|
∑
i∈It pi,t = c}, we can derive

C ′ =
1

|It|

3∑
s=1

[ |It|∑
j′

(X′t)j′s − (X′′t )j′s

]
=

1

|It|
|It|(sum(c)− sum(c)) = 0, (51)

where sum(·) represents the summation of all the elements in
vectors. This indicates that (X′t −X′′t )j′s = 0,∀j′, s. Hence,
when (48) takes the equal sign, we have

d(G(X′t), G(X′′t )) = d(X′t,X
′′
t ) = ‖X′t −X′′t ‖∞ = 0. (52)

Thereby, we have proved that ∀X′t,X′′t ∈ {Xt |
1
|It|
∑
i∈It pi,t = c},

d(G(X′t), G(X′′t )) ≤ δd(X′t,X
′′
t ), (53)

where δ ∈ (0, 1). Hence, the GCO G(·) is a contraction
mapping when 0 < Ht ≤ 1

‖Av
t ‖∞

. There exists and only exists
one topology matrix Xt (the Banach point of the GCO G(·))
such that

Xt = G(Xt) = lim
k→∞

Gk(Xt). (54)

C. Property of Xt = [c, c, ..., c]T

Since Xt = G(Xt), we have

Xt = (It −HtL
v
t )Xt. (55)

Eliminating Xt on both sides of (54), we have

−HtL
v
tXt = 0 ⇒ LvtXt = 0 ⇒ Lvt [x1,t,x2,t,x3,t] = 0,

(56)

where xs,t, s ∈ {1, 2, 3} is the s-th column vector of Xt.
Furthermore, xs,t is the eigenvector of Lvt corresponding to
zero eigenvalue, since Lvtxs,t = 0 = 0xs,t. Note that the VRG
is a CCN, and the algebraic multiplicity of the zero eigenvalue
of Lvt equals to 1. Hence, the eigenvectors can only be the
multiple of 1|Rt|, i.e., xs,t = αs1|It|, where αs ∈ R is a



constant, and αs 6= 0. Then we have

Xt = [α11|It|, α21|It|, α31|It|] = [pr1,t,pr2,t, ...,pr|It|,t
]T ,

(57)

where prj ,t = [α1, α2, α3]T . Equation (57) indicates that
iteratively applying the GCO G(·) to the Xt will gather all
RUAVs to a same position [α1, α2, α3]T . Since Xt ∈ {Xt |

1
|It|
∑
i∈It pi,t = c}, we have

1

|It|
∑
i∈It

pi,t =
1

|It|
∑
i∈It

[α1, α2, α3]T = [α1, α2, α3]T = c.

(58)

Hence, we have Xt = [pr1,t,pr2,t, ...,pr|It|,t
]T =

[c, c, ..., c]T .

APPENDIX C
PROOF OF PROPOSITION 2

Consider the GCO G(·) in metric space {Xt |
1
|It|
∑
i∈It pi,t = c}, where c is the center of all RU-

AVs. From Appendix B-A, we know that Xk
t ∈ {Xt |

1
|It|
∑
i∈It pi,t = c},∀k ∈ N+. As the GCO G(·) is a

contraction mapping, we have

d(Xk+1
t ,Xt) = d(G(Xk

t ), G(Xt)) ≤ δd(Xk
t ,Xt), ∀k ∈ N+,

(59)

which means

max
i∈It

∥∥pk+1
i,t − c

∥∥
1
≤ δmax

i∈It

∥∥pki,t − c
∥∥

1
, (60)

where δ ∈ (0, 1), and ‖·‖1 represents the 1-norm operator of
vectors. Hence, the positions of RUAVs are moving towards
the center of their positions 1

|It|
∑
i∈It pi,t = c.

APPENDIX D
PROOF OF THE SUB-MULTIPLICITY OF ‖·‖∞

Consider two arbitrary matrices A = (aij) ∈ Rm×n and
B = (bjk) ∈ Rn×r, where m,n, r ∈ R. We have

‖AB‖∞ = max
i∈{1,...,m}

r∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
≤ max
i∈{1,...,m}

r∑
j=1

n∑
k=1

|aik||bkj |

= max
i∈{1,...,m}

n∑
k=1

|aik|
( r∑
j=1

|bkj |
)

≤ max
i∈{1,...,m}

n∑
k=1

|aik|
(

max
k∈{1,...,n}

r∑
j=1

|bkj |
)

= ‖A‖∞ ‖B‖∞ . (61)

Hence, the sub-multiplicity of ‖·‖∞ holds. The equality con-
dition for (61) is that

1) for i = arg maxi∈{1,...,m}
∑r
j=1 |

∑n
k=1 aikbkj |,

aikbkj ≥ 0, ∀k ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., r},
2)
∑r
j=1 |bkj | = C ′, ∀k ∈ {1, 2, ..., n}, where C ′ ∈ R is a

constant
hold at the same time.
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