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Abstract— Cooperation between rational users in wireless net-
works is studied using coalitional game theory. Using the r&
achieved by a user as its utility, it is shown that the stable
coalition structure, i.e., set of coalitions from which uses have
no incentives to defect, depends on the manner in which the ta
gains are apportioned among the cooperating users. Speciiy,
the stability of the grand coalition (GC), i.e., the coalition of
all users, is studied. Transmitter and receiver cooperatin in an
interference channel (IC) are studied as illustrative cooprative
models to determine the stable coalitions for both flexible
(transferable) and fixed (nhon-transferable) apportioning schemes.
It is shown that the stable sum-rate optimal coalition when aly
receivers cooperate by jointly decoding (transferable) ishe GC.
The stability of the GC depends on the detector when receiver
cooperate using linear multiuser detectors (non-transfeable).
Transmitter cooperation is studied assuming that all receiers
cooperate perfectly and that users outside a coalition act s
jammers. The stability of the GC is studied for both the case
of perfectly cooperating transmitters (transferrable) and under
a partial decode-and-forward strategy (non-transferable). In both
cases, the stability is shown to depend on the channel gainadh
the transmitter jamming strengths.

Index Terms— Coalitional games, cooperative communications,
interference channel.

I. INTRODUCTION

Cooperation in wireless networks results when nodes expl

the broadcast nature of the wireless medium and use thei
power and bandwidth resources to mutually enhance transnps

sions (see, for e.g., [1], [2], [3] and the references tmgrén
general, it is assumed that all the network nodes are willi
to cooperate. However, when rational (self-interestedrais
are allowed to cooperate it is necessary to examine whet
the cooperation of all users, i.e., tigeand coalition(GC) of

all users, can be taken for granted. In fact, cooperation m
involve significant costs and the greatest immediate benefit
may not be achieved by the users that bear the greatgis

immediate cost. An additional disincentive to cooperatitay

result from the rules by which the cooperative gains are
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distributed among participating users. In fact, for maximu
gains users may prefer to cooperate with a select set of users
to form coalitionsthat are closed to cooperation from users
outside the group. For example, consider a multi-user assel
network where users labeled, B, and C' are decoded at a
central receiver. Cooperating users share the benefit dfidpav
their signals jointly decoded at the receiver while a uset th
chooses not to cooperate is decoded independently and is
subject to interference from the other users.

One can verify that the multiaccess channel (MAC) that
results when all three users cooperate achieves the maximum
information-theoretic three-user sum-rate [4, 14.3]. ldoer,
itis not clear if the GC is also stablecoalition, i.e., a coalition
whose users do not have an incentive to leave (for larger
rates). For example, consider an apportionment strategyeavh
the sum-rate achieved is divided equally among the users
in a coalition. In Fig[ L we demonstrate the stability of the
various coalitions as a function of the received signatise
ratio (SNR) of each user. Observe that the grand coalition is
desirable only when all users have similar SNR values. Eurth
for arbitrary SNR values, the users in the stable coalitions
benefit from the exclusion of the weak interferer. Thus, even
in this relatively simple example we see that user coopmrati
is desirable only when the aggregate benefits of cooperation
Bkovide adequate incentives to all participating users.

Ve use the framework of coalitional game theory to de-
ermine the stable coalition structure, i.e., a set of tioals
whose users do not have incentives to break away, when

"Wreless nodes are allowed to cooperate (see for e.g., [5],
IL@I) We consider aK-link interference channel (IC) [7] as

an illustrative network model to determine the stable eoali
tions when transmitters or receivers are allowed to codpera
ﬁecifically, we focus on the stability of the grand coalitio
ang seek to understand if the GC also maximizes the utilities
all the users. For specific encoding and decoding schemes,
we model the maximum achievable information-theoretie rat
% a measure of a users utility. The encoding and decoding
schemes also determine the manner in which the rate gains can
be apportioned between the cooperating users in a coalition
Coalitional games are classified into two types based on the

r:Elpportioning of gains among users in a coalition [8, Section

IV]: i) a transferable utility(TU) game where the total rate
achieved is apportioned arbitrarily between the users oedi-c
tion subject to feasibility constraints and iinan-transferable
utility (NTU) game where the apportioning strategies have
additional constraints that prevent arbitrary apportigni

In [9], [10], we apply results from information theory and
TU games to study the stable coalition structure when only
receivers in an IC cooperate by jointly decoding their reegi
signals. We show that the GC of receivers is the stable sum-
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B CL A} A BLG the IC to a cooperative MAC. Motivated by the results for the
' perfect transmitter cooperation game, we focus on a class of
channels where all the users atasteredi.e., their inter-user
links are stronger than the links between the users and the
destination. For this class, we prove that the achievalie ra
region is maximized when transmitters in a coalition decode
all messages from one another thus generalizing the rdeults

a two-user cooperative MAC in [15, Proposition 1]. However,
.[Ch {B} using examples, we show that when the jamming is weak,
users may have incentives to break away from the cluster,
i.e., the game may not be cohesive. These results for ohaster
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1 {A} {B}. {C} users also point to the fact that for the general class ofreélan
s B, C), (A} with arbitrary inter-user links the game may not be cohesive
7 S in general.
5 W 15 20 25 30 35 40 5 50 55 60 ) ) i )
A B}, (C) SR (cB) This paper is organized as follows. In Sectidn Il we provide

an overview of coalitional game theory. In sectibnl Il we
Fig. 1. Stable Coalition Structures as a function of the SRes of users jntroduce the system models. In Section IV we review our
A andB and SN Rc = 20 dB. results on receiver cooperation. In Section V, we studystran

mitter cooperation as a coalitional game using two differen

cooperation models. We conclude in Secfion VI.
rate maximizing coalition structure. On the other hand, for
the case where the receivers cooperate using linear mertius |,
detectors, we show that the GC is always the stable coalition
for the MMSE detector and is stable only in the high signal- -
to-noise ratio (SNR) regime for the decorrelating detedtd We use the framework of coalitional game theory to deter-
briefly review our results in Sectidi]V. mine the stable rate maximizing cooperative coalitions in a

In this paper, we study the formation of stable coalitiondireless network. To determine stability one must in gehera

when transmitters are allowed to cooperate idcdink IC. take into account the fact that the rate achieved by a ooaliti
The cooperative strategies and rate regions fa-lmk IC 1S also affected by the actions of the users outside thetmoali

with varying degrees of transmitter and receiver coopenatiHOWever, determining the stable coalition structures ferhs
is studied in [11], [12] and the references therein. Féfink & general model is not straightforward [8, p. 258]. Thussit i
IC, there is a combinatorial explosion in the ways in whicRommon practice to assume that a game isharacteristic
the transmitters can cooperate. Thus, knowledge of théestafyinction form(CFF), i.e., the utilities achieved by the users in
coalition structures can be useful in choosing the appagri @ coalition are unaffected by those outside it [16]. .
cooperative strategies. We assume thatiheeceivers jointly ~ When only receivers cooperate, the game is in CFF. This
decode their received signals thus simplifying the IC to & due to the fact that the_: transm|tte_rs in these mode_zls do not
multi-access (MAC) channel with a multi-antenna receiv. cooperate. In fact, for a fIX_e_d encoding at the transm|tthfs,_
also assume that transmitters in a coalition have no knayeled@t€ achieved by any coalition only depends on the combined
of the transmission strategies of the users outside. We imotjéerference presented by the users outside the coalition a
the lack of transmit information between competing coafigi "ot on the coalition structures to which the_y belong. On _the
as ajamming game, i.e., we assume that each coalitiopther har_ld, the games result|_ng from both kinds of transmitt
determines its stability by assuming worst case jammif@Operation models are not in CFF because the cooperative
interference from other coalitions. We first study the TU gan®irategies of users outside a coalition affects the rateiswed
that results when the transmitters in a coalition cooperdi¥ the members of a coalition. We convert the game to a
perfectly, i.e., each transmitter has perfect knowledgéhef CFF by considering gamming gamei.e., we assume that a
messages of the other transmitters in its coalition. We @rogoalition assumes that the users outside cooperate to act as
that the game isohesive8, chap. 13], i.e., the large#f-user WOrSt case jammers.
sum-rate is achieved by the GC. This allows us to show thatGames in CFF can be further categorized as TU and NTU
the GC is the only viable stable coalition structure [8, p8R5 9ames depending on whether the cooperative gains are divide
i.e., no stable coalition structure exists when the GC is n@fpitrarily or in a constrained manner, respectively. Wenge
stable. Finally, using examples we demonstrate that thesGd?Pth games and their properties below.
not always stable and that the stability depends on theivelat Definition 1: A coalitional game with transferable utility
strengths of the user channels to the destination. (K,v) is defined as [8, Chap. 13]

We also study the NTU game that results when all the « a finite set of users ,
transmitters in a coalition decode and jointly forward atpar « a valuev(S) € R, for all S C K with v ({¢}) = 0.
of their message streams viapartial decode-and-forward A coalition structure is a partition of the sé&t, and thus
(PDF) strategy [13], [14]. We assume perfectly cooperatiribe number of coalition structures, i.e., the number of jbss
co-located receivers with fixed channel gains thus simiplify partitions of IC, grows exponentially with/ [17]. In fact, it

COALITIONAL GAME THEORY FORRECEIVER AND
TRANSMITTER COOPERATION



has been shown that finding the sum-rate maximizing coalitio
structure is anNV P-complete problem [17]. To this end, the O/. o
following properties of a TU game greatly simplify such a
search.
Definition 2: A coalitional game with transferable utility is
said to becohesivef the value of the grand coalition formed
by the set of all userk is at least as large as the sum of the Rx
values of any partition ofC, i.e.

N
> 0(Sn) < v(K) @) .\O

for any partition(Sy,...,Sy) of K where2 < N < K.
Remark 3:A TU game that is cohesive has the GC as
the optimal coalition structure [8, p. 258], i.e., the sum dfig. 2. An interference channel with' transmit-receive links.
the utilities of all the users is maximum. This follows from
the fact that all other coalition structures will be unstahbk

every user has an incentive to join the GC and benefit fromgstance, when thé-feasible payoff vectoys is constructed

redistribution of total utility. by assigning to each link € S, the payoffz;, and then uni-
In addition to be|ng COheS|Ve a TU coalitional game C%rnﬂy appornon”']g the Surp'us payolﬁf(s) _ SC(S) between
also be superadditive which is defined as follows. links in S. We use this equivalent definition to determine the

Definition 4: A coalitional game with transferable payoff isstability of the core. Finally, we remark that determinitg t
said to be superadditive if for any two disjoint coalitiofs non-emptiness of the core simplifies to determining whether

andS,, we have the linear program defined by the inequalities[ih (3) ddd (4)
is feasible.
>
U(S1 U S2) 2 v(S1) +v(Sa). 2) We formally define an NTU game and its properties below

Remark 5:Comparing[(ll) and{2), we see that superaddm\f8

. 268].
ity requires the cohesive property to hold for any two digjoi - ] .. . .
subsets ofC with respect to their union. Defln|t|0:0§.5i,§t;:ooa;llt|onal game with non-transferable util-

We refer to a vector describing the share of the rate (pa)/ofl’é/
received by the members (players) of a coalition gsagoff ~ * A finite setC of K players,

vector o A set functionV : S —>RK such that for allS C K
Definition 6: For any coalitionS, a vectorzs = (& )mes - V(¢) = ¢ (normalized)

of real numbers is aS-feasible payoff vectoif z(S) = - V(S) is a non-empty closed subset &ff such

S mes Tm = v(S). The K-feasible payoff vector is referred that the components of the rate tuples W{S)

to as afeasible payoff profile whose indices correspond to players notSncan
Of all possible coalition structures, the ones that arelstab be arbitrary,

are of most interest. Further, due to the complexity of figdin — for any lengthK vectorsz € V(K) andy € R

stable coalition structures for non-cohesive games wheze t with entriesy, < x, for all k, we havey € V(K)

GC does not achieve the largest value, coalitional games tha (comprehensive).

are cohesive are the easiest to study. For wireless networkdefinition 9: An NTU coalitional game(KC, V) is cohesive
such games also optimize the spectrum utilization. In theand only if
following definition, we assume that the game is cohesive and
thus the GC is the only possible stable coalition.

Definition 7: The core, C(v), of a coalitional game with
transferable payoff/KC, v), is the set of feasible payoff profileswhere{S1, Sa, ..., Sy

zx for which there is no coalitios ¢ K and a corresponding /-
S-feasible payoff vectols = (¥m)mes such thaty,, > x,, As with TU games, we focus on the stability of the GC and

V(Sn) CV(K) (5)

)=

n=1

is any partition oflC where2 < N <

—

forall me S. define a core of a NTU game that is cohesive.
For TU games, DefinitioRl7 simplifies to the condition that Definition 10: The coreC(K,V) of an NTU coalitional
the feasible payoff profiles in the core satisfy game(K, V) is the set of payoff vectors € V(K) such that

there is no coalitionS and payoff vectoy € V(S) such that
(S) =Y esTm > 0(S) forall S C K ) yp>ayforallkes.

2(K) =2 pmex Tm = v(K). 4)
This follows from the fact that in a game with transferable
payoff if there exists a coalitiod with v(S) > x(S) then A. Channel Model

we can always find &-feasible payoff vectoys such that  Our network consists ok transmitter-receiver pairs (links),
yr > x, for all k € S. Such an assignment can result, foindexed by the sé€ = {1,..., K} [7] (see Fig[®). We model

IIl. CHANNEL AND COOPERATIONMODELS



each link as an additive white Gaussian noise channel withat the receivers of all the links jointly decode (see Fig.
fixed channel gains. The received signal at receives given [E). Further, for simplicity, under PDF, we assume co-lodate

by receivers thus simplifying the IC to a cooperative MAC.
Y,, = Zszl Vhm i Xe +Zm mek (6) Finally, in both cases, we assume that each coalition istaffie
by worst-case jamming by competing coalitions.
where h}fk is the channel gain between transmitferand c) Perfect cooperation:For perfect transmitter coop-

receiverm. The noise entriesz,, ~ CN(0,1), for all m, eration each non-singleton coalition can be modeled as a
are independent, identically distributed (i.i.d), prom@m- multi-input, & -output MIMO channel with per-antenna power
plex zero-mean unit-variance Gaussian random variables. Tconstraints. The transmitters in a coalition maximize rthei

transmit power at transmittér is constrained as MIMO sum-capacity [18] subject to worst case jamming from
9 other coalitions.

EX [ < B, forall k€ K. (7) d) Partial decode-and-forward:We consider a MAC
We assume that the transmitters employ Gaussian signalimigere a coalition of transmitters cooperate via a PDF scheme
subject to[(¥). For the case where the receivers are coddca{l3], [1], [14]. We assume full duplex communications at the
our model simplifies to a MAC where all the transmittersooperating transmitters. The received sigrngjsand Y; at
communicate with the same destination, denoted! asich the destination and at usgy respectively, are
thatY; = Y}, for all k. Finally, we write Xs = { X}, : k € S}

o K
for all S C K andS¢ as the complement a$ in K. Finally, Yo =2 ko1 VharXe + Za . (10)
throughout the paper, we use the words user and transmitterY; = >_jcxc k25 V 1ieXe + Z; forall j € K. (11)
interchangeably. 1/2

whereh ;" is the channels gain from usérto userj, andZg

. and Z; are zero-mean unit variance proper complex Gaussian

B. Cooperation Models noise variables. We focus on a classhfsteredchannels, i.e.,
a) Receiver cooperation via Joint decodingle assume a network where

that the receivers that cooperate communicate via nogse-fr
links and that the transmitt%rs do not cooperate. We assume fim g > ha - forallm € K, m # k. (12)
that a coalition of cooperating receivers treats signadenfr This represents a model where the users are most likely to
transmitters outside the coalition as interference. Ferctian- cooperate to overcome a relatively poor direct channel ¢o th
nel in (@), each non-singleton coalition can thus be modeledstination.
as a single-input, multiple-output Gaussian multiple asce
channel (SIMO-MAC) whose capacity region is known [18] IV. RECEIVER COOPERATION

and achieved by the Gaussian input signaling chosen. In [9], [10], we determine the stable coalitions when

b) Receiver cooperation using Linear multiuser Olete(f"eceivers cooperate in an IC. The cooperation models are

tors: .V\/.e assume an |C W'.th co-located receivers ther.eli%scribed in Section IIl4B and we present the results here.
simplifying the channel to a single-antenna MAC. We conside

a BPSK modulated, synchronized CDMA system with no ) ) ) ) )
power control such that the correlation between any two uger Receiver Cooperation via Joint Decoding (TU game)
signature sequences jis We write the signal at the receiver Consider the TU game that results when cooperating re-
as [19, p. 19] ceivers in aK-link IC jointly decode their received signals
K (Fig.[3). For fixed channel gains, we define the val(s) of
y(t) = S VPhypbpsi (t) +on(t), t<[0,T] (8) a coalitionS of links as the maximum information-theoretic
k=1 sum-rate achieved by the links @\ i.e., [9]
where P is the common transmit power of all users, is )
the channel gain from usdr to the receiverp;, € {+1, -1} v(8) = maxpecs Zies Ri = maxpy, 1(Xs;¥s)  (13)
is the bit transmitted by usér in the bit interval[O,T], S(t) WhereES — (Ri)’iGS is the vector of rates for links i
is the signature sequence of userandn(t) is an additive andcg is the capacity region of the SIMO-MAC formed by
white Gaussian noise process with unit variance. The redeithe links in S. For the white Gaussian channel considered,
signal is filtered through a bank & matched filters to obtain the input distribution Py, maximizing [I3) is zero-mean
a K x 1 received signal vector [19] independent Gaussian signaling at each transmitte with
y —RAb+n ) variance set tQ_the maximum trangmit powerlih (7_). The value
v(S) of a coalitionS can be apportioned between its members
where R eRE*X is a signature sequence cross correlatian any arbitrary manner. Depending on its allocated share of
matrix, A is a diagonal matrix containing the received amplis(S), a receiver may decide to break away from the coalition
tudesv/Phy, for all k, b is an K x 1 vector of transmitted S and join another coalition where it achieves a greater rate.
bits, andn is a Gaussian random vector with zero mean arbr this model, we prove the following results (see [9]).
covariances?R. Theorem 11:The grand coalition maximizes spectrum uti-
Transmitter CooperationWe study two models for trans- lization in the joint decoding receiver cooperation coatitl
mitter cooperation in &-link IC. In both cases, we assumegame.



of a SIMO-MAC with K independent transmitters andi&
antenna receiver satisfies the inequalities

> R <I(Xs; Y| Xse) VS CK. (18)

keS

For Gaussian MIMO-MAC channels, the bounds[in] (18) are
maximized by independent Gaussian signaling at the trans-
mitters. We claim that every feasible payoff profik. on the
dominant face of the capacity regidix. lies in the core. By

the equivalent definition of the core, in order to prove that a
Ry satisfying [I8) lies in the core, we need to show that

Transmitters

> Ry >v(S) VSCK (19)
kes
Since Ry is a feasible payoff profile, i.e} ", ., Rr = v(K),
we have
S Ri=Y Rt Y Ri=I(XcYe).  (20)
kEK keS kese
Fig. 3. Receiver coalitions formed in&-link IC when receivers cooperate .
via joint decoding and transmitters do not cooperate. We rewrite [20) above as
> Ry =I(Xk;Ye)— Y Ri (21)
kesS keSe
Proof: From definition[% for a superadditive game, the > [(Xs, Xse; Yie) — [(Xse; Y| Xs) (22)
;gm—rate o_f :_;1II_ ImI:rs; is maxwtmz_ed by_th:e gtr?nd cogllt_|o_n. = I(Xs; Vs, Yse) (23)
ince maximizing the sum-rate is equivalent to maximizing _ ) )
the utilization of the shared spectrum, we only need to show = [(Xs; Ys) + 1{Xs; Yo [Ys) (24)
that the value of a coalition for this receiver cooperation > I(Xs;Ys) (25)

coalitional game is a superadditive function. where the inequality i (22) follows froni_(1L8) assuming epti
mal Gaussian signaling at the transmittefs] (23) follovesnfr

Consider two coalitionss; and S, such thatS; NS = ¢.  applying the chain rule for mutual information iR {22), and
In order to prove that(S) is superadditive, we need to show(25) follows from the non-negativity of mutual information

that Thus, we have
[(Xs,08:: Ysius) 2 1(Xs,3Vs,) + I(Xspi¥s,)  (14) > Bi = 1(Xs:Ys) = v(S) (26)
kes
We expand! (Xs,us.; Ys,us.) as The above inequality implies that every point on theminant
face of Cg, i.e., on the plane that maximizes the sum rate of
I(Xs,08:; Ys,0s,) = 1(Xs,;Ys,) + 1(Xs,; Vs, |Vs,) all transmitters, corresponds to a feasible rate payoffilpro

+1(Xs,;Ys,|Xs,) +1(Xs,;Ys,|Vs,, Xs,) (15) thatliesinthe core. Thus, the core for the interferencenbbh
coalitional game is not only non-empty but is, in generalpal
Further expandind(Xs,; Ys,| Xs, ), we have non-unique. u

1(Xs,:¥s, | Xs)) = H(Xs,) - H(Xs, |Ys,, Xs,)  (16) g Receiver Cooperation using Multiuser Detectors (NTU
> I(Xs,;Ys,) (A7) game)

where [[I6) follows from the independence of the transmitt (I [1O],I we hStUdB;] the Sl’tab'“ti; of th_e coglmonallcgame
signals and the inequality in(1L7) from the fact that condf.— at result_s w Zn the c?\;laclzgate receivers Iln an muse a
tioning reduces entropy. Finally, comparihgl(15) with] (A inear multiuser detector ( ) to cooperatively processit

using the fact that mutual information is non-negative, \aeeh gatghﬁ%[e:hs?nals [%tg Chaps. g 6]._Astdescr|bed n
that the joint decoding receiver cooperation coalitionaing ectiorL L., e lranSmitiers use random signature Secgee
is superadditive. to transmit binary signals. We consider a decorrelating [19

Theorem 12:The GC is the stable coalition structure tha?hap' 5] and.a MMSE detectpr [19, Chap. 6] and in .bOth
. e : cases determine the SNR regimes for which the GC is the
maximizes the spectrum utilization in the interferencencie

N . : . stable sum-rate maximizing coalition structure. An exanpl
with jointly decoding cooperating receivers. . ) . )
of a coalition of multiuser detectors in shown in Hig. 4.

Proof: Since the interference channel coalitional game For any coalitionS c K, the received signal vector for this
is superadditive, we need only consider the definition of trkeoalition is given by ’

core in the context of the grand coalition. Any feasible gayo
profile R = (Ry)reix that lies in the capacity regiof, ys = RsAsbs + RscAgcbgse + ng (27)
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where Rs is the cross correlation matrix of the transmit

signature sequences ii C K, Ags is a diagonal matrix

containing the received amplitudegPh;, for all k € S,

bs is the vector of bits from transmitters i, and ns is

a random Gaussian vector with zero mean and covariance

matrix o*R.s. The |S| x |S¢| matrix Rs- contains the cross

correlations between the signature sequences of usefs ifkig. 5. Transmitter coalitions in &-link IC when transmitters cooperate

and S¢, i.e., (Rsc)i, = p, for all i = 1,2,..., |S| and via noise-free links and alk receivers cooperate.

i=12,....K— |8f. The |§¢| x |S¢| diagonal matrixA se

and the|S¢|-length vectorbs. contains the amplitudes and

bits, respectively, of transmitters . Theorem 14:The grand coalition is the stable and sum-rate
A multiuser detector for the coalitios applies a linear maximizing coalition in the high SNR regime for the receiver

tl’anSfOI’matioan a.nd the resulting VeCtOLSyS iS Used to Cooperation game using a decorrelating detector.

decode the bits from the transmitters & For the decor- Proof: The SINR7, (S) achieved at the decorrelating

relating receiverLs = Rg' and for the MMSE receiver, receiver by every transmittér in the coalitions is [20]

Ls = (Rs +0°Ag?%) . Links within a coaliton benefit W2 p

from interference suppression offered by their MUD. The y, (S) = k 5

" . ) B
coalitional games for both detectors are NTU games since o2 | 1+p(5]-2) | [1+p(f9|—1)] Yies hip(]z
9)

-———

- —_——-
& —
~<

linear MUDs achieve a specific rate tuple for each user in the t=e 1+e(iS1=1)
coalition. Finally, for both detectors we assume that the ra ) . :
achieved by each link is a monotonically increasing furn:tioWhere the first and second terms n the_dgnom|nat0@f (29)
of its signal-to-interference noise ratio (SINR) at theeiger. '€ the interference due to other links within and outside th

Theorem 13 ([10]): The grand coalition is always the Stablecoalition S, respectively. Recall that the core of a NTU game

e S . . is the set of all payoff profiles for which there is no coalitio
and sum-rate maximizing coalition for the receiver coopiera S K that can achieve a payoff vectdts — (Ry) uch
game using a MMSE detector. c pay Ofs = (fix)res

Proof: For a coalitionS, the linear MMSE receiver :Egt Z’“ (()‘f?f)of>a]rfk I(ilrflzkf\(/)vrhglrll ﬁli (f' aFrrtO (Tf] t%)’rg]ediizlfgga
minimizes both the noise and the interference for the linkS i pay y P 9

by applying the linear transformatidins = [Rs + 02A%] s 2P
It can be shown that the SINRy (S) of transmitter k e (K) = o om—y (30)
belonging to the coalitiors, for all & € S, is [20] 1-p 1+p(K-1)
Further, comparind (29) anf {30), in the high SNR regime we
Ve (8) _ [(LSRS)kk]2 hiP have
0 (LsRsLs)y, +p° [(LSGS)AE > jgs 5P lim 7y, (8) < lim n (K. (31)
+ Zje&j;ﬁk {(LSRS)kj} hfP Thus, in the high SNR regime, the grand coalition is stable as

(28) every link achieves its largest SINR, and hence, rate, when i
wherees is a vector of lengthS| with entriese,, = 1 for all s a part of the grand coalition and therefore has no incentiv
k. The second and third terms in the denominatof of (28) afg defect. m
the interference presented to likkfrom other links outside
and withinS, respectively. Fron{{28) the SINR, and hence, the
rate achieved by every transmitter is maximized when alisuse ) ) ) )
are a part of the grand coalition. Thus, every transmittesldio A+ Transmitter  Cooperation:  Perfect  Transmit ~ Side-
prefer to belong to the grand coalition where it is not subjec 'nformation
additional interference from non-cooperating transirsttee., The K receivers jointly decode their received signals, and
the grand coalition is both sum-rate maximizing and stale. thus, can be considered as a distribuféeantenna receiver.

V. TRANSMITTER COOPERATION



For any coalition structuréS;, Ss,...,Sy) where2 < N < which simplifies to [(36). [ |

K, the IC simplifies to a MIMO-MAC with per-antenna power Since the transmitted signals of users across competing
constraints such that the transmitters in a coalition act esalitionsS and S¢ are independent, we use Proposition 15
a single transmitter with multiple antennas (see Fig. 5 fao simplify thelog expression in[(34) as

N = 2). For the GC(N = 1) the cooperative channel further

simplifies to a MIMO point-to-point channel with per antenna ‘IK+H8Q8HE +Hs-Qs-HE.

power constraints. Froni](6), we write tH€ x 1 vector of v(S) = gﬁf} Héax log :
T con : se Qs ’1K + Hs.Qs-HL.
received signals at th& receiversY -, as s (40)
= To simplify the optimization in[{40), we use the followin
Ye=>  HsXs +Zc (32) plify the op [(40) g

two lemmas on functions of symmetric semi-definite matrices
whereHs, is a K x |S,| channel gains matrixXs is an where we writeS"; to denote the set of such matrices.
input vector whose&'” entry is the signal transmitted by the Lemma 16 ([21]): The functionf : S — R defined as
it" transmitter in the coalitio®s,,, andZ, is the noise vector
whosek!" entry Z;, is the noise at thé&!" receiver. For the f(K.) =log (K, + K| /|K.|) (41)

rece|veq .S|gna|s i (32), we obtain the sum-rate achieved f%yconvex ink, given K, is symmetric positive semi-definite.
[16] Subject & worst case interference ffom the users not JE COMVEKIY 5 SUct K is posive define
Sy. This is a mutual information game [4, Chap. 10, p. 263] Lemma 17 ([21]): The functiong : S} — R defined as
and thus the sum-rate of a coalition is both maximized and g(K,) =log (|K, + K.|/|K.|) (42)
minimized by Gaussian signaling at the usersSinand S¢S, ) ) . . ) N
respectively, for alh. Further, the rate achieved by transmitter$ Strictly concave inK, given K. is symmetric positive
in a coalition can be arbitrarily apportioned between iteras definite.
and thus the transmitter cooperation game is a TU game. We/Ve use the preceding Lemnias 16 &nli 17 to prove the saddle
henceforth refer to this game astensmitter cooperation POINt property of the transmitter cooperation jamming game
jamming game For ease of expositio.n, we henceforth wrif@s, Qs-) to

We write Q 4 = E[X 4X ;] to denote the covariance matrixdenote theog expression in[(40). o _
of the users ind for all A C K wheref denotes the conjugate Lemma 18:The transmitter cooperation jamming game has
transpose of a matrix anflc for the identity matrix of size @ saddle point solution such that

K. For Gaussian signaling, the valuéS) of a coalitionS of £ < £ 0% ) < *
transmitters is given as "(Qs,Qse) = 1(Q5: Qse) = UQs, Qse) (43)
v(8S) = Iélin max I(Xs;Yi) (33) and
s max minl(Qs, Qs:) = minmax ((Qs, Qs-) (44)
‘IK-FHKQKHH Qs Qse Qsc Qs
T QT log I H ot (34)  where Q% and Q%. are covariance matrices that maximize
’ x+Hs:Qs-Hg. and minimizel(Qs, Qs-) in (40), respectively.
such that the diagonal entries @4 for all A are constrained Proof: The proof follows from the fact that the transmit-
by (@) as ter cooperation jamming game is a mutual information game
(Qa)iw < Py forall k € A. (35) (see [4, Chap. 10, p. 263]). Further from Lemnia$ 16 and

_ N _ [17, the game has a saddle point( &%, Q%.) satisfying [43)
We use the following proposition on block diagonal matri¥ych that a deviation from the optimal matrix for eitt®@ior

multiplication to further simplify [(34). S¢ worsensl(Qs, Qs-) from that coalition’s standpoint [4,
Proposition 15: The productAQA for a block diagonal Chap. 10, p. 263]. m
matrix Q and K x K matrix A simplifies as Theorem 19:The transmitter cooperation jamming game is

AQAT = AsQsAL + AseQs-AL, (36) cohesive.

Proof: From Definition[2 and Remark] 3, the game is
whereQs andQs- are square matrices anls and As. are cohesive when
K x |S] and K x |S°| matrices, respectively, such that v(K) > ZN 0(S;) (45)
- i=1

Q= QOS QO and A :( As Ase ) (37) whereS,...,Sy is any partition ofKC, and the values(S;)
oy of coalition S; is obtained from[(40) by setting = S;. The

Proof: The proof follows simply from expandin@ and ol X
A as in [37), respectively, such that value v(K) of the GC is given by[(40) withS = K and

) 8¢ = (. Consider a coalition structur§,, ..., Sy, for any
AQAT = (As As ) ( Qos Q(lc ) ( 35 ) (38) 1< N < K. We expandl (Xi; Yx) as
¢ I(Xk; Yi) = 1(Xs,, -+, Xsy; Yio) (46)

AT
=(AsQs AsQse ) ( Afc ) (39) > Zj\; I(Xs;;Yk) (47)



where the inequality il (47) follows from chain rule of mutuais equivalent to the feasibility of the linear program given
information [4, Theorem 2.5.2] and the fact that conditi@ni >, s Rx > v(S) for all S € K wherev(S) is defined as in
does not increase entropy. Consider the block diagonabmatfdd). Numerical evaluation reveals that there does not exis

%’d) feasible rate vector where all users achieve rates larger th
Qs, 0 o ... what they can achieve outside the GC, i.e., the core is empty.
0 Q;, 0 ... As a result the GC is not stable since a subset of users that
fcb‘i) N 0 (48) can achieve better rates as a coalition will break away. Note

however, that no other coalition structure is stable eithbis
Qs, is because users breaking away can be incentivized witbrarg
] o . . payoffs by those users who do not wish to leave the GC. This
whereQg, is the maximizing covariance matrix fo(S;) for i, tyrn will result in a different subset of users attempttog
all i and all partitions. Fron{(48), the covariance mails: |eave the GC for better rates and thus, the game results in
of the users iS¢ is obtained fromQ"”’ by deleting the rows an oscillatory behavior instead of a single convergentistab
and columns correspondlng to usersdn In the following  structure (see also [8, p. 259]). Finally, our numericalygses
inequalities we write(-). to denote that the expressi¢r)  lead us to conjecture that the core will be non-empty, itee, t

is evaluated aQx.. We lower boundy(K) a GC will be stable, when the channel gafg ;, as well as the
powersP; for all m andk are comparable (see [22, Chap. 4]
U(’C) = [I(X’C;YIC)]Q)*C > [I(XIGYIC)]Q;CM) (49) for detailks).
N Remark 21:The stability of the grand coalition is equiva-
=z {ZZ I(Xs:s Y’C)} QU (50) lent to verifying the feasibility of the linear program givey

(3) and [(4). Furthermore,](3) and (4) also determine the fset o

. t . . ) .
‘I +Hg, Q5 Hf, + Hs: Qs:Hs. conditions on the channel gains and transmit powers regjuire

= Zil log

‘1 + HS;QS;HLF to achieve a non-empty core.
51
1) B. Transmitter Cooperation: Partial Decode-and-Forward
N |1+ Hs,Q5 HE, + Hs; Q5 HE, (PDF)
> o _ . |
- Zi:l o ‘I + Hs:-Qx H We now seek to understand if relaxing the assumption of
LSS (52) perfect noiseless links between the transmitters canretilllt

in the GC as the only candidate for the core. We thus consider
- ZN v(S;) (53) @ clustered model introduced in equatifn](12) where the full
=1 duplex transmitters have noisy inter-user channels and the
where [49) follows from Lemmak 117 arid]118. (50) followeceivers are co-located. For this model, we consider a PDF
from (41), [51) follows from PFODOSIUODB and evaluatingtrategy, introduced in [13, Chap. 7] for a two-user coopeza
the resulting expression @,C (52) follows from Lemma MAC, and later extended in [14] foK > 2.
[I8, and [(EB) follows from[(40). Note that th’QSC in G2) is Consider a coalitior§ C K of users that cooperate. In the
the minimizing matrix in[(4D) forS = S;. B PDF strategy, usek € S transmits the two new messages
For cohesive games [8, p. 258], the grand coalition is, ; € {1,2,...,2"%} andw o € {1,2,...,2"*2} and
the only possible stable coalition structure. To deterntire a cooperative message, € {1,2,...,2"" %} where Ry 1,
stability of the GC for the transmitter cooperation jamming, », and R, are the rates in bits per channel use at which
game, i.e., to verify whether the core of this game is nothe messages. 1, wy 2, andwy are transmitted, respectively,
empty, we need to show that the GC is guaranteed to haveaatl n is the number of channel uses [14]. The sigdg|
least one stable payoff profile. An analytical proof for tleeec transmitted by usek is
is intractable since it requires comparifgdimensional rate
regions that are functions of the channel and power paramete Xi=Xpa+Vie +U forallkes (55)

Instead, using the simple linear programming interprefati where X, 4, V;, ., andU are zero-mean independent Gaussian
described in Sectionlll, we present a numerical example thahdom variables that carry the messaggs , w2, andwyg
illustrates that the core can be empty. and have variances, 4, pi.c, andpy. ., respectively, such that

Example 20:Consider a3-link IC with perfectly cooper- the total powerp, at userk subject to[[¥) is
ating receivers. All the transmitters have a maximum power

constraint of unity and the channel matd#&, with entries Pk = Ph,d + Phye + Dhu < P forall ke S. (56)

th i th H H
hm,1. between then™ receiver andk™" transmitter is The streamwy, » is decoded by all cooperating users while the

0.3019 0.3772 1.8021 x 102 destination decodes all streams.
H=| 26256 x10"% 3.1413x10~° 2.5662 x 103 |. As with previous analysis for perfectly cooperating trans-
26893 x 106 1.9941 x 10~3 0.8502 mitters, in evaluating the value of a coalition we assume tha

(54) the users outside a coalition cooperate to act as worst case
From [3) and [(4) in Sectiof]ll, for theéd in (&4), the jammers and transmit Gaussian signals that are independent
existence of a core with non-zero rate tupl&s, Ro,..., Rx) of the signals of the users in the coalition. We show that the



PDF jamming gamds an NTU game. To this end, we first
determine the PDF rate region by applying the result in [14,
Thrm. 1]. LetG C § and G¢ be the complement of in S.
We write Rg ; = ZmengJ’ j =12, Rg = Rg1+ Rg o,
and the cardinality off as|g|.

Theorem 22:For the PDF jamming game, a rate tuple fo
a coalitionS is achievable if, for allg C S, it satisfies

Rg2 < ming,ege {I(Vg; Ym|Xm7 U, Vgc)} (57) Fig. 6. A three-user clustered MAC.

Rg71 S I(Xg;Yd|ch,V5,U) (58)
Rs <1(Xs;Yy). (59)
Proof: The proof follows directly from [14, Thrm. 1] begin by determining the power allocations that maximize th
assuming worst case jamming from users outside m regionREPE for any coalition. MaximizingREP is not a

A bound on the sum-raté&ig o, for all G C S, results straightforward optimization problem since the rate bauimd
from jointly decoding the messages, », for all k € G, at (&84) are not in general concave functions Bf To alleviate
a cooperating usem ¢ G. We obtain the bound i _(57) by this problem, we will build on the result in [15, Propositidh
taking the smallest bound over all sueh € S. The bound where it has been shown that for a two-user cooperative MAC,
in (B8) results from decodinguy 1, for all & € G, at the irrespective of the channel gains, the power allocatiort tha
destination. Finally, the bound i (59) results from deogdi maximizes the rate region simplifies to setting eithgy = 0
all messages at the destination. We obtain the boundggn or pr. = 0 for all k£ and for all choices ofp, and py .,
for all G C S, by summing the bounds oRg; and Rg .. Subject to[(5b). This allocation also simplifies the rate g
The bounds or?g ; are given by[(5B). We henceforth denotéo concave functions of power that can be maximized using
this bound asBg ;. On the other hand, in addition to theconvex optimization techniques. We prove a similar resut f
bound in [BY), for any partitiofG;,Go,...,Gn) of G such the clustered model and for arbitrafy. Our result has the
thatl < N < |G|, a bound orRg - is obtained as a sum of theintuitive interpretation that the clustered users benebmf
bounds onkg,,, i.e., from the fact thafg » = 27]:[:1 Rg, ». e€xploiting their strong inter-user gains to decode and éodv
Thus, the smallest bound dRy > is a minimum over all such all messages for each other, i.e., in additiondg each user
partitions. Let(G;,Gs,...,G%) be the minimizing partition. transmits only one message stream which is decoded by all
Further, from [[5F), we see that for eaglj, there exists an other cooperating users.
index m}, denoting the decoding user at which the bound Theorem 23:The rate regionR5P* of a coalition S of
on Rg: o is @ minimum. We write this smallest bound orclustered users, for alf C K, is maximized when usek sets
Rg 2 as Bg s ({Gy;,m;} ) to denote the dependence of the, 4 =0, for all k € S.
bound on the minimizing partition and indexes such that proof: We assume Gaussian signaling for all the users
Rg < Bga + Bg,> ({G,,,m;,} ). We obtain an achievablein . For the users i we choose the signals as [55) and
rate region for the users in a coalitidhby substituting[(55) fix the transmit and cooperative powets andpy. ., such that
in (57)-(59) for each choice dby. d, pk.c, P.u) Subject tol(86) the remaining powep;, = py. — pi.u is split betweerp;, 4 and
and for allk € S. We write P to denote the vector of tu!oles}%c for all k € S. The regionREPF is given by [6D) for
(Pk,d> Prc; Pr,u) fOr all k € S andRs (P) for the rate region 4| choices of(pk, pr.c, pr.u). We develop the results for the
gchlved for each ch0|c§ @. For th|s. S|gnaI|_ng, the bounds|5|_user sum-rate boun®s. One can extend the proof in a
in (58) are concave functions pf. 4 while that in [59) depend giraightforward manner to the bounds &g for any G .
only p andpy.,, for all k € G. However, the bounds i (57) are\ithout loss of generality, we write the jamming noise seen
not concave functions since theylnclud_e mterfe_rence fp@m by a coalitionS as (Js — 1) and scale the signal powers in
for all & # m. Thus, the PDF rate regioR5"" is obtained (GB) for all k € S by Js such the total interference and noise
as power is unity. Since the bound i {59) is independent;of
RgDF = co (U Rs (g)) (60) andp, . for a fixedp, andpy ., we focus on the bounds on
£ Rs obtained as a sum of the bounds Bg ; and Rs . Let
whereco denotes the convex hull operation. Further, each ratéy: ™}y be a partition ofS and a collection of indexes
tuple on the hull may be achieved by a differéntWe define that jointly achieve the smallest bound iy » such that
the value,V(S), of a coalitionS as a K-dimensional rate
region where the rates achieved by the users ipelongs to Rs < Bs1+ Bs2({S;,mn}y) (61)

the largest achievab5”* while those for the users not &

. . . . S¢ . .
can take arbitrary values in th&°|-dimensional orthariKL . Where as described earlids, and Bs, are the smallest

For thisV(S), from Definition[8, the PDF jamming game ishounds onRs; and Rs., respectively. For the Gaussian

an NTU game. signaling in [(B5), using[{10) and{111) these terms simplify
To determine the core of this game, one has to verify if thigs

game is cohesive, i.e., if the GC rate regidi{K), satisfies

@) for all partitions (S;,8s,...,Sy), 2 < N < K. We Bs1 = log (1+Zies hd,z'pz'.,d) (62)
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Z hm;;.,ipi,c 0.7

iES;‘L —— Rate region of 1 and 2 as part of grand coalition.
_ _ Rates achieved by {1,2} for P = p1/6 and p,.= p2/6
> hmzpid

JES, jEmME 06 h,.=h, =005
d

(63)

N
Bsa ({8 miby) =log [T [ 1+
n=1

Observe thatBs; in (62) is an increasing function af; 4 r . 12~
while Bs 2 in (61) and [(€B) is decreasing jn 4, for all i € S. ' N =
Therefore, it is not immediately clear whether setting = 0 : PL=Pp=5
for all : € S would maximize the bounds if_(61). Consider 04
the case where, ; = 0, such thatp; . = p;, for all i € ~
S. Denoting the minimizing partitions and indexes for this
case bysS,, andm,,, respectively, for alh = 1,2,..., N, the
bounds in[(6l) simplify as

RS|Pi,d:0 < BS,Q ({Sna mn}N)|

On the other hand, for any, 4 > 0, we denote the minimizing o1
partitions and indexes by; andm;} wheret =1,...,T, and
rewrite [(61) as

R8|pi,d>0 < BSJ + BS,? ({Swgvm;}T) : (65) - - ’ R

Using the identity(1+ >, z) < (1 +xy), for all z; > 0,
we upper bound3s 1, and thus,Rs|, ., in (€5) with

0.3

0.2

(64)

Pi,a=0"

0.5 0.6 0.7

Fig. 7. Rate regions for the GC and thg, 2} coalition in theR;-R2 plane.

log

<1 + Z hdipi@) <1 T Z hd’ipi"‘i)] (66)  the denominator of the term to the left side of the inequality

iesl, , €SN in (Z0) over allj € S with j # m,,, wherem,, € S¢ = S\S,,.
+ Bs,2 ({8 mi}r) With these two expansionk_(70) simplifies to requiring

1€ST IESN
4+ Bso ({S m } ) L+ Zg‘esn b, iP5 + Zjesg,j;émn hm.,.jPj.a
5 ns nJyN
. . . (Ziesn hm7l7ipi7c + Ziesn (hmn;i - hdal)pzad)
where the inequality i (67) follows from the fact that foeth Ty hanpnd) .
chosen values op; 4 > 0, for all i € S, the set{S},m}}, i€s, Nd.iPid

results in the smallest bound ofis. To show that the Comparing the numerators and denominators on both sides of
bound in [(65) is smaller than that i (64), fro {66) ang71), for the clustered model whefg,, ; > hq,; for all 4,
(€2, it suffices to show thaBs 5 ({Sn, mn} y)l,, ,_, IS UPPET one can easily see that the inequality is satisfied. Thus, for
bounded by any (p;, pi.u), settingp; 4 = 0, for all 4, maximizes the bound
on Rs. One can similarly show that the rate bounds for all
e . G C S are also maximized, and thus, the regiBg (P) is
<1 * g}% hd’zpl"d) o <1 * zEZSN hdﬂpm)] maximized. Since the argument holds for Blithe rate tuples
+ Bsa ({Su.mn}y). (68) ON the hull of REPF are also maximized. ]
" Thus, from Theoremn 23, setting 4 = 0 for all & simplifies
Expanding[(€B) usind (62) and (63) and rearranging the ternise bounds in[{81)=(63) to concave functions Bf for all
we need to show that k € S. As a result, the rate regicREP" does not require the
N (1 by n ﬁ}) N convex hull operation in((60) thus simplifying the evaloati
H ieth mn‘,,zpz > H (1 + Z hd,ipi,d) _of Y(S) for any S. From Definitions B and19, a necessary
nel (1 + 1+Zi?$n ’;"””j}’)‘ﬁ d) ; condition for the game to be cohesive is that, for evgry IC,
g T (69) the projection ofV(S) in the rate space of, i.e. RE"",
Simplifying (69) further, it suffices to show that, for all= is & subset of the projection to the same space of the GC
1,2,....N, value set,V(K). While Theoreni 2B allows computing(S)
~ relatively easily, in general, inferences on the cohesgen
<1 i Dies, ltma iPic ) < (1 + D ics, hmmipi) of the game cannot be drawn easily for arbitrary values of

<log

<

(71)

log

1+ Z#mn hon,, iPj.d | — (1 + Ziesn hd_’ipi_’d) ' channel gains, user powers, and for aldy We thus use an

(70) example to illustrate that the PDF user cooperation game may

Recall thatp; and p; . are the powers for transmitting, . not be cohesive, i.e., the GC may not achieve the largest rate
whenp,; ; = 0 andp; 4 # 0, respectively. For a fixeg; and region. In fact, our example reveals that for asymmetrierint

Diu, SINCEP; > p; . We can expant,,, ;p; ashn,, pi.+ user channel gains and a few weak jammers, users can form
ha,ipi,a + (hm,,.; — ha,:)piqa, for all i € S,,. We also expand smaller coalitions to achieve larger rates relative to ti& G
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Remark 24:Verifying whether the grand coalition is co-has also demonstrated that stability depends on the ivesnti
hesive is equivalent to verifying whether the conditions iand disincentives that users have to cooperate. For example
(8 hold, i.e., [[b) captures the functional dependence éetw the noise enhancement in a decorrelating detector can act as
the channel parameters and transmit powers required for thisincentive to the stability of the GC in the low SNR regime.
NTU game to be cohesive. In general, however, verifyingimilarly, channel gains and weak jammers can destabhige t
the requirement that the intersection of ti&dimensional GC when transmitters cooperate perfectly. Furthermorisyno
rate regions corresponding to all possible coalition stmes inter-user channels can also affect the stability of the GIC f
lies within the GC rate region i 5) is not straightforwarddecoding transmitters.

Furthermore, the verification complexity grows expondilstia
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