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Suhas Mathur,Member, IEEE,Lalitha Sankar,Member, IEEE,and Narayan B. Mandayam,Senior Member, IEEE

Abstract— Cooperation between rational users in wireless net-
works is studied using coalitional game theory. Using the rate
achieved by a user as its utility, it is shown that the stable
coalition structure, i.e., set of coalitions from which users have
no incentives to defect, depends on the manner in which the rate
gains are apportioned among the cooperating users. Specifically,
the stability of the grand coalition (GC), i.e., the coalition of
all users, is studied. Transmitter and receiver cooperation in an
interference channel (IC) are studied as illustrative cooperative
models to determine the stable coalitions for both flexible
(transferable) and fixed (non-transferable) apportioning schemes.
It is shown that the stable sum-rate optimal coalition when only
receivers cooperate by jointly decoding (transferable) isthe GC.
The stability of the GC depends on the detector when receivers
cooperate using linear multiuser detectors (non-transferable).
Transmitter cooperation is studied assuming that all receivers
cooperate perfectly and that users outside a coalition act as
jammers. The stability of the GC is studied for both the case
of perfectly cooperating transmitters (transferrable) and under
a partial decode-and-forward strategy (non-transferable). In both
cases, the stability is shown to depend on the channel gains and
the transmitter jamming strengths.

Index Terms— Coalitional games, cooperative communications,
interference channel.

I. I NTRODUCTION

Cooperation in wireless networks results when nodes exploit
the broadcast nature of the wireless medium and use their
power and bandwidth resources to mutually enhance transmis-
sions (see, for e.g., [1], [2], [3] and the references therein). In
general, it is assumed that all the network nodes are willing
to cooperate. However, when rational (self-interested) users
are allowed to cooperate it is necessary to examine whether
the cooperation of all users, i.e., thegrand coalition(GC) of
all users, can be taken for granted. In fact, cooperation may
involve significant costs and the greatest immediate benefits
may not be achieved by the users that bear the greatest
immediate cost. An additional disincentive to cooperationmay
result from the rules by which the cooperative gains are
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distributed among participating users. In fact, for maximum
gains users may prefer to cooperate with a select set of users
to form coalitions that are closed to cooperation from users
outside the group. For example, consider a multi-user wireless
network where users labeledA, B, andC are decoded at a
central receiver. Cooperating users share the benefit of having
their signals jointly decoded at the receiver while a user that
chooses not to cooperate is decoded independently and is
subject to interference from the other users.

One can verify that the multiaccess channel (MAC) that
results when all three users cooperate achieves the maximum
information-theoretic three-user sum-rate [4, 14.3]. However,
it is not clear if the GC is also astablecoalition, i.e., a coalition
whose users do not have an incentive to leave (for larger
rates). For example, consider an apportionment strategy where
the sum-rate achieved is divided equally among the users
in a coalition. In Fig. 1 we demonstrate the stability of the
various coalitions as a function of the received signal-to-noise
ratio (SNR) of each user. Observe that the grand coalition is
desirable only when all users have similar SNR values. Further,
for arbitrary SNR values, the users in the stable coalitions
benefit from the exclusion of the weak interferer. Thus, even
in this relatively simple example we see that user cooperation
is desirable only when the aggregate benefits of cooperation
provide adequate incentives to all participating users.

We use the framework of coalitional game theory to de-
termine the stable coalition structure, i.e., a set of coalitions
whose users do not have incentives to break away, when
wireless nodes are allowed to cooperate (see for e.g., [5],
[6]). We consider aK-link interference channel (IC) [7] as
an illustrative network model to determine the stable coali-
tions when transmitters or receivers are allowed to cooperate.
Specifically, we focus on the stability of the grand coalition
and seek to understand if the GC also maximizes the utilities
of all the users. For specific encoding and decoding schemes,
we model the maximum achievable information-theoretic rate
as a measure of a user’s utility. The encoding and decoding
schemes also determine the manner in which the rate gains can
be apportioned between the cooperating users in a coalition.
Coalitional games are classified into two types based on the
apportioning of gains among users in a coalition [8, Section
IV]: i) a transferable utility(TU) game where the total rate
achieved is apportioned arbitrarily between the users in a coali-
tion subject to feasibility constraints and ii) anon-transferable
utility (NTU) game where the apportioning strategies have
additional constraints that prevent arbitrary apportioning.

In [9], [10], we apply results from information theory and
TU games to study the stable coalition structure when only
receivers in an IC cooperate by jointly decoding their received
signals. We show that the GC of receivers is the stable sum-

http://arxiv.org/abs/0804.3421v1


2

Fig. 1. Stable Coalition Structures as a function of the SNR values of users
A andB andSNRC = 20 dB.

rate maximizing coalition structure. On the other hand, for
the case where the receivers cooperate using linear multiuser
detectors, we show that the GC is always the stable coalition
for the MMSE detector and is stable only in the high signal-
to-noise ratio (SNR) regime for the decorrelating detector. We
briefly review our results in Section IV.

In this paper, we study the formation of stable coalitions
when transmitters are allowed to cooperate in aK-link IC.
The cooperative strategies and rate regions for a2-link IC
with varying degrees of transmitter and receiver cooperation
is studied in [11], [12] and the references therein. For aK-link
IC, there is a combinatorial explosion in the ways in which
the transmitters can cooperate. Thus, knowledge of the stable
coalition structures can be useful in choosing the appropriate
cooperative strategies. We assume that theK receivers jointly
decode their received signals thus simplifying the IC to a
multi-access (MAC) channel with a multi-antenna receiver.We
also assume that transmitters in a coalition have no knowledge
of the transmission strategies of the users outside. We model
the lack of transmit information between competing coalitions
as a jamming game, i.e., we assume that each coalition
determines its stability by assuming worst case jamming
interference from other coalitions. We first study the TU game
that results when the transmitters in a coalition cooperate
perfectly, i.e., each transmitter has perfect knowledge ofthe
messages of the other transmitters in its coalition. We prove
that the game iscohesive[8, chap. 13], i.e., the largestK-user
sum-rate is achieved by the GC. This allows us to show that
the GC is the only viable stable coalition structure [8, p. 258],
i.e., no stable coalition structure exists when the GC is not
stable. Finally, using examples we demonstrate that the GC is
not always stable and that the stability depends on the relative
strengths of the user channels to the destination.

We also study the NTU game that results when all the
transmitters in a coalition decode and jointly forward a part
of their message streams via apartial decode-and-forward
(PDF) strategy [13], [14]. We assume perfectly cooperating
co-located receivers with fixed channel gains thus simplifying

the IC to a cooperative MAC. Motivated by the results for the
perfect transmitter cooperation game, we focus on a class of
channels where all the users areclustered, i.e., their inter-user
links are stronger than the links between the users and the
destination. For this class, we prove that the achievable rate
region is maximized when transmitters in a coalition decode
all messages from one another thus generalizing the resultsfor
a two-user cooperative MAC in [15, Proposition 1]. However,
using examples, we show that when the jamming is weak,
users may have incentives to break away from the cluster,
i.e., the game may not be cohesive. These results for clustered
users also point to the fact that for the general class of channels
with arbitrary inter-user links the game may not be cohesive
in general.

This paper is organized as follows. In Section II we provide
an overview of coalitional game theory. In section III we
introduce the system models. In Section IV we review our
results on receiver cooperation. In Section V, we study trans-
mitter cooperation as a coalitional game using two different
cooperation models. We conclude in Section VI.

II. COALITIONAL GAME THEORY FORRECEIVER AND

TRANSMITTER COOPERATION

We use the framework of coalitional game theory to deter-
mine the stable rate maximizing cooperative coalitions in a
wireless network. To determine stability one must in general
take into account the fact that the rate achieved by a coalition
is also affected by the actions of the users outside the coalition.
However, determining the stable coalition structures for such
a general model is not straightforward [8, p. 258]. Thus, it is
common practice to assume that a game is incharacteristic
function form(CFF), i.e., the utilities achieved by the users in
a coalition are unaffected by those outside it [16].

When only receivers cooperate, the game is in CFF. This
is due to the fact that the transmitters in these models do not
cooperate. In fact, for a fixed encoding at the transmitters,the
rate achieved by any coalition only depends on the combined
interference presented by the users outside the coalition and
not on the coalition structures to which they belong. On the
other hand, the games resulting from both kinds of transmitter
cooperation models are not in CFF because the cooperative
strategies of users outside a coalition affects the rates achieved
by the members of a coalition. We convert the game to a
CFF by considering ajamming game, i.e., we assume that a
coalition assumes that the users outside cooperate to act as
worst case jammers.

Games in CFF can be further categorized as TU and NTU
games depending on whether the cooperative gains are divided
arbitrarily or in a constrained manner, respectively. We define
both games and their properties below.

Definition 1: A coalitional game with transferable utility
〈K, v〉 is defined as [8, Chap. 13]

• a finite set of usersK ,
• a valuev(S) ∈ R+ for all S ⊆ K with v ({φ}) = 0.
A coalition structure is a partition of the setK, and thus

the number of coalition structures, i.e., the number of possible
partitions ofK, grows exponentially withK [17]. In fact, it
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has been shown that finding the sum-rate maximizing coalition
structure is anNP -complete problem [17]. To this end, the
following properties of a TU game greatly simplify such a
search.

Definition 2: A coalitional game with transferable utility is
said to becohesiveif the value of the grand coalition formed
by the set of all usersK is at least as large as the sum of the
values of any partition ofK, i.e.

N
∑

n=1

v(Sn) ≤ v(K) (1)

for any partition(S1, . . . ,SN ) of K where2 ≤ N ≤ K.
Remark 3:A TU game that is cohesive has the GC as

the optimal coalition structure [8, p. 258], i.e., the sum of
the utilities of all the users is maximum. This follows from
the fact that all other coalition structures will be unstable as
every user has an incentive to join the GC and benefit from a
redistribution of total utility.

In addition to being cohesive, a TU coalitional game can
also be superadditive which is defined as follows.

Definition 4: A coalitional game with transferable payoff is
said to be superadditive if for any two disjoint coalitionsS1

andS2, we have

v(S1 ∪ S2) ≥ v(S1) + v(S2). (2)
Remark 5:Comparing (1) and (2), we see that superadditiv-

ity requires the cohesive property to hold for any two disjoint
subsets ofK with respect to their union.

We refer to a vector describing the share of the rate (payoffs)
received by the members (players) of a coalition as apayoff
vector.

Definition 6: For any coalitionS, a vectorxS = (xm)m∈S

of real numbers is aS-feasible payoff vectorif x(S) =
∑

m∈S xm = v(S). The K-feasible payoff vector is referred
to as afeasible payoff profile.

Of all possible coalition structures, the ones that are stable
are of most interest. Further, due to the complexity of finding
stable coalition structures for non-cohesive games where the
GC does not achieve the largest value, coalitional games that
are cohesive are the easiest to study. For wireless networks,
such games also optimize the spectrum utilization. In the
following definition, we assume that the game is cohesive and
thus the GC is the only possible stable coalition.

Definition 7: The core, C(v), of a coalitional game with
transferable payoff,〈K, v〉, is the set of feasible payoff profiles
xK for which there is no coalitionS ⊂ K and a corresponding
S-feasible payoff vectoryS = (ym)m∈S such thatym > xm

for all m ∈ S.
For TU games, Definition 7 simplifies to the condition that

the feasible payoff profilesxK in the core satisfy

x(S) =∑m∈S xm ≥ v(S) for all S ⊂ K (3)

x(K) =
∑

m∈K xm = v(K). (4)

This follows from the fact that in a game with transferable
payoff if there exists a coalitionS with v(S) > x(S) then
we can always find aS-feasible payoff vectoryS such that
yk > xk, for all k ∈ S. Such an assignment can result, for

Tx

Rx

Fig. 2. An interference channel withK transmit-receive links.

instance, when theS-feasible payoff vectoryS is constructed
by assigning to each linkk ∈ S, the payoffxk and then uni-
formly apportioning the surplus payoffv(S) − x(S) between
links in S. We use this equivalent definition to determine the
stability of the core. Finally, we remark that determining the
non-emptiness of the core simplifies to determining whether
the linear program defined by the inequalities in (3) and (4)
is feasible.

We formally define an NTU game and its properties below
[8, p. 268].

Definition 8: A coalitional game with non-transferable util-
ity 〈K,V〉 consists of

• A finite setK of K players,
• A set functionV : S →R

K
+ such that for allS ⊆ K

– V(φ) = φ (normalized)
– V(S) is a non-empty closed subset ofRK

+ such
that the components of the rate tuples inV(S)
whose indices correspond to players not inS can
be arbitrary,

– for any length-K vectorsx ∈ V(K) and y ∈ R
K
+

with entriesyk ≤ xk, for all k, we havey ∈ V(K)
(comprehensive).

Definition 9: An NTU coalitional game〈K,V〉 is cohesive
if and only if

N
⋂

n=1

V(Sn) ⊆ V(K) (5)

where{S1,S2, . . . ,SN} is any partition ofK where2 ≤ N ≤
K.

As with TU games, we focus on the stability of the GC and
define a core of a NTU game that is cohesive.

Definition 10: The core C(K,V) of an NTU coalitional
game〈K,V〉 is the set of payoff vectorsx ∈ V(K) such that
there is no coalitionS and payoff vectory ∈ V(S) such that
yk > xk for all k ∈ S.

III. C HANNEL AND COOPERATIONMODELS

A. Channel Model

Our network consists ofK transmitter-receiver pairs (links),
indexed by the setK = {1, . . . ,K} [7] (see Fig. 2). We model
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each link as an additive white Gaussian noise channel with
fixed channel gains. The received signal at receiverm is given
by

Ym =
∑K

k=1

√

hm,kXk + Zm m ∈ K (6)

where h
1/2
m,k is the channel gain between transmitterk and

receiverm. The noise entriesZm ∼ CN (0, 1), for all m,
are independent, identically distributed (i.i.d), propercom-
plex zero-mean unit-variance Gaussian random variables. The
transmit power at transmitterk is constrained as

E|Xk|2 ≤ Pk for all k ∈ K. (7)

We assume that the transmitters employ Gaussian signaling
subject to (7). For the case where the receivers are co-located,
our model simplifies to a MAC where all the transmitters
communicate with the same destination, denoted asd such
thatYd = Yk for all k. Finally, we writeXS = {Xk : k ∈ S}
for all S ⊆ K andSc as the complement ofS in K. Finally,
throughout the paper, we use the words user and transmitter
interchangeably.

B. Cooperation Models

a) Receiver cooperation via Joint decoding:We assume
that the receivers that cooperate communicate via noise-free
links and that the transmitters do not cooperate. We assume
that a coalition of cooperating receivers treats signals from
transmitters outside the coalition as interference. For the chan-
nel in (6), each non-singleton coalition can thus be modeled
as a single-input, multiple-output Gaussian multiple access
channel (SIMO-MAC) whose capacity region is known [18]
and achieved by the Gaussian input signaling chosen.

b) Receiver cooperation using Linear multiuser detec-
tors: We assume an IC with co-located receivers thereby
simplifying the channel to a single-antenna MAC. We consider
a BPSK modulated, synchronized CDMA system with no
power control such that the correlation between any two user
signature sequences isρ. We write the signal at the receiver
as [19, p. 19]

y(t) =
K
∑

k=1

√
Phkbksk (t) + σn (t) , t ∈ [0, T ] (8)

whereP is the common transmit power of all users,hk is
the channel gain from userk to the receiver,bk ∈ {+1,−1}
is the bit transmitted by userk in the bit interval[0, T ], s(t)
is the signature sequence of userk, andn(t) is an additive
white Gaussian noise process with unit variance. The received
signal is filtered through a bank ofK matched filters to obtain
a K × 1 received signal vector [19]

y = RAb+ n (9)

whereR ∈RK×K is a signature sequence cross correlation
matrix,A is a diagonal matrix containing the received ampli-
tudes

√
Phk, for all k, b is anK × 1 vector of transmitted

bits, andn is a Gaussian random vector with zero mean and
covarianceσ2R.

Transmitter Cooperation: We study two models for trans-
mitter cooperation in aK-link IC. In both cases, we assume

that the receivers of all the links jointly decode (see Fig.
5). Further, for simplicity, under PDF, we assume co-located
receivers thus simplifying the IC to a cooperative MAC.
Finally, in both cases, we assume that each coalition is affected
by worst-case jamming by competing coalitions.

c) Perfect cooperation:For perfect transmitter coop-
eration each non-singleton coalition can be modeled as a
multi-input,K-output MIMO channel with per-antenna power
constraints. The transmitters in a coalition maximize their
MIMO sum-capacity [18] subject to worst case jamming from
other coalitions.

d) Partial decode-and-forward:We consider a MAC
where a coalition of transmitters cooperate via a PDF scheme
[13], [1], [14]. We assume full duplex communications at the
cooperating transmitters. The received signalsYd and Yj at
the destination and at userj, respectively, are

Yd =
∑K

k=1

√

hd,kXk + Zd (10)

Yj =
∑

k∈K,k 6=j

√

hj,kXk + Zj for all j ∈ K. (11)

whereh1/2
j,k is the channels gain from userk to userj, andZd

andZj are zero-mean unit variance proper complex Gaussian
noise variables. We focus on a class ofclusteredchannels, i.e.,
a network where

hm,k > hd,k for all m ∈ K,m 6= k. (12)

This represents a model where the users are most likely to
cooperate to overcome a relatively poor direct channel to the
destination.

IV. RECEIVER COOPERATION

In [9], [10], we determine the stable coalitions when
receivers cooperate in an IC. The cooperation models are
described in Section III-B and we present the results here.

A. Receiver Cooperation via Joint Decoding (TU game)

Consider the TU game that results when cooperating re-
ceivers in aK-link IC jointly decode their received signals
(Fig. 3). For fixed channel gains, we define the valuev(S) of
a coalitionS of links as the maximum information-theoretic
sum-rate achieved by the links inS, i.e., [9]

v(S) = maxRS∈CS

∑

i∈S
Ri = maxPXS

I(XS ;YS) (13)

whereRS = (Ri)i∈S is the vector of rates for links inS
andCS is the capacity region of the SIMO-MAC formed by
the links in S. For the white Gaussian channel considered,
the input distributionPXS

maximizing (13) is zero-mean
independent Gaussian signaling at each transmitter inS with
variance set to the maximum transmit power in (7). The value
v(S) of a coalitionS can be apportioned between its members
in any arbitrary manner. Depending on its allocated share of
v(S), a receiver may decide to break away from the coalition
S and join another coalition where it achieves a greater rate.
For this model, we prove the following results (see [9]).

Theorem 11:The grand coalition maximizes spectrum uti-
lization in the joint decoding receiver cooperation coalitional
game.
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2S

Fig. 3. Receiver coalitions formed in aK-link IC when receivers cooperate
via joint decoding and transmitters do not cooperate.

Proof: From definition 4 for a superadditive game, the
sum-rate of all links is maximized by the grand coalition.
Since maximizing the sum-rate is equivalent to maximizing
the utilization of the shared spectrum, we only need to show
that the value of a coalition for this receiver cooperation
coalitional game is a superadditive function.

Consider two coalitionsS1 andS2 such thatS1 ∩ S2 = φ.
In order to prove thatv(S) is superadditive, we need to show
that

I(XS1∪S2 ;YS1∪S2) ≥ I(XS1 ;YS1) + I(XS2 ;YS2) (14)

We expandI(XS1∪S2 ;YS1∪S2) as

I(XS1∪S2 ;YS1∪S2) = I(XS1 ;YS1) + I(XS1 ;YS2 |YS1)

+ I(XS2 ;YS2 |XS1) + I(XS2 ;YS1 |YS2 , XS1) (15)

Further expandingI(XS2 ;YS2 |XS1), we have

I(XS2 ;YS2 |XS1) = H(XS2)−H(XS2 |YS2 , XS1) (16)

≥ I(XS2 ;YS2) (17)

where (16) follows from the independence of the transmitter
signals and the inequality in (17) from the fact that condi-
tioning reduces entropy. Finally, comparing (15) with (14)and
using the fact that mutual information is non-negative, we have
that the joint decoding receiver cooperation coalitional game
is superadditive.

Theorem 12:The GC is the stable coalition structure that
maximizes the spectrum utilization in the interference channel
with jointly decoding cooperating receivers.

Proof: Since the interference channel coalitional game
is superadditive, we need only consider the definition of the
core in the context of the grand coalition. Any feasible payoff
profile RK = (Rk)k∈K that lies in the capacity region,CK,

of a SIMO-MAC with K independent transmitters and aK-
antenna receiver satisfies the inequalities

∑

k∈S

Rk ≤ I(XS ;YK|XSc) ∀S ⊆ K. (18)

For Gaussian MIMO-MAC channels, the bounds in (18) are
maximized by independent Gaussian signaling at the trans-
mitters. We claim that every feasible payoff profileRK on the
dominant face of the capacity regionCK lies in the core. By
the equivalent definition of the core, in order to prove that a
RK satisfying (18) lies in the core, we need to show that

∑

k∈S

Rk ≥ v(S) ∀ S ⊆ K (19)

SinceRK is a feasible payoff profile, i.e.,
∑

k∈KRk = v(K),
we have

∑

k∈K

Rk =
∑

k∈S

Rk +
∑

k∈Sc

Rk = I(XK;YK). (20)

We rewrite (20) above as
∑

k∈S

Rk = I(XK;YK)−
∑

k∈Sc

Rk (21)

≥ I(XS , XSc ;YK)− I(XSc ;YK|XS) (22)

= I(XS ;YS , YSc) (23)

= I(XS ;YS) + I(XS ;YSc |YS) (24)

≥ I(XS ;YS) (25)

where the inequality in (22) follows from (18) assuming opti-
mal Gaussian signaling at the transmitters, (23) follows from
applying the chain rule for mutual information in (22), and
(25) follows from the non-negativity of mutual information.
Thus, we have

∑

k∈S

Rk ≥ I(XS ;YS) = v(S) (26)

The above inequality implies that every point on thedominant
face of CS , i.e., on the plane that maximizes the sum rate of
all transmitters, corresponds to a feasible rate payoff profile
that lies in the core. Thus, the core for the interference channel
coalitional game is not only non-empty but is, in general, also
non-unique.

B. Receiver Cooperation using Multiuser Detectors (NTU
game)

In [10], we study the stability of the coalitional game
that results when the co-located receivers in an IC use a
linear multiuser detector (MUD) to cooperatively process their
matched filter signals [19, Chaps. 5, 6]. As described in
Section III-B, the transmitters use random signature sequences
to transmit binary signals. We consider a decorrelating [19,
Chap. 5] and a MMSE detector [19, Chap. 6] and in both
cases determine the SNR regimes for which the GC is the
stable sum-rate maximizing coalition structure. An example
of a coalition of multiuser detectors in shown in Fig. 4.

For any coalitionS ⊂ K, the received signal vector for this
coalition is given by

yS = RSASbS +RScAScbSc + nS (27)
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Fig. 4. Coalition of links for a decorrelating detector coalitional game.

where RS is the cross correlation matrix of the transmit
signature sequences inS ⊆ K, AS is a diagonal matrix
containing the received amplitudes

√
Phk for all k ∈ S,

bS is the vector of bits from transmitters inS, and nS is
a random Gaussian vector with zero mean and covariance
matrix σ2RS . The |S| × |Sc| matrix RSc contains the cross
correlations between the signature sequences of users inS
and Sc, i.e., (RSc)ij = ρ, for all i = 1, 2, . . . , |S| and
j = 1, 2, . . . ,K − |S|. The |Sc| × |Sc| diagonal matrixASc

and the|Sc|-length vectorbSc contains the amplitudes and
bits, respectively, of transmitters inSc.

A multiuser detector for the coalitionS applies a linear
transformationLS and the resulting vectorLSyS is used to
decode the bits from the transmitters inS. For the decor-
relating receiver,LS = R−1

S and for the MMSE receiver,

LS =
(

RS + σ2A−2
S

)−1
. Links within a coalition benefit

from interference suppression offered by their MUD. The
coalitional games for both detectors are NTU games since
linear MUDs achieve a specific rate tuple for each user in the
coalition. Finally, for both detectors we assume that the rate
achieved by each link is a monotonically increasing function
of its signal-to-interference noise ratio (SINR) at the receiver.

Theorem 13 ([10]):The grand coalition is always the stable
and sum-rate maximizing coalition for the receiver cooperation
game using a MMSE detector.

Proof: For a coalitionS, the linear MMSE receiver
minimizes both the noise and the interference for the links in S
by applying the linear transformationLS =

[

RS + σ2A2
S

]−1
.

It can be shown that the SINRγk (S) of transmitter k
belonging to the coalitionS, for all k ∈ S, is [20]

γk (S) =
[(LSRS)kk]

2
h2
kP





σ2 (LSRSLS)kk + ρ2 [(LSeS)k]
2∑

j 6∈S h2
jP

+
∑

j∈S,j 6=k

[

(LSRS)kj

]2

h2
jP





(28)
whereeS is a vector of length|S| with entriesek = 1 for all
k. The second and third terms in the denominator of (28) are
the interference presented to linkk from other links outside
and withinS, respectively. From (28) the SINR, and hence, the
rate achieved by every transmitter is maximized when all users
are a part of the grand coalition. Thus, every transmitter would
prefer to belong to the grand coalition where it is not subject to
additional interference from non-cooperating transmitters, i.e.,
the grand coalition is both sum-rate maximizing and stable.

Receivers

Tx Coalitions

1S

2S

K

Fig. 5. Transmitter coalitions in aK-link IC when transmitters cooperate
via noise-free links and allK receivers cooperate.

Theorem 14:The grand coalition is the stable and sum-rate
maximizing coalition in the high SNR regime for the receiver
cooperation game using a decorrelating detector.

Proof: The SINR ηk (S) achieved at the decorrelating
receiver by every transmitterk in the coalitionS is [20]

ηk (S) =
h2
kP

[

σ2

1−ρ · 1+ρ(|S|−2)
1+ρ(|S|−1) +

[

ρ
1+ρ(|S|−1)

]2
∑

j 6∈S h2
jP

]

(29)
where the first and second terms in the denominator of (29)
are the interference due to other links within and outside the
coalitionS, respectively. Recall that the core of a NTU game
is the set of all payoff profiles for which there is no coalition
S ⊂ K that can achieve a payoff vectorRS = (Rk)k∈S such
that Rk (S) > Rk (K) for all k ∈ S. From (29), we see that
the payoff of any linkk when it is a part of the grand coalition
is

ηk (K) =
h2
kP

σ2

1−ρ · 1+ρ(K−2)
1+ρ(K−1)

. (30)

Further, comparing (29) and (30), in the high SNR regime we
have

lim
σ→0

ηk (S) < lim
σ→0

ηk (K) . (31)

Thus, in the high SNR regime, the grand coalition is stable as
every link achieves its largest SINR, and hence, rate, when it
is a part of the grand coalition and therefore has no incentive
to defect.

V. TRANSMITTER COOPERATION

A. Transmitter Cooperation: Perfect Transmit Side-
Information

The K receivers jointly decode their received signals, and
thus, can be considered as a distributedK-antenna receiver.
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For any coalition structure(S1,S2, . . . ,SN ) where2 ≤ N ≤
K, the IC simplifies to a MIMO-MAC with per-antenna power
constraints such that the transmitters in a coalition act as
a single transmitter with multiple antennas (see Fig. 5 for
N = 2). For the GC(N = 1) the cooperative channel further
simplifies to a MIMO point-to-point channel with per antenna
power constraints. From (6), we write theK × 1 vector of
received signals at theK receivers,Y K, as

Y K =
∑N

n=1
HSn

XSn
+ ZK (32)

whereHSn
is a K × |Sn| channel gains matrix,XSn

is an
input vector whoseith entry is the signal transmitted by the
ith transmitter in the coalitionSn, andZK is the noise vector
whosekth entry Zk is the noise at thekth receiver. For the
received signals in (32), we obtain the sum-rate achieved by
the coalitionSn as the capacity of a|Sn|×K MIMO channel
[18] subject to worst case interference from the users not in
Sn. This is a mutual information game [4, Chap. 10, p. 263]
and thus the sum-rate of a coalition is both maximized and
minimized by Gaussian signaling at the users inSn andSc

n,
respectively, for alln. Further, the rate achieved by transmitters
in a coalition can be arbitrarily apportioned between its users
and thus the transmitter cooperation game is a TU game. We
henceforth refer to this game as atransmitter cooperation
jamming game.

We writeQA = E[XAX
†
A] to denote the covariance matrix

of the users inA for all A ⊆ K where† denotes the conjugate
transpose of a matrix andIK for the identity matrix of size
K. For Gaussian signaling, the valuev(S) of a coalitionS of
transmitters is given as

v(S) = min
QSc

max
QS

I(XS ;YK) (33)

= min
QSc

max
QS







log





∣

∣

∣IK+HKQKH
†
K

∣

∣

∣

∣

∣

∣
IK+HScQScH

†
Sc

∣

∣

∣











(34)

such that the diagonal entries ofQA for all A are constrained
by (7) as

(QA)kk ≤ Pk for all k ∈ A. (35)

We use the following proposition on block diagonal matrix
multiplication to further simplify (34).

Proposition 15: The productAQA† for a block diagonal
matrix Q andK ×K matrix A simplifies as

AQA† = ASQSA
†
S +AScQScA

†
Sc (36)

whereQS andQSc are square matrices andAS andASc are
K × |S| andK × |Sc| matrices, respectively, such that

Q =

(

QS 0
0 QSc

)

and A =
(

AS ASc

)

. (37)

Proof: The proof follows simply from expandingQ and
A as in (37), respectively, such that

AQA† =
(

AS ASc

)

(

QS 0
0 QSc

)(

A
†
S

A
†
SC

)

(38)

=
(

ASQS AScQSc

)

(

A
†
S

A
†
SC

)

(39)

which simplifies to (36).
Since the transmitted signals of users across competing

coalitionsS andSc are independent, we use Proposition 15
to simplify the log expression in (34) as

v(S) = min
QSc

max
QS

log





∣

∣

∣IK+HSQSH
†
S +HScQScH

†
Sc

∣

∣

∣

∣

∣

∣IK +HScQScH
†
Sc

∣

∣

∣



 .

(40)
To simplify the optimization in (40), we use the following

two lemmas on functions of symmetric semi-definite matrices
where we writeSn+ to denote the set of such matrices.

Lemma 16 ([21]): The functionf : Sn+ 7→ R defined as

f(Kz) = log (|Kx +Kz| /|Kz| ) (41)

is convex inKz givenKx is symmetric positive semi-definite.
The convexity is strict ifKx is positive definite.

Lemma 17 ([21]): The functiong : Sn+ 7→ R defined as

g(Kx) = log (|Kx +Kz| /|Kz| ) (42)

is strictly concave inKx given Kz is symmetric positive
definite.

We use the preceding Lemmas 16 and 17 to prove the saddle
point property of the transmitter cooperation jamming game.
For ease of exposition, we henceforth writel(QS ,QSc) to
denote thelog expression in (40).

Lemma 18:The transmitter cooperation jamming game has
a saddle point solution such that

l(QS ,Q
∗
Sc) ≤ l(Q∗

S ,Q
∗
Sc) ≤ l(Q∗

S ,QSc) (43)

and

max
QS

min
QSc

l(QS ,QSc) = min
QSc

max
QS

l(QS ,QSc) (44)

whereQ∗
S and Q∗

Sc are covariance matrices that maximize
and minimizel(QS ,QSc) in (40), respectively.

Proof: The proof follows from the fact that the transmit-
ter cooperation jamming game is a mutual information game
(see [4, Chap. 10, p. 263]). Further from Lemmas 16 and
17, the game has a saddle point at(Q∗

S ,Q
∗
Sc) satisfying (43)

such that a deviation from the optimal matrix for eitherS or
Sc worsensl(QS ,QSc) from that coalition’s standpoint [4,
Chap. 10, p. 263].

Theorem 19:The transmitter cooperation jamming game is
cohesive.

Proof: From Definition 2 and Remark 3, the game is
cohesive when

v(K) ≥
∑N

i=1
v(Si) (45)

whereS1, . . . ,SN is any partition ofK, and the valuev(Si)
of coalition Si is obtained from (40) by settingS = Si. The
value v(K) of the GC is given by (40) withS = K and
Sc = ∅. Consider a coalition structureS1, . . . ,SN , for any
1 < N ≤ K. We expandI(XK;YK) as

I(XK;YK) = I(XS1 , . . . , XSN
;YK) (46)

≥
∑N

i=1
I(XSi

;YK) (47)
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where the inequality in (47) follows from chain rule of mutual
information [4, Theorem 2.5.2] and the fact that conditioning
does not increase entropy. Consider the block diagonal matrix
Q

(bd)
K

Q
(bd)
K =













Q∗
S1

0 0 . . .
0 Q∗

S2
0 . . .

0 0
. . . . . .

...
... . . . Q∗

SN













(48)

whereQ∗
Si

is the maximizing covariance matrix forv(Si) for
all i and all partitions. From (48), the covariance matrixQSc

i

of the users inSc
i is obtained fromQ(bd)

K by deleting the rows
and columns corresponding to users inSi. In the following
inequalities we write(·)Q∗

K
to denote that the expression(·)

is evaluated atQ∗
K. We lower boundv(K) as

v(K) = [I(XK;YK)]Q∗
K
≥ [I(XK;YK)]Q(bd)

K

(49)

≥
[

∑N

i=1
I(XSi

;YK)

]

Q
(bd)
K

(50)

=
∑N

i=1
log







∣

∣

∣I+HSi
Q∗

Si
H

†
Si

+HSc
i
QSc

i
H

†
Sc
i

∣

∣

∣

∣

∣

∣
I+HSc

i
QSc

i
H

†
Sc
i

∣

∣

∣







(51)

≥
∑N

i=1
log







∣

∣

∣
I+HSi

Q∗
Si
H

†
Si

+HSc
i
Q∗

Sc
i
H

†
Sc
i

∣

∣

∣

∣

∣

∣I+HSc
i
Q∗

Sc
i
H

†
Sc
i

∣

∣

∣







(52)

=
∑N

i=1
v(Si) (53)

where (49) follows from Lemmas 17 and 18, (50) follow
from (47), (51) follows from Proposition 15 and evaluating
the resulting expression atQ(bd)

K , (52) follows from Lemma
18, and (53) follows from (40). Note that theQ∗

Sc
i

in (52) is
the minimizing matrix in (40) forS = Si.

For cohesive games [8, p. 258], the grand coalition is
the only possible stable coalition structure. To determinethe
stability of the GC for the transmitter cooperation jamming
game, i.e., to verify whether the core of this game is non-
empty, we need to show that the GC is guaranteed to have at
least one stable payoff profile. An analytical proof for the core
is intractable since it requires comparingK-dimensional rate
regions that are functions of the channel and power parameters.
Instead, using the simple linear programming interpretation
described in Section II, we present a numerical example that
illustrates that the core can be empty.

Example 20:Consider a3-link IC with perfectly cooper-
ating receivers. All the transmitters have a maximum power
constraint of unity and the channel matrixHK with entries
hm,k between themth receiver andkth transmitter is

H =





0.3019 0.3772 1.8021× 10−2

2.6256× 10−8 3.1413× 10−5 2.5662× 10−5

2.6893× 10−6 1.9941× 10−3 0.8502



 .

(54)
From (3) and (4) in Section II, for theH in (54), the
existence of a core with non-zero rate tuples(R1, R2,. . . , RK)

is equivalent to the feasibility of the linear program givenby
∑

k∈S Rk ≥ v(S) for all S ⊆ K wherev(S) is defined as in
(40). Numerical evaluation reveals that there does not exist a
feasible rate vector where all users achieve rates larger than
what they can achieve outside the GC, i.e., the core is empty.
As a result the GC is not stable since a subset of users that
can achieve better rates as a coalition will break away. Note
however, that no other coalition structure is stable either. This
is because users breaking away can be incentivized with larger
payoffs by those users who do not wish to leave the GC. This
in turn will result in a different subset of users attemptingto
leave the GC for better rates and thus, the game results in
an oscillatory behavior instead of a single convergent stable
structure (see also [8, p. 259]). Finally, our numerical analyses
lead us to conjecture that the core will be non-empty, i.e., the
GC will be stable, when the channel gainshm,k as well as the
powersPk for all m andk are comparable (see [22, Chap. 4]
for details).

Remark 21:The stability of the grand coalition is equiva-
lent to verifying the feasibility of the linear program given by
(3) and (4). Furthermore, (3) and (4) also determine the set of
conditions on the channel gains and transmit powers required
to achieve a non-empty core.

B. Transmitter Cooperation: Partial Decode-and-Forward
(PDF)

We now seek to understand if relaxing the assumption of
perfect noiseless links between the transmitters can stillresult
in the GC as the only candidate for the core. We thus consider
a clustered model introduced in equation (12) where the full-
duplex transmitters have noisy inter-user channels and the
receivers are co-located. For this model, we consider a PDF
strategy, introduced in [13, Chap. 7] for a two-user cooperative
MAC, and later extended in [14] forK > 2.

Consider a coalitionS ⊆ K of users that cooperate. In the
PDF strategy, userk ∈ S transmits the two new messages
wk,1 ∈ {1, 2, . . . , 2nRk,1} andwk,2 ∈ {1, 2, . . . , 2nRk,2} and
a cooperative messagew0 ∈ {1, 2, . . . , 2nR0} where Rk,1,
Rk,2, andR0 are the rates in bits per channel use at which
the messageswk,1, wk,2, andw0 are transmitted, respectively,
and n is the number of channel uses [14]. The signalXk

transmitted by userk is

Xk = Xk,d + Vk,c + U for all k ∈ S (55)

whereXk,d, Vk,c, andU are zero-mean independent Gaussian
random variables that carry the messageswk,1, wk,2, andw0

and have variancespk,d, pk,c, andpk,u, respectively, such that
the total powerpk at userk subject to (7) is

pk = pk,d + pk,c + pk,u ≤ Pk for all k ∈ S. (56)

The streamwk,2 is decoded by all cooperating users while the
destination decodes all streams.

As with previous analysis for perfectly cooperating trans-
mitters, in evaluating the value of a coalition we assume that
the users outside a coalition cooperate to act as worst case
jammers and transmit Gaussian signals that are independent
of the signals of the users in the coalition. We show that the



9

PDF jamming gameis an NTU game. To this end, we first
determine the PDF rate region by applying the result in [14,
Thrm. 1]. LetG ⊆ S andGc be the complement ofG in S.
We write RG,j =

∑

m∈GRm,j , j = 1, 2, RG = RG,1 + RG,2,
and the cardinality ofG as |G|.

Theorem 22:For the PDF jamming game, a rate tuple for
a coalitionS is achievable if, for allG ⊆ S, it satisfies

RG,2 ≤ minm∈Gc {I(VG ;Ym|Xm, U, VGc)} (57)

RG,1 ≤ I(XG ;Yd|XGc , VS , U) (58)

RS ≤ I(XS ;Yd). (59)
Proof: The proof follows directly from [14, Thrm. 1]

assuming worst case jamming from users outsideS.
A bound on the sum-rateRG,2, for all G ⊂ S, results

from jointly decoding the messageswk,2, for all k ∈ G, at
a cooperating userm 6∈ G. We obtain the bound in (57) by
taking the smallest bound over all suchm ∈ S. The bound
in (58) results from decodingwk,1, for all k ∈ G, at the
destination. Finally, the bound in (59) results from decoding
all messages at the destination. We obtain the bounds onRG ,
for all G ⊆ S, by summing the bounds onRG,1 and RG,2.
The bounds onRG,1 are given by (58). We henceforth denote
this bound asBG,1. On the other hand, in addition to the
bound in (57), for any partition(G1,G2, . . . ,GN ) of G such
that1 ≤ N ≤ |G|, a bound onRG,2 is obtained as a sum of the
bounds onRGn

, i.e., from the fact thatRG,2 =
∑N

n=1 RGn,2.
Thus, the smallest bound onRG,2 is a minimum over all such
partitions. Let(G∗

1 ,G∗
2 , . . . ,G∗

N ) be the minimizing partition.
Further, from (57), we see that for eachG∗

n, there exists an
index m∗

n denoting the decoding user at which the bound
on RG∗

n,2
is a minimum. We write this smallest bound on

RG,2 as BG,2 ({G∗
n,m

∗
n}N ) to denote the dependence of the

bound on the minimizing partition and indexes such that
RG ≤ BG,1 + BG,2 ({G∗

n,m
∗
n}N ). We obtain an achievable

rate region for the users in a coalitionS by substituting (55)
in (57)-(59) for each choice of(pk,d, pk,c, pk,u) subject to (56)
and for allk ∈ S. We writeP to denote the vector of tuples
(pk,d, pk,c, pk,u) for all k ∈ S andRS (P ) for the rate region
achieved for each choice ofP . For this signaling, the bounds
in (58) are concave functions ofpk,d while that in (59) depend
only pk andpk,u for all k ∈ G. However, the bounds in (57) are
not concave functions since they include interference frompk,d
for all k 6= m. Thus, the PDF rate regionRPDF

S is obtained
as

RPDF
S = co

(

⋃

P
RS (P )

)

(60)

whereco denotes the convex hull operation. Further, each rate
tuple on the hull may be achieved by a differentP . We define
the value,V(S), of a coalitionS as aK-dimensional rate
region where the rates achieved by the users inS belongs to
the largest achievableRPDF

S while those for the users not inS
can take arbitrary values in the|Sc|-dimensional orthantR|Sc|

+ .
For thisV(S), from Definition 8, the PDF jamming game is
an NTU game.

To determine the core of this game, one has to verify if the
game is cohesive, i.e., if the GC rate region,V(K), satisfies
(5) for all partitions (S1,S2, . . . ,SN ), 2 ≤ N ≤ K. We

1

2

3

Fig. 6. A three-user clustered MAC.

begin by determining the power allocations that maximize the
regionRPDF

S for any coalition. MaximizingRPDF
S is not a

straightforward optimization problem since the rate bounds in
(57) are not in general concave functions ofP . To alleviate
this problem, we will build on the result in [15, Proposition1]
where it has been shown that for a two-user cooperative MAC,
irrespective of the channel gains, the power allocation that
maximizes the rate region simplifies to setting eitherpk,d = 0
or pk,c = 0 for all k and for all choices ofpk and pk,u
subject to (56). This allocation also simplifies the rate bounds
to concave functions of power that can be maximized using
convex optimization techniques. We prove a similar result for
the clustered model and for arbitraryK. Our result has the
intuitive interpretation that the clustered users benefit from
exploiting their strong inter-user gains to decode and forward
all messages for each other, i.e., in addition tow0, each user
transmits only one message stream which is decoded by all
other cooperating users.

Theorem 23:The rate regionRPDF
S of a coalition S of

clustered users, for allS ⊆ K, is maximized when userk sets
pk,d = 0, for all k ∈ S.

Proof: We assume Gaussian signaling for all the users
in K. For the users inS we choose the signals as in (55) and
fix the transmit and cooperative powerspk andpk,u such that
the remaining power̃pk

△

= pk − pk,u is split betweenpk,d and
pk,c for all k ∈ S. The regionRPDF

S is given by (60) for
all choices of(pk, pk,c, pk,u). We develop the results for the
|S|-user sum-rate boundRS . One can extend the proof in a
straightforward manner to the bounds onRG for any G ⊂ S.
Without loss of generality, we write the jamming noise seen
by a coalitionS as (JS − 1) and scale the signal powers in
(56) for all k ∈ S by JS such the total interference and noise
power is unity. Since the bound in (59) is independent ofpk,d
andpk,c for a fixedpk andpk,u, we focus on the bounds on
RS obtained as a sum of the bounds onRS,1 andRS,2. Let
{S∗

n,m
∗
n}N be a partition ofS and a collection of indexes

that jointly achieve the smallest bound onRS,2 such that

RS ≤ BS,1 +BS,2 ({S∗
n,m

∗
n}N ) (61)

where as described earlierBS,1 and BS,2 are the smallest
bounds onRS,1 and RS,2, respectively. For the Gaussian
signaling in (55), using (10) and (11) these terms simplify
as

BS,1 = log
(

1 +
∑

i∈S
hd,ipi,d

)

(62)
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BS,2 ({S∗
n,m

∗
n}N ) = log

N
∏

n=1






1 +

∑

i∈S∗
n

hm∗
n,ipi,c

1 +
∑

j∈S,j 6=m∗
n

hm∗
n,jpj,d






.

(63)
Observe thatBS,1 in (62) is an increasing function ofpi,d
while BS,2 in (61) and (63) is decreasing inpi,d, for all i ∈ S.
Therefore, it is not immediately clear whether settingpi,d = 0
for all i ∈ S would maximize the bounds in (61). Consider
the case wherepi,d = 0, such thatpi,c = p̃i, for all i ∈
S. Denoting the minimizing partitions and indexes for this
case bySn andmn, respectively, for alln = 1, 2, . . . , N , the
bounds in (61) simplify as

RS |pi,d=0 ≤ BS,2 ({Sn,mn}N )|pi,d=0 . (64)

On the other hand, for anypi,d > 0, we denote the minimizing
partitions and indexes byS ′

t andm′
t wheret = 1, . . . , T , and

rewrite (61) as

RS |pi,d>0 ≤ BS,1 +BS,2 ({S′
t,m

′
t}T ) . (65)

Using the identity(1+
∑

k xk) ≤ Πk(1+xk), for all xk > 0,
we upper boundBS,1, and thus,RS |pi,d>0 in (65) with

log

[(

1 +
∑

i∈S1

hd,ipi,d

)

. . .

(

1 +
∑

i∈SN

hd,ipi,d

)]

(66)

+BS,2 ({S′
t,m

′
t}T )

≤ log

[(

1 +
∑

i∈S1

hd,ipi,d

)

. . .

(

1 +
∑

i∈SN

hd,ipi,d

)]

(67)

+BS,2 ({Sn,mn}N )

where the inequality in (67) follows from the fact that for the
chosen values ofpi,d > 0, for all i ∈ S, the set{S′

t,m
′
t}T

results in the smallest bound onRS,2. To show that the
bound in (65) is smaller than that in (64), from (66) and
(67), it suffices to show thatBS,2 ({Sn,mn}N )|pi,d=0 is upper
bounded by

log

[(

1 +
∑

i∈S1

hd,ipi,d

)

. . .

(

1 +
∑

i∈SN

hd,ipi,d

)]

+BS,2 ({Sn,mn}N ) . (68)

Expanding (68) using (62) and (63) and rearranging the terms,
we need to show that

N
∏

n=1





(

1 +
∑

i∈Sn
hmn,ip̃i

)

(

1 +
P

i∈Sn
hmn,ipi,c

1+
P

j 6=mn
hmn,jpj,d

)



 ≥
N
∏

n=1

(

1 +
∑

i∈Sn

hd,ipi,d

)

.

(69)
Simplifying (69) further, it suffices to show that, for alln =
1, 2, . . . , N ,
(

1 +

∑

i∈Sn
hmn,ipi,c

1 +
∑

j 6=mn
hmn,jpj,d

)

≤
(

1 +
∑

i∈Sn
hmn,ip̃i

)

(

1 +
∑

i∈Sn
hd,ipi,d

) .

(70)
Recall thatp̃i and pi,c are the powers for transmittingwk,c

whenpi,d = 0 andpi,d 6= 0, respectively. For a fixedpi and
pi,u, since p̃i > pi,c we can expandhmn,ip̃i as hmn,ipi,c +
hd,ipi,d + (hmn,i − hd,i)pi,d, for all i ∈ Sn. We also expand
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Fig. 7. Rate regions for the GC and the{1, 2} coalition in theR1-R2 plane.

the denominator of the term to the left side of the inequality
in (70) over allj ∈ S with j 6= mn, wheremn ∈ Sc

n = S\Sn.
With these two expansions (70) simplifies to requiring

∑

i∈Sn
hmn,ipi,c

1 +
∑

j∈Sn
hmn,jpj,d +

∑

j∈Sc
n,j 6=mn

hmn,jpj,d
≤

(
∑

i∈Sn
hmn,ipi,c +

∑

i∈Sn
(hmn,i − hd,i)pi,d

)

(

1 +
∑

i∈Sn
hd,ipi,d

) . (71)

Comparing the numerators and denominators on both sides of
(71), for the clustered model wherehmn,i > hd,i for all i,
one can easily see that the inequality is satisfied. Thus, for
any (pi, pi,u), settingpi,d = 0, for all i, maximizes the bound
on RS . One can similarly show that the rate bounds for all
G ⊂ S are also maximized, and thus, the regionRS (P ) is
maximized. Since the argument holds for allP the rate tuples
on the hull ofRPDF

S are also maximized.
Thus, from Theorem 23, settingpk,d = 0 for all k simplifies

the bounds in (61)-(63) to concave functions ofPk for all
k ∈ S. As a result, the rate regionRPDF

S does not require the
convex hull operation in (60) thus simplifying the evaluation
of V(S) for any S. From Definitions 8 and 9, a necessary
condition for the game to be cohesive is that, for everyS ⊂ K,
the projection ofV(S) in the rate space ofS, i.e. RPDF

S ,
is a subset of the projection to the same space of the GC
value set,V(K). While Theorem 23 allows computingV(S)
relatively easily, in general, inferences on the cohesiveness
of the game cannot be drawn easily for arbitrary values of
channel gains, user powers, and for anyK. We thus use an
example to illustrate that the PDF user cooperation game may
not be cohesive, i.e., the GC may not achieve the largest rate
region. In fact, our example reveals that for asymmetric inter-
user channel gains and a few weak jammers, users can form
smaller coalitions to achieve larger rates relative to the GC.
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Remark 24:Verifying whether the grand coalition is co-
hesive is equivalent to verifying whether the conditions in
(5) hold, i.e., (5) captures the functional dependence between
the channel parameters and transmit powers required for the
NTU game to be cohesive. In general, however, verifying
the requirement that the intersection of theK-dimensional
rate regions corresponding to all possible coalition structures
lies within the GC rate region in (5) is not straightforward.
Furthermore, the verification complexity grows exponentially
in K.

Example 25:Consider a cooperative MAC shown in Fig. 6
with 3 users labeled1, 2, and 3 that are clustered as in (12)
with gainshd,1 = hd,2 = 0.05, hd,3 = 0.025, h1,2 = h2,1 = 1,
h1,3 = h3,1 = h2,3 = h3,2 = 0.1, and power constraints
P1 = P2 = 5, and P3 = 2 . Thus, users1 and 2 have a
stronger inter-user channel to each other than to user3 while
user 3 has a smaller transmit power. In Fig. 7, we plot the
rate region achieved by1 and 2 when they are part of the
grand coalition, i.e., we plot the projection of the GC region
V({1, 2, 3}) on theR1-R2 plane computed using the bounds
in (57)-(58) and Theorem 23. Also shown is the rate region
achieved by users1 and2 as a coalition{1, 2} from Theorem
23 for p1,c = p2,c = P1/6 and assuming maximum jamming
by user3. Since the latter region contains the former, the game
is not cohesive. Further, for every rate tuple achieved by users
1 and2 when they are a part of the GC, there exists at least
a tuple where both users achieve larger rates for the coalition
{1, 2}, and thus, the GC is not stable. This is because the
requirement of decoding the messages from users1 and2 at
the relatively distant user3 for the GC results in tighter bounds
than those achieved by the coalition{1, 2} in the presence of
a weak jammer3.

VI. CONCLUDING REMARKS

We have studied the stability of the GC when users in a
wireless network are allowed to cooperate while maximizing
their own rates. For an IC, we have shown that when only
receivers are allowed to cooperate by jointly decoding their
received signals, the GC is both stable and sum-rate optimal.
However, we have shown that if the receivers cooperated using
linear multiuser detectors, they cannot arbitrarily sharethe
gains from cooperation and the stability of the GC depends
on the SNR regime and the detector. We have also studied
transmitter cooperation in an IC with perfectly cooperating
receivers. We have shown that when transmitters are allowed
to cooperate via noise-free links the GC is sum-rate optimal
but may not be stable. Finally, we have shown that for a
network where clustered transmitters cooperate by mutually
decoding messages via PDF, the optimality of the GC from
both a stability and a rate region perspective depends on the
network geometry and the jamming potential of the users.
For transmitter cooperation, we have presented a jamming
interpretation to characterize the value of a coalition. Although
the assumption represents an extreme adversarial response
of the complementary coalition, it lower bounds the rates
achieved by a coalition that breaks away from the GC, and
is therefore a strong result when the core is empty. Our work

has also demonstrated that stability depends on the incentives
and disincentives that users have to cooperate. For example,
the noise enhancement in a decorrelating detector can act asa
disincentive to the stability of the GC in the low SNR regime.
Similarly, channel gains and weak jammers can destabilize the
GC when transmitters cooperate perfectly. Furthermore, noisy
inter-user channels can also affect the stability of the GC for
decoding transmitters.
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