
ar
X

iv
:2

20
8.

05
86

5v
1

 [
cs

.C
R

]
 1

1
A

ug
 2

02
2

1

Transparent and Tamper-Proof Event Ordering in

the Internet of Things Platforms
Mahbubur Rahman and Abusayeed Saifullah

Abstract—Today, the audit and diagnosis of the causal rela-
tionships between the events in a trigger-action-based event chain
(e.g., why is a light turned on in a smart home?) in the Internet
of Things (IoT) platforms are untrustworthy and unreliable.
The current IoT platforms lack techniques for transparent and
tamper-proof ordering of events due to their device-centric
logging mechanism. In this paper, we develop a framework that
facilitates tamper-proof transparency and event order in an IoT
platform by proposing a Blockchain protocol and adopting the
vector clock system, both tailored for the resource-constrained
heterogeneous IoT devices, respectively. To cope with the unsuited
storage (e.g., ledger) and computing power (e.g., proof of work
puzzle) requirements of the Blockchain in the commercial off-the-
shelf IoT devices, we propose a partial consistent cut protocol
and engineer a modular arithmetic-based lightweight proof of
work puzzle, respectively. To the best of our knowledge, this is the
first Blockchain designed for resource-constrained heterogeneous
IoT platforms. Our event ordering protocol based on the vector
clock system is also novel for the IoT platforms. We implement
our framework using an IoT gateway and 30 IoT devices. We
experiment with 10 concurrent trigger-action-based event chains
while each chain involves 20 devices, and each device participates
in 5 different chains. The results show that our framework may
order these events in 2.5 seconds while consuming only 140 mJ of
energy per device. The results hence demonstrate the proposed
platform as a practical choice for many IoT applications such as
smart home, traffic monitoring, and crime investigation.

Index Terms—Internet of Things, wireless network, blockchain,
event order.

I. INTRODUCTION

Internet of Things (IoT) applications are greatly influencing

every aspect of our lifestyle, including our activities at home,

safety at public places and roads, and care in a hospital bed.

As of today, there are numerous IoT platforms to automate our

home appliances [1], monitoring systems to automate traffic

flows [2]–[4], network deployments to ensure public safety [5],

[6], and smart health systems for patient monitoring [7]–

[9]. Typically, such IoT platforms allow smart sensors and/or

applications to interconnect through the Internet or gateway

and chain together to perform diverse activities. They also pro-

vide programming frameworks to enable advanced automation

through chaining of multiple third-party applications.

Despite their configurability, many IoT platforms lack trans-

parent and tamper-proof detection of causal dependencies

between the sensors, especially during emergency/audit. For

example, a traffic monitoring system may not provide a trans-

parent scenario of an accident that involves one or multiple

road intersections; a compromised public safety monitoring

Mahbubur Rahman is with the City University of New York, and Abusayeed
Saifullah is with Iowa State University.

system may fail to order the events needed for a crime

investigation; a smart health platform may not identify the

root causes of a monitored patient going into critical condition;

and a smart home platform may not conclude if a porch light

is turned on because a motion sensor has detected motion

or the front door has been unlocked. The reasons behind

these scenarios include device-centric logging mechanism,

vulnerability, and heterogeneity of the IoT devices.

Although the gateway gets a centralized view of the whole

platform by congregating logs from the devices, it is unable

to construct accurate causal dependencies between the IoT

devices/sensors due to the lack of synchronization between

them [10]. For example, consider the following high-level de-

vice logs provided by an Iris security system gateway: “motion

detected by camera at 11:13 AM”, ”front door unlocked at

11:13 AM”, “porch light turned on at 11:14 AM” [1]. This

gateway thus cannot provide a causal dependency between

these light, camera, and door sensors. As reported in [11],

ZigBee vulnerability lets hackers use hue bulbs to hijack any

smart home, thus introducing trust issues as well. In general,

the lack of a uniform ontology between the heterogeneous

devices and uncertain temporal behavior in these systems make

it extremely difficult to derive the causal dependencies.

In this paper, we propose an IoT framework called Trans-

parent IoT (T-IoT), where the causal relationships (i.e.,

data provenance) between heterogeneous IoT devices become

transparent and tamper-proof. Formally, data provenance is a

holistic tracking of the causal relationships between a sequence

of activities within a computing system. To design the core of

T-IoT, we take motivation from the existing transparent and

tamper-proof systems such as cryptocurrency (e.g., Bitcoin

maintains provenance of its transactions [12]) and retail corpo-

rations (e.g., Walmart maintains provenance of its pharmaceu-

ticals and produce for safety and tracking [13]). While these

platforms can afford resource-hungry Blockchain protocols to

ensure tamper-proof transparency, it is not well-suited for the

resource-constrained IoT devices. In T-IoT, we thus design

a Blockchain protocol tailored for the resource-constrained

IoT devices and enable the tamper-proof transparency of their

event provenance.

Enabling Blockchain over resource-constrained IoT devices

raises a number of practical challenges. In Blockchain (e.g.,

Bitcoin), each participating entity (e.g., miners) maintains

the entire copy of a continually growing distributed ledger

of transactions via a Byzantine consensus protocol – called

the Nakamoto consensus over a peer-to-peer (P2P) network

to provide transparency of the transactions. The correctness

of such consensus depends on a computationally expensive

http://arxiv.org/abs/2208.05865v1

2

proof of work (PoW) protocol [12]. The PoW protocol and

the ledger prevents the double spending problem (spending

the same coin more than once by tampering the ledger) in

the Bitcoin ecosystem. In T-IoT, events are analogous to the

Bitcoin transactions and the double spending refers to an

inconsistency in its data provenance, e.g., the root cause of

an event referring to several IoT nodes. In the same spirit of

Bitcoin, T-IoT maintains a ledger of its events and employs a

PoW protocol. Specifically, the design of T-IoT addresses the

following key practical challenges.

(1) Commercial off-the-shelf (COTS) IoT devices provide

only a few hundred KB of flash memory (e.g., 128 KB

in TI CC1310), which is shared between the system and

application programs. It is thus impractical for the IoT devices

to participate in a Blockchain protocol where the ledger grows

continually (currently, 375+ GB in Bitcoin [14]). (2) COTS

devices typically perform ultra low-power operation and need

to have a battery-life of several years, thereby making them

naturally unsuited for the PoW protocol that has to rely on high

computing power, time, and energy budget [15]. (3) Depending

on their functionality, different IoT devices are equipped with

different wireless communication protocols (e.g., Wi-Fi, BLE,

ZigBee, or LoRa). Such heterogeneity makes it difficult to

develop a P2P protocol to enable the Nakamoto consensus pro-

tocol. (4) The lack of a common ontology between the devices

from different vendors makes it difficult to synchronize them.

As a result, deriving any cause-effect relationship between the

events in an IoT platform becomes extremely difficult. In this

paper, we address the above challenges and enable transparent

and tamper-proof event ordering in the IoT platforms. The key

novel contributions of this paper are as follows.

• We enable Blockchain in T-IoT by allowing each node to

save only a portion of the ledger that relates to the most

recent events in the platform. As the ledger grows, a node

replaces its portion over time. To do this, we propose a

partial consistent cut-based replacement policy that finds

the dependencies between multiple events (based on the

cut size) that occurred in the platform. We also propose a

modular arithmetic-based lightweight PoW protocol that

is computationally fast for the IoT nodes.

• We enable the ordering of events by logically synchro-

nizing the nodes. For this, we extend Lamport’s logical

clock [16] to vector clocks, tailored for the IoT platforms.

We then propose a backtracking-based algorithm to create

the data provenance in T-IoT. Additionally, we enable a

gateway-assisted P2P communication in T-IoT.

• We evaluate the performance of T-IoT indoor. The gate-

way is implemented on GNU Radio using USRP (Univer-

sal Software Radio Peripheral) devices to support various

communication protocols. We deploy 30 nodes (19 TI

CC1310s with IEEE 802.15.4g, 3 TI CC1350s with BLE,

and 8 Dragino LoRa nodes) in our testbed. We then

activate 10 trigger-action-based event chains. Each chain

involves up to 20 nodes, and each node may participate in

5 different chains. Our results show that when 10 chains

execute concurrently, the ordering of their events may be

done in 2.5 seconds at the cost of ≈140 mJ of energy

per node, thus demonstrating the feasibility of T-IoT.

In the rest of the paper, Sections II and III overview our

system model and design, respectively. Sections IV, V, and VI

detail the T-IoT Blockchain, event ordering, and provenance

creation protocols, respectively. Sections VII and VIII provides

the implementation details and the performance evaluation of

different protocols of our framework. Section IX overviews

the related work. Finally, Section X concludes our paper.

II. SYSTEM MODEL AND BACKGROUND

In this section, we discuss our system model and provide

background knowledge on Blockchain and data provenance.

User

Gateway

IoT Cloud

Backend

IoT Devices

Figure 1. Network model of T-IoT.

A. System Model of T-IoT

Network Model. Figure 1 shows the network model of T-

IoT, which represents the existing IoT platforms. It consists

of a variety of IoT devices including its users, a gateway or

hub, and a Cloud backend. The devices are heterogeneous

and have limited power (e.g., battery-powered) and storage

capability to log their activities. Each device is equipped

with one radio front-end (e.g., Wi-Fi, BLE, Zigbee, etc.) to

send/receive commands to/from the gateway. The gateway is

computationally powerful, wall-powered, and is connected to

the Internet/Cloud. It manages each device through a device

abstraction layer. It is equipped with heterogeneous wireless

transceiver radios that allow it to communicate with the hetero-

geneous devices. Also, it connects to the Cloud using Wi-Fi or

Ethernet. The users can host different applications (e.g., smart

home) using the Cloud backend. The Cloud also acts as a data

storage for the applications. Such an architecture enables an

automatic management of a target application where users can

remotely enable, monitor, and control various activities that

involve trigger-action based chaining of numerous devices.

Assumptions and Facts in T-IoT. In this paper, we consider

that the T-IoT gateway and the Cloud backend are the trusted

entities. Securing the gateway and the Cloud backend is out

of the scope of this paper. Instead, we design novel protocols

to ensure tamper-proof and transparent ordering of the events

of the resource-constrained IoT devices (e.g., sensors) that are

more vulnerable and major entry point to the adversaries [11],

[17]. We also assume that, at any given point of time, more

than half of the IoT devices will function properly (e.g.,

no hardware failure/compromised) in T-IoT to facilitate the

correct ordering and tamper-proof transparency of the events.

Despite having a centralized view and sufficient storage and

computing power, the gateway may not construct a causal

ordering of the events in T-IoT. The reason is that the gateway

3

entirely depends on the IoT devices’ logs to learn at what exact

time the events occur. Also, even within a single trigger-action-

based event chain, the lack of synchronization between the

IoT devices may alter the causal ordering in the chain. The

presence of multiple chains with one or more common IoT

devices makes this scenario more complicated. Despite these

issues, even if the gateway can order events on its own (for

argument’s sake), T-IoT will lose the tamper-proof property.

From the security perspective, the major breakpoint for both

the gateway and Cloud is related to the authentication (e.g.,

passwords of less complexity) and transport/network layer

encryptions, which is common to the existing wireless/wired

systems. The resource-constrained IoT devices, on the other

hand, are vulnerable to a variety of issues that are related to

the device proximity (e.g., physically compromising motion

sensors and security cameras), hardware (e.g., connecting to

JTAG UART/I2C/SPI of the system to generate false alarms),

and protocol stack (e.g., using man-in-the-middle and replay

attacks to tamper device logs) [18]. These vulnerabilities

inspire the need for a tamper-proof protocol (e.g., Blockchain)

in the resource-constrained IoT devices even if the gateway

and Cloud are trusted.

B. Background Knowledge

Bitcoin Blockchain. Bitcoin is a cryptocurrency and used

by the interested parties to complete financial transactions

without a central administrator (e.g., Banks). To facilitate

transactions, Bitcoin ecosystem creates a P2P network of its

parties (say, nodes). Transactions are verified by the network

nodes and then recorded in a public distributed ledger –

called a Blockchain. The Blockchain thus holds the records

of the Bitcoin transactions in the form of a growing list of

records called blocks that are linked using cryptography. Each

block in the Blockchain contains a cryptographic hash of its

parent block, control information (e.g., timestamp, transaction

hash, etc.), and transaction data in the form of a Merkle

tree to facilitate creation of their hash value [12]. Only a

group of special nodes (called miners) in the network can add

new blocks (called block validation/mining) to the existing

chain. To add a new block, a miner solves a computationally

expensive puzzle known as the PoW and other miners have to

agree that the solution is acceptable via a Byzantine consensus

protocol known as the Nakamoto consensus [12]. All the

miners have to maintain a complete copy of the already

validated chain to participate in and provide correctness of

this process. Once a block is mined, each miner adds that

block to its chain without requiring any central oversight. The

Blockchain, by design, thus becomes resistant to modification

of the transaction data and prevents the double spending

problem at the cost of extensive computation and storage in

the miner, as long as majority of the miners are honest.

Data Provenance. In T-IoT, we enable a tamper-proof trans-

parent ordering of the IoT events. Such ordering is useful

to the users when its knowledge representation is pervasive

and easily comprehensible. We thus present the order of

events in the form of a data provenance. Data provenance

systematically describes the history of the actions taken on

Past

Present

Present

Activity

Entity

Agent
wasGeneratedBy

Used

wasAssociatedWith

wasAttributedTo

wasDerivedFrom

Figure 2. PROV-DM provenance model.

an object (e.g., data, event, entity, etc.) from its creation up

to the present. Such knowledge presentation can answer many

historical questions about an object, including “what entity

triggered event ei?” and “how is event ej derived from event

ei?”, which is useful in system diagnosis/audit [19]–[21].

We use the W3C PROV-DM [22], [23] model to represent

the event order in T-IoT. It represents provenance in the form

of a directed acyclic graph (DAG) that consists of entity,

activity, and agent nodes. An entity is a data object and

may refer to many other entities. An activity is a process

and defines how entities come into existence. An agent bears

responsibility for activities and entities. In short, such struc-

ture can describe a relationship in the following form: “the

agent was responsible for the activity which generated the

entity”. The edges in PROV-DM DAG encode a variety of

dependencies between the nodes, as shown in Figure 2, where

the timeline follows past to present from left to right and

top to bottom. In general, using the PROV-DM in T-IoT, we

may enable the T-IoT users to learn (without having to deal

with the low-level and obtuse logs from the devices/gateway)

which entity wasDerivedFrom which entity, which en-

tity wasGeneratedBy which activity, which activity used

which entity, which activity WasAssociatedWith which

agent, and which entity WasAttributedTo to which agent.

III. T-IOT FRAMEWORK OVERVIEW

In this section, we briefly overview the T-IoT framework

design, which is depicted in Figure 3.

Blockchain protocol

Blockchain of events

Miners

Unregistered events

Event ordering Provenance creation

Figure 3. Block diagram of the three protocols of T-IoT (dashed-arrows
represent functional dependencies).

Blockchain protocol. In T-IoT, we create a distributed ledger

of the events that are generated by the IoT nodes. An event

is said unregistered as long as it is not added to the ledger.

Several IoT nodes act as miners to add all these events in

the ledger (as blocks of events). This process is called event

registration (i.e., mining). All the events within an event

4

chain are initially unregistered. In time, all of them become

registered (added to the ledger). The gateway plays a vital

role in the trigger-action-based event chain by managing (e.g.,

sending event commands) the IoT nodes. It allows an action

event only if all the triggering events are already registered.

Due to numerous trigger-action-based chains in the system,

an IoT node may be involved in multiple chains, and thus

maintains a list of the registered events (i.e., the ledger). To

do so, it saves only a portion of the ledger (which is updated

over time) because of its storage limitation. The gateway has

sufficient storage (since its connected to the Cloud) and saves

the entire ledger.

Event Ordering Protocol. Our event ordering protocol runs in

parallel to the event registration process. All the unregistered

events are listed in one/more blocks by one or more miners

in the order they are generated. To achieve such ordering, we

logically synchronize the IoT nodes by extending Lamport’s

logical clock system. In this process, each miner maintains a

vector of event’s count to track the number of event requests

made by other miners that have at least one common event

with it. In this way, a miner waits to group an event in a block

until the other miners confirm (by sending messages through

the gateway) that there are no unknown preceding events.

Provenance Creation. The gateway creates the data prove-

nance in the form of a DAG. For each trigger-action-based

event chain, it identifies the start event (root cause) and the

end events (final effects) of that chain and builds a provenance

graph while conforming to the PROV-DM model. Since the

blocks in the ledger contain events in an orderly fashion, the

gateway thus starts from the most recent block to find the

effects and then backtracks to as many blocks as needed.

IV. T-IOT BLOCKCHAIN PROTOCOL

In this section, we detail the T-IoT Blockchain protocol that

provides tamper-proof transparency in the IoT platforms.

A. Blockchain Primers

Virtual Currency. In T-IoT, we use virtual coins (or, simply

coins) in transactions (e.g., event requests) between the nodes

and the gateway. Coins are necessary to limit the number of

event requests from the nodes to the gateway. A node spends

a coin (i.e., pays to the gateway) to request an event. In other

words, a node pays the gateway with a coin to initiate an

event. There is thus no notion of fractional coin transfer in T-

IoT. A node is assigned a fixed integer number of coins when

it joins the network. Specifically, a node gets N coins if it may

generate N distinct events. For example, a door sensor in a

smart home gets 2 coins if it can activate (via the gateway)

two different light bulbs. The gateway restores a spent coin if

the associated event is validated (detailed in Section IV-B). At

any given point of time, the total number of coins in T-IoT is

thus fixed depending on the number of events.

Distributed Ledger. In T-IoT, we maintain a distributed ledger

of the events generated by the nodes, which grows in size over

time. The gateway saves the entire ledger while each node

saves a portion of it. Such a design decision is made due to the

following two reasons. (1) The nodes are memory-constrained,

and it is impractical for them to maintain an ever-growing

ledger. (2) The memory or storage at the gateway is not a

big concern since it is connected to the Cloud. In its partial

ledger, each node saves the most recent events, specifically

the events that are generated by its associated nodes. For

example, a light sensor saves the recent events of a motion

sensor and a door sensor if these sensors can generate an event

in it. A node learns about the associated nodes when it joins

the network (e.g., during its installation by a user/technician

through manual/Cloud configuration).

Message-Passing. In T-IoT, we enable P2P communications

between any two nodes via the gateway. Since the gateway is

equipped with heterogeneous receiver and transmitter radios,

the communication between two nodes with different protocols

(e.g., between ZigBee and BLE) is thus possible. Specifically,

a message delivery between a sender and a receiver (or a

set of receivers) happens in the following two steps. (1) The

sender sends the message to the gateway. (2) The gateway then

broadcasts the message in the network. Depending on the IoT

platform, the nodes may adopt Low Power Listening [24] or

on-board sensor-triggered wake-up policy [25] to listen to the

broadcast messages with ultra-low energy consumption. This

may also help the T-IoT framework to detect malfunctions/vul-

nerabilities under very low-traffic or low device-activities.

B. Transaction Details

Transaction. An event request by a node to the gateway is a

transaction in T-IoT. A node pays the gateway with a coin for

each event request. T-IoT does not incur any fee for transac-

tions, as it bears no meaning. Similarly, there is no incentive

(reward coin) for the nodes that validate such transactions.

Adding an event to the ledger means that the gateway has

allowed that event to execute. A unique event handler or a

number represents each event in T-IoT. Adding an event to

the ledger thus refers to adding the associated number. In each

transaction, a node incorporates its event request and all the

validated events of the trigger-action-based event chain it is

involved in. For simplicity, the event handler of each event

in T-IoT represents the coin for itself. Paying the gateway for

an event thus refers to the inclusion of the event handler in

the event request. The gateway tracks the validity of the coin

by associating one additional bit of information (say, coin bit)

with each event handler where 0 means the payment is valid

(i.e., event request is valid) and 1 means the payment is invalid.

For a valid request, it sets the coin bit and then broadcasts the

transaction in the network for validation. For a successful event

validation (discussed in Section IV-C), the gateway resets the

corresponding coin bit so that the requesting node may be

able to register the same event in the future. For an invalid

payment (thus a replay attack), the gateway rejects the event

request by checking if the associated coin bit is set.

Transaction Block. Multiple transactions are grouped together

to create a block based on two criteria. (1) The events

belonging to the same chain are included in the same block (a

node knows its scope). (2) If a node belongs to multiple chains,

events in these chains that happen concurrently at any given

point of time are also included in the same block. Thus, there

5

Genesis

block

TB 1,1

TB 1,2

TB i,1

TB i,2

TB i,j

TB n,1

TB n,2

… …

…… …

ID <0,0>

Block Hash: 123…abc

Parent Hash: nil

Trans. Hash: nil

List of Trans.:{}

Genesis block

ID <1,1>

Block Hash: 0ac..1f9

Parent Hash: 123…abc

Trans. Hash: 234…7ed

List of Trans.:

{T821, T768, T931, …}

TB1,1

Figure 4. A generic view of transaction block (TB) and ledger in T-IoT.

may be several chains of blocks rooted at the genesis block,

as shown in Figure 4, depending on how the IoT devices are

chained together to create the trigger-action-based chains. A

genesis block in any Blockchain protocol refers to the very

first block in the Blockchain and serves as an entry point of

search through the Blockchain (similar to the head pointer of

a linked list). Having multiple chains of blocks reduces the

search space at the gateway, which makes it highly scalable.

In a transaction block, several other control information such

as ID, parent hash, transaction’s hash are also added (Figure 4)

to maintain the integrity and structure of the ledger.

C. The PoW Protocol

The T-IoT PoW protocol includes identifying the miners,

dealing with the resource limitations, and block validation.

Miner Identification. Any Blockchain protocol guarantees

tamper-proof transparency using a PoW protocol (or smart

contract) that requires miners [12], [26]. In T-IoT, a node with

one of the following criteria participates as a miner to validate

a transaction block of unregistered events. (1) At least one

event in the transaction block is common to the events in the

trigger-action-based event chains it belongs to. (2) T-IoT has

made an earlier reservation with a node to act as a miner.

While the first criterion is intuitive, the second criterion is

added in our framework to support isolated events that do not

belong to any trigger-action-based event chain.

Dealing with the Storage Requirements. As discussed in

Sections IV-A and IV-B, a miner may not be able to store

the entire ledger that grows in size over time. Consequently,

depending on its storage capacity, a miner saves several of

the recently validated blocks of its related events. In general,

the goal is to efficiently use a miner’s limited storage capacity

so that it can effectively participate in the T-IoT Blockchain

protocol. While saving a block into its storage, a miner

maintains a partial consistent cut of the chain of blocks of

its related events. Figure 4 shows an example of such a chain

of blocks as {TBi,1 → TBi,2 → · · · → TBi,j → · · · }.

A partial consistent cut of a chain refers to the portion (i.e.,

the subsequence of blocks) of the chain, where each event in

that portion is traceable to its triggering event, as shown in

Figure 5. In this figure, the chain has three miners Ma, Mb,

and Mc, executing events {ea,1, ea,2}, {eb,1, eb,2, eb,3}, and

{ec,1, ec,2}, respectively, and one of the partial consistent cuts

(as shown on the left side of this figure) includes events {ec,1,

ec,2, eb,2, ea,2} from a few blocks in the chain. Note that

inclusion of event eb,3 to this cut will also be another partial

consistent cut. A miner thus saves a portion of the ledger using

this technique and the cut size will be determined by its storage

size. If a miner can save M blocks and each block contains

on average E events, then the worst-case time complexity for

finding a partial consistent cut is O(ME). The partial cut

shown on the right side of Figure 5 is an inconsistent cut

since event eb,1 cannot be traced back to its triggering event.

In time, a miner replaces an older block with a newer

block while maintaining a partial consistent cut. A miner may

also save the most recent blocks that are not included in its

partial consistent cut, as long as it has storage capacity. For

an event validation, a miner may also request the gateway for

the missing block/s (a block fits in the payload of one packet,

as discussed in Section VIII-A), which is analogous to the

notion of the cache and main memory in the CPUs. It saves

the incoming block/s while maintaining a partial consistent cut

or using a cache replacement policy such as the least recently

used (LRU). The LRU technique may also be used if no partial

consistent cut exists. In contrast to the other cache replacement

policies, the LRU policy is beneficial for a node since the

recent blocks are most suited for new event validation.

Puzzles and Dealing with the Computation Requirements.

Our goal here is to efficiently use the limited computing power

of the miners so that they can solve the PoW puzzles quickly

and energy efficiently. In T-IoT, the gateway generates one

puzzle per event. The rationale behind a puzzle per event is

twofold. (1) No miner can dominate the T-IoT PoW protocol.

(2) Each event becomes tamper-proof so that a compromised

miner cannot falsify it with a group of events. In the following,

we explain the strategy to generate a puzzle for event e.

The gateway chooses a large prime number P and calculates

the primitive roots of P . A primitive root of a prime P is an

integer r which is relative prime with P and r (mod P) has a

multiplicative order (P − 1) [27]. The number of primitive

roots of P is exactly φ(φ(P)), where φ is the Euler phi

function [28]. For prime P , φ(P) = P − 1. For any other

positive integer N , φ(N) = NΠp|N (1− 1
p
), where p is a prime

factor of N . After calculating the primitive roots for event e,

the gateway assigns a unique tuple 〈P, ri〉 to each of the miners

associated with event e, where ri ∈ {r1, r2, r3, · · · , rφ(φ(P))}
is the i-the primitive root of prime P . Note that a miner which

is associated with m distinct events will thus get m tuples

〈Pj , rjk〉, where prime Pj is distinct for m distinct events

and rjk ∈ {rj1, rj2, rj3, · · · , rjφ(φ(P))} is the k-th primitive

root of Pj . During the block creation (containing event e), a

miner that is assigned tuple 〈P, ri〉 tries to solve the puzzle:

(ri)
K mod P = ri for K , where K > P ∗ rand(1, ri).

The rand(1, ri) function generates a random value within the

range between between 1 and ri, which brings unpredictability

in the system and allows different miners to solve a puzzle for

the same event occurring at different times in the system.

A miner, on the other hand, tries to a solve the puzzle

for event e computationally efficiently using Fermat’s Little

Theorem [29]. According to Fermat’s Little Theorem, if r
is relative prime with P and P is a prime number, then

rP−1 ≡ 1 (mod P). During block validation (containing

6

M
a

M
b

M
c

e
a,1

Time

Partial consistent cut

e
a,2

e
b,1

e
b,2 e

b,3

e
c,1

e
c,2

Cause of cannot be determined

e
a,1

 Partial inconsistent cut

e
a,2

e
b,1

e
b,2 e

b,3

e
c,1

e
c,2

e
b,1

M
a

M
b

M
c

Figure 5. Left figure shows one of several partial consistent cuts (two dotted negative-ended curved lines) of the events (denoted by black squares and labeled
accordingly) of 3 miners Ma, Mb, and Mc.

Prime Primitive Root
K

Time for K (ms)
Nth Value # of Roots Chosen TI RPi

100 541 144 360 1081 26.51 1.49

200 1223 552 926 2445 71.38 1.90

400 2741 1088 2520 5481 191.8 9.69

600 4409 2016 2921 8817 331.7 16.59

800 6133 1728 5264 12265 507.3 24.87

1000 7991 3816 3926 15837 677.1 32.62

Table I
TIME TO FIND K.

event e) process, the other miners associated with event e,

each having a different tuple 〈P, rj〉, assure the correctness

of the solution by checking if (rj)
K mod P = rj holds.

Such a mathematical relationship is consistent between the

primitive roots of a prime and also used in Diffie–Hellman key

exchange [30]. We provide an execution-time estimation for

solving such a puzzle with different primes and their primitive

roots in Table I using three IoT devices: TI CC1310 and

CC1350 (both have 32-bit Cortex-M3 [31]) and LoRa Hat

on Raspberry Pi (RPi) 3 (64-bit Quad-Core 1.2GHz [32]). For

the 1000th prime, the value of K is found within hundreds

of ms using TI CC1310/CC1350 and only tens of ms using

RPi. The T-IoT PoW puzzles are thus very efficient for IoT

nodes. While this PoW may be vulnerable to Shor’s factor

decomposition algorithm [33], it would require a compromised

resource-constrained IoT device to have the capabilities of a

quantum computer (which is impractical).

Block Validation. This process adds blocks to the ledger. It

starts when a miner (among many) claims (to the gateway)

that it has created a block by solving all the related puzzles

in the block. The gateway then broadcasts this block to the

associated miners. All these miners at this point stop creating

their own blocks, check the correctness of the puzzles, and

inform the gateway. The gateway then adds the block to the

ledger only if no less than 51% of these miners agree to the

correctness of the puzzles. The overall process is refereed to as

Nakamoto consensus. Once a block is added to the ledger, each

miner resumes its block creation process and disregards events

of the newly validated block. If multiple blocks are created

by different miners at the same time, the gateway broadcasts

the block with a greater number of events in it, where ties

are broken randomly. During block validation of the isolated

events (that do not belong to any event chain), there may be

only one active miner. In this case, the gateway checks the

correctness of the solved puzzles.

V. T-IOT EVENT ORDERING PROTOCOL

In this section, we discuss how the miners create a causal

order of the events in T-IoT.

A. Why is Causal Ordering Difficult at the Nodes and Gateway

The Blockchain technology does not guarantee the causal

ordering of the events at the nodes or gateway. In general,

canonical ordering of transactions (within a block) in the

Blockchain is an active area of research [34]–[36]. Due

to the variable communication delays in event propagation

and imperfect physical clocks in the IoT nodes, a particular

event may arrive at different miners at different times. As

a miner groups unregistered events in a block, it may not

thus represent the global ordering of events. For example,

depending on the arrival times of two events e1 and e2, two

miners may group these events in the orders (e1, e2) and

(e2, e1), respectively. Thus in the ledger, the order of these

events will depend on whether the block from miner m1 or

m2 is validated. The jitter in event propagation originates

from the gateway-assisted message passing protocol. A lone

gateway-based event ordering, if possible in a complicated

event chain, will loose the temper-proof property of T-IoT.

Had we facilitated direct messaging between heterogeneous

IoT nodes using the cross-technology communication [37],

such jitters would still persist due to their conversion delays.

A platform with a uniform ontology (e.g., only BLE) may

also suffer due to imperfect physical clocks of the miners.

Achieving physical clock synchronization may not solve this

problem. Rather, it may limit the scalability. We thus focus

on a logical synchronization in T-IoT by extending Lamport’s

logical clock [16], which is a practical choice for ordering

events in a heterogeneous IoT platform. In the following, we

first overview Lamport’s logical clock.

B. Lamport’s Logical Clock

In 1978, mathematician and computer scientist Leslie Lam-

port showed that event ordering via synchronization between

the nodes in a distributed system need not be based on the

absolute time or physical clocks [16], [38]. Even if two

nodes do not interact, they should still be synchronized not

necessarily because the lack of it will not be observable

and thus may not cause problems, but rather it is related to

the ordering of the events. Additionally, he argues that what

suffices for the nodes to agree on is in what order the events

7

occur (rather than the absolute time). In accordance, he defined

a “happens-before” relationship without referencing to the

physical clocks. If a and b are two events, then “a happens-

before b” means that all processes agree that first event a
occurs, then afterward, event b occurs. Formally, happens-

before relation is defined as follows (denoted by “→”).

- If a and b are two events in a process and event a comes

before event b, then a → b.
- If a is a message sending event in a process and b is the

receipt of that message by another process, then a → b.
- If a → b and b → c then a → c for events a, b, and c. Two

distinct events a and b are concurrent if a 9 b and b 9 a.

To facilitate this within a system, he introduced a logical

clock that assigns a number to an event, where the number

represents the time at which it occurs. Specifically, he defined

a clock Ci for each process pi to be a function that assigns

a number Ci〈a〉 to any event a in pi. The entire system of

clocks, represented by function C, assigns number C〈b〉 to any

event b, where C〈b〉 = Cj〈b〉 if b is an event in process pj .

Thus, the happens-before may be restated as follows.

Clock Condition: For events a, b: if a → b then C〈a〉 < C〈b〉.

Here, the converse condition may not hold since that implies

any two concurrent events must occur at the same time. Also,

according to the happens-before relation, this Clock Condition

is satisfied if the following conditions hold.

- If a and b are events in process pi, and a comes before b,
then Ci〈a〉 < Ci〈b〉.

- If a is a sending of a message by process pi and b is the

receipt of that message by process pj , then Ci〈a〉 < Cj〈b〉.

C. Vector Clock-Based Causal Ordering

Since Lamport’s logical clock does not guarantee that if

C〈a〉 < C〈b〉 then a → b, it may not be used directly when

concurrent events are present. In the following, we discuss

our vector clock-based event ordering protocol that leverages

Lamport’s Logical Clock notion. In each miner, a counter

represents a logical clock. Also, each miner mi maintains a

vector Vi[1 · · ·n], where n is the number of miners (including

itself) that may trigger an event in it, Vi[j] is the number of

messages/actions from miner mj that has been received at

it, and Vi[i] is the number of messages/actions sent by itself.

These vectors are similar to the vectors used in the vector clock

system [39], [40], however, with the following exceptions. (1)

The vector clock system requires each node to have entries

for all other nodes in the system, whereas, in T-IoT, a miner

maintains entries only for its associated miners. (2) The miners

in T-IoT reset their vectors as soon as the associated events

are validated. This resetting technique also accounts for the

dynamic node join/leave (e.g., installing/uninstalling event

chains) in the network. If a node dies during a block validation,

the gateway can still stick to the Nakamoto consensus and

decide on approving/disapproving an event. Therefore, if a

node leaves/joins, there is no additional overhead.

Formally, vector Vi in T-IoT has the following properties.

- All miners initialize their vectors V [1 · · ·n] with 0.

- When miner mi sends a message, it increments Vi[i] and

attaches its vector as a timestamp (TS) to the message.

- When miner mj receives a message from miner mi, mj sets

Vj [k] = max(Vj [k], TSi[k]), ∀k 6= j and then increments

Vj [j] by 1. Here, TSi is the TS sent by miner mi.

Now, if a is an event from miner mi and b is an event

from miner mj , miner mk can determine the causal relation

between events a and b as a → b if Vk(a)[i] ≤ Vk(b)[i],
where Vk(a)[i] denotes the i-th entry of miner mk’s vector

after reception of event a from miner mi and Vk(b)[i] denotes

the i-th entry of miner mk’s vector after reception of event b
from miner mj . However, such causal relation will be true only

if the communication channel is deemed reliable and follows

the first-in-first-out (FIFO) message forwarding strategy. Thus,

the gateway simply follows the FIFO strategy while passing

messages between nodes. Miners, however, confirm the causal

message delivery as follows. Miner mj postpones creation of

a block for validation in T-IoT until

- TSi[i] = Vj [i] + 1, where TSi is the TS sent by miner mi.

- TSi[k] ≤ Vj [k], ∀k 6= i.

As an example, let miner m3 have V3 = [0, 1, 1], i.e., miner

m3 has received 0 message from miner m1, 1 message from

miner m2 and, sent 1 message so far. Later, miner m1 sends a

message with TS1 = [1, 2, 0]. At this point, miner m3 checks

and confirms it is the next message from miner m1 since

TS1[0] = V3[0] + 1. However, miner m3 does not create

a block immediately for validation since TS1[2] > V3[2].
Instead, miner m3 waits for a message from miner m2. Once

the missing message is received, miner m3 creates a block

for validation with respective order and solves the respective

puzzles. As soon as that block is validated, all the associated

miners decrease entries in their vectors depending on what

events have been validated. Each validated block in this way

contains the global causal ordering of the events.

VI. T-IOT PROVENANCE CREATION

In this section, we describe how the gateway creates a data

provenance in the form of DAGs. This protocol is essential to

provide a pervasive knowledge representation of the ordering.

Additionally, it may serve as the entry point for the developer’s

community for building applications. To recall, PROV-DM

DAGs have entity, activity, and agent nodes. We refer to these

nodes as DAG-nodes. In parallel to the block validation, the

gateway identifies the DAG-nodes continually and generates

provenance graphs of the trigger-action-based chains (or sim-

ply action-chains). An action-chain involves chaining of one

or more events in accordance with the happens-before relation.

In the following, we discuss the components and procedure of

the T-IoT provenance protocol.

A. Device Handlers

They represent the IoT nodes at the gateway. Communica-

tion between the gateway and a node (miner/non-miner) hap-

pens through the node’s device handler. Each device handler

manages the low-level commands (e.g., event handlers for

the supported events) and exposes a programmable interface

that allows the developers to provide custom-built automation

support. The event handler for each event is known to the

8

associated nodes and the gateway. A user may communicate

with a device handler to invoke an event handler to execute

an action (e.g., lock a door) or subscribe to broadcast events

(e.g., motion detection event).

B. Action-chains

The gateway creates a provenance graph for each action-

chain. An action-chain may involve one or multiple events

that lead the system to a specific state. Each action-chain has

a start event and one or more end events, where the start

event is the root cause and an end event is a final outcome.

An action-chain that involves only one event will recognize

that event as both start and end events. Such an action-chain

may emerge in the IoT platforms due to the interventions from

the users, device malfunction, attackers, and/or relationships

derived from all the existing action-chains.

C. Identifying Entity, Activity, and Agent

To recall, an entity is a data object which led the system

to its current state, an activity is responsible for creating one

or multiple entities, and an agent helps one or multiple activ-

ities to create entities. In T-IoT, the gateway identifies each

event (observable in the system) as an entity, each validated

event handler that generated an event as an activity, and each

IoT node (e.g., miner) that executes an event as an agent. For

example, the sound of an alarm (observable symptom) in a

smart home is identified as an event, the invoking function

alarm on is identified as an activity, and the alarm sensor is

identified as an agent. To define the dependencies between the

DAG nodes, the gateway encodes appropriate edge labels, as

depicted in Figure 2.

D. Provenance Creation Algorithm

Based on the observable symptoms, the gateway first iden-

tifies the end event/s. Note that it can start with any number of

such independent events which eventually conform to a single

or multiple action-chains. For a single event, the gateway

locates it in the Blockchain and identifies the corresponding

entity, activity, and agent. A recent event may reside within

a recent block. The gateway thus starts from the latest blocks

of each chain of blocks in the T-IoT Blockchain. The depen-

dencies between the IoT nodes are known to it. When the

end event/s are found, it follows the events in a block in

the reverse order and looks for a triggering event. If it needs

to traverse multiple blocks, it does so in the reverse order

as well through the selected chain of blocks. This procedure

ends when all the observable symptoms merge to a single

triggering event or finish independently by identifying their

own triggering events. The gateway thus have the provenance

graphs of one or multiple action-chains.

VII. IMPLEMENTATION

We have implemented a proof of concept IoT platform using

GNU Radio [41], USRP [42], laptop, and several COTS IoT

devices including TI CC1310, TI CC1350, and Dragino LoRa

Hat on Raspberry Pi 3. GNU Radio is a signal processing

toolkit (installed on a PC) for implementing software-defined

radios, which is used in our gateway. Our gateway is equipped

with four different types of wireless communication technolo-

gies: Wi-Fi, BLE, LoRa, and IEEE 802.15.4g. Each technol-

ogy is supported by a half-duplex USRP device to act as the

radio front-end. We thus have a multi-radio gateway similar

to many commercially available smart home gateways [1]. We

use a laptop that acts as the Cloud backend. The gateway

connects to the Cloud backend via Wi-Fi [43]. We have used

19 TI CC1310 devices, 3 TI CC1350 devices, and 8 Dragino

LoRa Hat devices as the IoT nodes in our platform. Figure 6

shows the actual devices (except the PC running GNU Radio)

used in our implementation.

Figure 6. Devices used in our implementation.

Each TI CC1310 device is connected to the gateway via

IEEE 802.15.4g and uses a CSMA/CA (carrier sense multiple

access/collision avoidance)-based MAC (media access control)

protocol [44]. Each TI CC1350 device is connected to the

gateway via BLE and uses the GATT (Generic Attribute Pro-

file) data transfer protocol [45]–[47]. Each LoRa Hat device is

connected to the gateway via LoRa communication technology

and uses a pure ALOHA-based MAC protocol [48]. We have

implemented the T-IoT Blockchain and ordering protocols in

each of the IoT devices.

VIII. EVALUATION

In the section, we evaluate all the T-IoT protocols using our

implementation described in Section VII.

A. Experimental Setup

Event Chains. We let each IoT node execute one unique event

(total of 30 events, which is typical in the smart homes [49],

[50]). Each event has a unique event handler (i.e., number).

We also pseudo-randomly create 10 trigger-action-based event

chains of lengths 10–20 (thus, the maximum size of a partial

cut will be 20), where a device may participate in 5 chains at

maximum (also typical in the smart homes). In each chain, we

find the first event and (re)activate it during our experiments

(reactivation interval: 10–20 seconds). Note that we are unable

to find datasets, generated by the existing IoT platforms, which

fit and account for the novelty of our design.

Device Attributes. Each node uses a 30-byte payload (typical

for sensors [51]) while the actual frame size may vary depend-

ing on its communication protocol. The channel bandwidths

for BLE, IEEE 802.15.4g, and LoRa (spreading factor: 9,

9

2 3 4 5 6 7 8 9 10
of concurrent event chains

0

50

100

150

200

250

300

350

400

A
vg

. s
to

ra
ge

 s
iz

e
(b

yt
e/

m
in

er
)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(a) Storage growth

2 3 4 5 6 7 8 9 10
of concurrent event chains

0

0.5

1

1.5

2

2.5

3

3.5

4

A
vg

. l
at

en
cy

 (
se

co
nd

/m
in

er
)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(b) Block validation latency

2 3 4 5 6 7 8 9 10
of concurrent event chains

0

50

100

150

200

250

A
vg

. e
ne

rg
y

sp
en

t (
m

J/
m

in
er

)

LRU
cut <= 20
cut <= 15
cut <= 10
cut <= 5

(c) Block validation energy consump.

Figure 7. Performance of T-IoT Blockchain protocol with various numbers of concurrent trigger-action-based event chains.

coding rate: 4
5) are 1 MHz, 98 KHz, and 500 KHz, respec-

tively. These settings let each technology take approximately

the same time to send a 30-byte payload. Each node also uses

a 15 dBm of transmission power. For storage capacity, we find

that ≈ 2560 bytes of the TI CC13x0 (CC1310 or CC1350) are

usable, which again shrinks as the main-thread-stack grows

(up to 1024 bytes). Considering the program size, we thus

limit a maximum of 20 blocks to be saved in the node’s flash

memory, which is 400 bytes (explained in the next paragraph).

The gateway is connected to a laptop (via Wi-Fi) where it saves

the entire ledger. It also chooses 30 random primes between

the 800th and 1200th primes, calculates their primitive roots,

and assigns random roots to the IoT nodes, as required.

Blockchain Parameters. Typically, the maximum size of a

block and the maximum number of transactions per block

are fixed (e.g., 1-MB block and 400 transactions per block

in Bitcoin [12]). In T-IoT, we limit the size of a block to 20

bytes to fit inside the payload of a message. The rest of the 10

bytes are used to encode K of our PoW puzzle. In our setup,

a device may be added to at most 5 event chains, and thus

may try to validate 5 events at maximum in one block. We

reserve 2 bytes for encoding the value of K so that a node

can fit five Ks, along with a block inside a payload. With 2

bytes, the value of K ranges between 0 and 216 (unsigned).

The above limits may provide reasonable protection against

the compromised nodes and can be changed if needed. For

the block size, we allow a maximum of 20 bytes, where the

block ID< i, j > is 16 bits (8 bits for each index), block hash

is 8 bits, parent hash is 8 bits, transaction hash is 8 bits, and

each transaction is 8 bits. Without the transactions, the size of

a block adds up to (16 + 8 + 8 + 8) = 40 bits. Thus, leaving

the space for a maximum of (20∗8−40)/8 = 15 transactions

(each of 8 bits) in a block. With these setup, T-IoT can host

28 distinct events in any IoT platform. The hash values in the

experiments are calculated based on the XOR function.

B. Performance of the T-IoT Blockchain

We now evaluate the performance of the T-IoT Blockchain

protocol in terms of the storage growth, latency, and energy

requirements in the miners. We allow between 2 to 10 different

chains to execute in parallel. Each node associated with an

executing chain acts as a miner. Miners, however, are allowed

to save and replace block/s that have events belonging to a

partial consistent cut of size less than or equal to a fixed

number C. We repeat this experiment 5 times by setting the

value of C to 1, 5, 10, 15, and 20, respectively. Setting C =

1 refers to the LRU replacement policy, which is the baseline

for comparison since it is the naive approach.

Storage Growth. As shown in Figure 7(a), the average storage

size per miner is approximately 160 bytes when 2 chains

execute concurrently and the miners store/replace blocks based

on the LRU policy, compared to 23, 30, 35, and 41 bytes

when they store/replace blocks based on the cut sizes ≤ 5,

10, 15, and 20, respectively. As the number of concurrent

chains increases, the average storage size per miner also

increases for all the scenarios. LRU, however, saturates the

miner’s storage capacity faster (with 4 concurrent event chains)

than the other scenarios. Between other scenarios, each cut

gradually approaches its limit, e.g., the storage in a miner

having a cut size ≤ 5 does not grow beyond 100 bytes (5∗ 20

bytes). This experiment thus shows that the LRU replacement

policy performs the worst. Additionally, with a cut size ≤ 5,

the miners can easily execute the T-IoT blockchain protocol.

Validation Latency. Figure 7(b) shows the average latency

per miner per block. When 2 concurrent chains execute,

the average latency per miner is approximately 0.72 seconds

when the miners save/replace blocks using the LRU policy,

compared to 0.2, 0.19, 0.19, and 0.2 seconds when they use

the cut sizes ≤ 5, 10, 15, and 20, respectively. As the number

of concurrent event increases, the latency increases for all the

cases. Again, LRU policy performs the worst (e.g., the latency

is approximately 4 seconds for 10 chains). The average latency

per miner with a cut size ≤ 20 is approximately 0.4 seconds

(for 10 chains), which is very low compared to the others.

In fact, the change in latency is negligible across different

concurrent chains. This experiment thus confirms that miners

may validate blocks faster if the consistent cut size is larger.

Validation Energy Consumption. As shown in Figure 7(c),

when 2 concurrent chains execute, the average energy con-

sumption per miner to validate one block is approximately

42.2 mJ for the LRU policy, compared to approximately 11.4,

10.83, 10.9, and 11.4 mJ for the cut sizes ≤ 5, 10, 15, and 20,

respectively. The increase in energy consumption per miner per

block follows the similar trend of the average latency, as the

number of concurrent chains increases. Overall, for 10 chains,

a miner with cut size ≤ 20 consumes the minimum energy

(approximately 23 mJ) compared to others since it needs no

10

2 3 4 5 6 7 8 9 10
of concurrent event chains

1

1.5

2

2.5

3

3.5

4

M
es

sa
ge

-t
o-

ev
en

t r
at

io
 (

/m
in

er
)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(a) Message-to-event ratio

2 3 4 5 6 7 8 9 10
of concurrent event chains

0

0.5

1

1.5

2

2.5

A
vg

. l
at

en
cy

 (
se

co
nd

/c
ha

in
)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(b) Event ordering latency

2 3 4 5 6 7 8 9 10
of concurrent event chains

0

30

60

90

120

150

 A
vg

. e
ne

rg
y

sp
en

t (
m

J/
m

in
er

)

n_miners=10
n_miners=8
n_miners=6
n_miners=4
n_miners=2

(c) Event ordering energy consump.

Figure 8. Performance of the T-IoT event ordering protocol under various numbers of concurrent trigger-action-based event chains.

block replacement. Hence, an increase in the cut size increases

the energy efficiency of the T-IoT Blockchain protocol.

C. Performance of the Ordering Protocol

In this section, we evaluate the performance of the ordering

protocol in terms of message-to-event ratio (MER), latency,

and energy requirements in the miners. MER is defined as the

ratio of the number of messages to the number of events in

a chain. In experiments, we set the consistent cut size to ≤
20 in all the miners since it is the most energy-efficient and

requires the least time to validate a block. Also, we vary the

number of miners between 2 and 10 for each event chain to

determine its effects on the ordering.

Message-to-event Ratio. As shown in Figure 8(a), when 2

concurrent chains execute, the MER per miner is approxi-

mately 1.2, 1.3, 1.39, 1.5, and 1.9 for 2, 4, 6, 8, and 10

miners, respectively. As the number of chains increases, the

MER per miner also increases almost linearly for all the cases.

Also, as we increase the number of miners, the MER per

miner increases, which is due to an increase in the number

of messages between the miners. For example, in the case of

10 miners and 10 chains, the MER per miner is approximately

3.7, which is practical with respect to its latency and energy

requirements, as discussed below.

Event Ordering Latency and Energy Consumption. As

the MER increases with the number of miners, the event

ordering latency also increases. Figure 8(b) shows that when

10 concurrent chains execute, the average latency per chain

(i.e., average latency per miner) is approximately 1.92, 2.05,

2.11, 2.36, and 2.44 seconds for 2, 4, 6, 8, and 10 miners,

respectively. Such a sub real-time latency is practical for the

smart home, traffic, or/and crime monitoring applications. As

shown in Figure 8(c), the average energy consumption per

miner follows the similar trend that we observe in the average

latency. For 10 chains, the average energy consumption per

miner is approximately 109, 120, 123, 137, and 142 mJ as we

set the number of miners to 2, 4, 6, 8, and 10, respectively,

which is also practical for battery-powered IoT nodes.

D. Experiments on Provenance Creation

In this section, we experiment on the T-IoT provenance

creation protocol that runs at the gateway. Specifically, we

show that the provenance creation protocol is accurate and

timely. Additionally, we represent the achieved ordering in

the form of PROV-DM DAG, which may be perceived as an

observable output of the T-IoT framework. In the following,

we first discuss the setup and then describe the experimental

results with a provenance graph.

Setup. To facilitate this experiment, we take out 5 of our

devices from the experimental setup of the event chains

(Section VIII-A) and label them as different sensor nodes such

as smoke detector, smoke monitor, window sensor, fire alarm

sensor, and water sprinkler sensor. These sensors have the

following relationships. The smoke monitor sensor activates

the window sensor, fire alarm sensor, and water sprinkler

as it observes the smoke detector detects smoke. The above

setup is thus an event chain that associates 5 sensors. Note

that the smoke monitor does not execute any event by itself,

but activates events in the window, alarm, and sprinkler

by invoking their event handlers. Additionally, these are all

fabricated events (thus, no safety hazards) in our setup where

the smoke detector generates a smoke detection event as soon

as we start our experiment. To show the correctness of the

T-IoT provenance creation protocol, we run our smoke event

chain in parallel to the 10 other concurrently executing event

chains where the cut size is set to ≤ 20 and the number

of miners is set to 5. Note that the T-IoT Blockchain and

event ordering protocols also run in the background. After 15

seconds from the start of our experiment, we execute a user

program at the gateway that asks for a provenance graph of the

window open, alarm on, and sprinkler on events. We repeat

the same experiment 10 times with a random interval between

10 to 15 seconds to show its scalability and correctness.

Results. The gateway creates and returns the provenance graph

in the form of a DAG for each run of our experiment with

an accuracy of 100% and average latency of approximately

3.5 seconds. We draw the provenance graph in the form of

PROV-DM provenance model which is shown in Figure 9. As

shown in this figure, all of our three requesting events, i.e.,

window open, alarm on, and sprinkler on converge to their

root cause, which is a smoke detection event. This experiment

thus shows that the provenance creation protocol in T-IoT is

pervasive, accurate, and timely.

IX. RELATED WORK

Blockchain in IoT. Blockchain protocols have been adopted

in the IoT platforms in various ways that include secure

11

eHandler:

window_open

eHandler:

alarm_on

eHandler:

sprinkler_on

sensor: window sensor: alarm sensor: sprinkler

event:

window open
event:

alarm on

event:

sprinkler on

eHandler:

smoke_monitor

event: smoke

detected

eHandler:

smoke_detect

sensor: smoke

detector

sensor: smoke

monitor

wasGeneratedBy wasGeneratedBy wasGeneratedBy

wasAssociatedWith
wasAssociatedWith

wasAssociatedWith
wasInformedBy wasInformedBy

wasInformedBy

wasAssociatedWith
Used

wasGeneratedBy

wasAssociatedWith

Figure 9. Visual representation of the smoke detect provenance graph.

data transfer between the gateway and Cloud [52], IoT de-

vice management [53]–[56], securing multiple smart homes

collectively [57], secure data sharing within/across organiza-

tions [58], [59], and proposing business models for IoT [60].

This large body of works, however, adopts the Blockchain

protocol on the overlay (or overhaul) network where the

devices (e.g., gateway, router, servers, etc.) have sufficient

computing power and storage capacity and are connected

via fast Internet connection, thus cope with the Blockchain

requirements (e.g., SpeedyChain [61] and EdgeChain [62]).

In this work, we bring the Blockchain protocol to the

end devices (e.g., IoT sensor/actuator nodes deployed for

sensing/actuation) of the IoT platforms. To the best of our

knowledge, ours is the first Blockchain protocol that is tai-

lored for the resource-constrained (e.g., limited storage and

computational power) heterogeneous IoT devices that connect

to the IoT gateway via wireless. Additionally, to the best of

our knowledge, T-IoT is the first framework that interconnects

the Blockchain and vector clock to provide transparent and

tamper-proof event ordering in general. A few works that bring

distributed ledger or Blockchain to the IoT devices include

IOTA [63] and Sensor-Chain [64]. IOTA is a cryptocurrency

for the IoT industry, which maintains a distributed ledger

(not Blockchain) among homogeneous (e.g., communication

protocol) devices with fixed types of preloaded transactions.

Sensor-Chain Blockchain does not incorporate any PoW con-

sensus protocol, works within homogeneous nodes, and cannot

guarantee tamper-proof ledger maintenance. In contrast to

these, T-IoT enables Blockchain over heterogeneous IoT nodes

to provide tamper-proof transparency in the IoT platforms.

Data Provenance in IoT. Data provenance in the IoT plat-

forms can be broadly categorized into device-centric [65]

and platform-centric [1] models. Device-centric provenance

reflects causal relationships of data objects within a device that

cannot be generalized for building a global provenance of its

embodying platform due to the heterogeneity of the devices.

In this paper, we facilitate platform-centric provenance that

supports several degrees of heterogeneity.

The closest work with the similar goal to ours is [1]

that also provides a platform-centric provenance for the IoT

platforms. However, we have the following differences. (1)

The framework in [1] is orchestrated by instrumenting/adding

software programs at different levels such as the platform

Cloud/gateway and the user applications (similar to those

in ifttt [66] and tray.io [67]). On the other hand, T-

IoT is designed by instrumenting the device’s programmable

interfaces (e.g., device handlers). Additionally, our device

instrumentation leaves the doors open for building innovative

protocols for the IoT platforms (e.g., Blockchain and vector

clock) that are not possible in [1]. (2) We enable Blockchain

in the resource-constrained heterogeneous IoT devices that is

unique in T-IoT. (3) For ordering of events, we customize

the vector clock system while [1] depends on instrumenting

the application programs. Additionally, our event ordering

logically synchronizes the IoT devices, which is not possible

in [1]. (4) For any change in the existing set of trigger-action-

based event chains, [1] will need to re-instrument program

code, which is unrealistic. On the other hand, in T-IoT, it can

be handled effectively by enabling/disabling event handlers

from device handlers. Thus, T-IoT is more scalable.

X. CONCLUSIONS

In this paper, we have proposed a transparent and tamper-

proof event ordering framework called T-IoT by tailoring the

Blockchain protocol for the resource-constrained IoT devices.

To overcome their storage and computation limitations, we

have allowed the devices to save only a portion of the ledger

based on a partial consistent cut and engineered an efficient

modular arithmetic-based PoW puzzle, respectively. Ordering

of the events has been achieved through the adoption of the

vector clock system, customized for the IoT platforms. We

have then proposed a backtracking-based data provenance

creation protocol. We have implemented T-IoT using COTS

devices. Our experiments with 10 concurrent trigger-action-

based event chains (each chain involving up to 20 devices

and each device participating in 5 different event chains) have

demonstrated that the ordering of these events may be done in

2.5 seconds at the cost of 140 mJ of energy per device, which

is much promising for many IoT applications, including smart

home, traffic/accident monitoring, and crime investigation.

ACKNOWLEDGMENTS

This work was supported through NSF grants CAREER-

2211523 and CNS-2211510.

REFERENCES

[1] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in NDSS ’18, 2018, pp. 1–15.

[2] R. Cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-
based reasoning for a traffic monitoring system,” IEEE Transactions

on Intelligent Transportation Systems, vol. 1, no. 2, pp. 119–130, 2000.
[3] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a

survey,” IEEE Comm. Surv. & Tutor., vol. 10, no. 2, pp. 88–105, 2008.
[4] T. Semertzidis, K. Dimitropoulos, A. Koutsia, and N. Grammalidis,

“Video sensor network for real-time traffic monitoring and surveillance,”
IET intelligent transport systems, vol. 4, no. 2, pp. 103–112, 2010.

[5] T. Doumi, M. F. Dolan, S. Tatesh, A. Casati, G. Tsirtsis, K. Anchan,
and D. Flore, “Lte for public safety networks,” IEEE Comm. Magazine,
vol. 51, no. 2, pp. 106–112, 2013.

[6] I. Butun, M. Erol-Kantarci, B. Kantarci, and H. Song, “Cloud-centric
multi-level authentication as a service for secure public safety device
networks,” IEEE Comm. Magazine, vol. 54, no. 4, pp. 47–53, 2016.

12

[7] G. Boateng, V. G. Motti, V. Mishra, J. A. Batsis, J. Hester, and D. Kotz,
“Experience: Design, development and evaluation of a wearable device
for mhealth applications,” in MobiCom ’19, 2019, pp. 1–14.

[8] J. Park, W. Nam, J. Choi, T. Kim, D. Yoon, S. Lee, J. Paek, and J. Ko,
“Glasses for the third eye: Improving the quality of clinical data analysis
with motion sensor-based data filtering,” in SenSys ’17, 2017, pp. 1–14.

[9] Z. Jia, A. Bonde, S. Li, C. Xu, J. Wang, Y. Zhang, R. E. Howard, and
P. Zhang, “Monitoring a person’s heart rate and respiratory rate on a
shared bed using geophones,” in SenSys ’17, 2017, pp. 1–14.

[10] J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in OOPSLA ’09, 2009, pp. 957–964.

[11] B. Patterson, “Zigbee vulnerability lets hackers use hue
bulbs to hijack your network,” 2020. [Online]. Available:
https://www.techhive.com/article/578322/

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[13] R. Miller, “Walmart is betting on the blockchain
to improve food safety,” 2018. [Online]. Available:
https://techcrunch.com/2018/09/24/walmart-is-betting-on-the-blockchain-to-improve-food-safety/

[14] Statista, “Size of the bitcoin blockchain,” 2019. [Online]. Available:
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/

[15] U. Irfan, “Bitcoin is an energy hog. where is all
that electricity coming from?” 2019. [Online]. Available:
https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china

[16] L. Lamport and C. Time, “the ordering of events in a distributed system,”
Communications, vol. 21, no. 7, pp. 558–565, 1978.

[17] “Hijacking iot,” 2020. [Online]. Available:
https://www.cbronline.com/breaches/hackers-can-hijack-100-of-smart-home-devices-4508843/

[18] “Iot device security,” 2020. [Online]. Available:
https://documents.trendmicro.com/assets/white papers/IoT-Device-Security.pdf

[19] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good,
the bad, and the differences: Better network diagnostics with differential
provenance,” in SIGCOMM ’16, 2016.

[20] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in USS ’15, 2015, pp. 319–334.

[21] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in NDSS, 2016.

[22] “Prov-dm: The prov data model,” 2013. [Online]. Available:
https://www.w3.org/TR/prov-dm/

[23] E. Nwafor et al., “Towards a provenance collection framework for
internet of things devices,” in UIC-ATC ’17, 2017, pp. 1–6.

[24] M. Sha, G. Hackmann, and C. Lu, “Energy-efficient low power listening
for wireless sensor networks in noisy environments,” in IPSN ’13, 2013,
pp. 277–288.

[25] G. Lu, D. De, M. Xu, W.-Z. Song, and B. Shirazi, “A wake-on sensor
network,” in SenSys ’09, 2009, pp. 341–342.

[26] O. Choudhury, H. Sarker, N. Rudolph, M. Foreman, N. Fay, M. Dhuli-
awala, I. Sylla, N. Fairoza, and A. K. Das, “Enforcing human subject
regulations using blockchain and smart contracts,” Blockchain in Health-
care Today, pp. 1–14, 2018.

[27] P. Ribenboim, The new book of prime number records. Springer Science
& Business Media, 2012.

[28] D. Lehmer, “On euler’s totient function,” Bulletin of the American

Mathematical Society, vol. 38, no. 10, pp. 745–751, 1932.
[29] D. M. Burton, “The history of mathematics: An introduction,” Group,

vol. 3, no. 3, p. 35, 1985.
[30] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.
[31] “Ticc13x0,” 2020. [Online]. Available: http://www.ti.com/
[32] D. T. C. LTD, “Lora gps hat for raspberry pi,” 2019. [Online]. Available:

https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
[33] J. Chu, “The beginning of the end for

encryption schemes?” 2016. [Online]. Available:
https://news.mit.edu/2016/quantum-computer-end-encryption-schemes-0303

[34] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint

arXiv:1904.05234, 2019.
[35] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and

mtgox,” in ESORICS ’14, 2014, pp. 313–326.
[36] J. Vermorel, A. Sechet, S. Chancellor, and T. Wansem, “Canonical

transaction ordering for bitcoin,” 2018. [Online]. Available:
https://blog.vermorel.com/pdf/canonical-tx-ordering-2018-06-12.pdf

[37] Y. Chen et al., “Survey of cross-technology communication for iot
heterogeneous devices,” IET Comm., vol. 13, no. 12, pp. 1–12, 2019.

[38] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019.

[39] C. J. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” 1987, CS, Australian National University.

[40] F. Mattern et al., “Virtual time and global states of distributed systems,”
1988, Computer Science, University of Kaiserslautem.

[41] “GNU Radio,” 2019, http://gnuradio.org.
[42] “Ettus research,” 2020, https://www.ettus.com/.
[43] “IEEE 802.11a,” 2020, https://github.com/bastibl/gr-ieee802-11.
[44] “IEEE 802.15.4g,” 2020, https://github.com/dudmuck/gr-ieee802154g.
[45] “Modified For BLE Tx,” 2020, https://github.com/greatscottgadgets/gr-

bluetooth.
[46] “BLE GNURadio Rx,” 2020, https://github.com/greatscottgadgets/gr-

bluetooth.
[47] “GATT,” 2019, https://learn.adafruit.com/introduction-to-bluetooth-low-

energy/gatt.
[48] “LoRa on Gnu Radio,” 2020, https://github.com/rpp0/gr-lora.
[49] “Iot,” 2020, https://www.homestratosphere.com/smart-home-sensors/.
[50] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas:

A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2012.
[51] M. Rahman, D. Ismail, V. P. Modekurthy, and A. Saifullah, “Implemen-

tation of lpwan over white spaces for practical deployment,” in IoTDI
’19, 2019, pp. 178–189.

[52] J. Lin, Z. Shen, C. Miao, and S. Liu, “Using blockchain to build trusted
lorawan sharing server,” International Journal of Crowd Science, 2017.

[53] S. Huh, S. Cho, and S. Kim, “Managing iot devices using blockchain
platform,” in ICACT ’17, 2017, pp. 464–467.

[54] P. Danzi, A. E. Kalor, C. Stefanovic, and P. Popovski, “Analysis of the
communication traffic for blockchain synchronization of iot devices,” in
ICC ’18, 2018, pp. 1–7.

[55] O. Novo, “Blockchain meets iot: An architecture for scalable access
management in iot,” IoT Journal, vol. 5, no. 2, pp. 1184–1195, 2018.

[56] A. Z. Ourad, B. Belgacem, and K. Salah, “Using blockchain for iot
access control and authentication management,” in IoT ’18, 2018, pp.
150–164.

[57] A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for iot,” in IoTDI ’17, 2017, pp. 173–178.

[58] S. H. Hashemi, F. Faghri, P. Rausch, and R. H. Campbell, “World of
empowered iot users,” in IoTDI ’16, 2016, pp. 13–24.

[59] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in SP Workshops ,15, 2015, pp. 180–184.

[60] Y. Zhang and J. Wen, “The iot electric business model: Using blockchain
technology for the internet of things,” P2P Netw. and App., vol. 10, no. 4,
pp. 983–994, 2017.

[61] J. Kang et al., “Toward secure blockchain-enabled internet of vehicles:
Optimizing consensus management using reputation and contract the-
ory,” IEEE Trans. on Vehic. Tech., vol. 68, no. 3, pp. 1–14, 2019.

[62] J. Pan, J. Wang, A. Hester, I. AlQerm, Y. Liu, and Y. Zhao, “Edgechain:
An edge-iot framework and prototype based on blockchain and smart
contracts,” IoT Journal, vol. 6, no. 3, pp. 4719–4732, 2018.

[63] S. Popov, “The tangle,” cit. on, p. 131, 2016. [Online]. Available:
http://tanglereport.com/wp-content/uploads/2018/01/IOTA Whitepaper.pdf

[64] A. R. Shahid, N. Pissinou, C. Staier, and R. Kwan, “Sensor-chain: A
lightweight scalable blockchain framework for internet of things,” in
iThings, GreenCom, CPSCom, and SmartData ’19, 2019, pp. 1–8.

[65] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for
the internet of things,” in IoTPTS ’17, 2017, pp. 11–14.

[66] “Iffft,” 2020. [Online]. Available: https://ifttt.com
[67] “Tray.io,” 2020. [Online]. Available: https://tray.io

https://www.techhive.com/article/578322/
https://bitcoin.org/bitcoin.pdf
https://techcrunch.com/2018/09/24/walmart-is-betting-on-the-blockchain-to-improve-food-safety/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://www.vox.com/2019/6/18/18642645/bitcoin-energy-price-renewable-china
https://www.cbronline.com/breaches/hackers-can-hijack-100-of-smart-home-devices-4508843/
https://documents.trendmicro.com/assets/white_papers/IoT-Device-Security.pdf
https://www.w3.org/TR/prov-dm/
http://www.ti.com/
https://www.dragino.com/products/lora/item/106-lora-gps-hat.html
https://news.mit.edu/2016/quantum-computer-end-encryption-schemes-0303
https://blog.vermorel.com/pdf/canonical-tx-ordering-2018-06-12.pdf
http://gnuradio.org
http://tanglereport.com/wp-content/uploads/2018/01/IOTA_Whitepaper.pdf
https://ifttt.com
https://tray.io

	I Introduction
	II System Model and Background
	II-A System Model of T-IoT
	II-B Background Knowledge

	III T-IoT Framework Overview
	IV T-IoT Blockchain Protocol
	IV-A Blockchain Primers
	IV-B Transaction Details
	IV-C The PoW Protocol

	V T-IoT Event Ordering Protocol
	V-A Why is Causal Ordering Difficult at the Nodes and Gateway
	V-B Lamport's Logical Clock
	V-C Vector Clock-Based Causal Ordering

	VI T-IoT Provenance Creation
	VI-A Device Handlers
	VI-B Action-chains
	VI-C Identifying Entity, Activity, and Agent
	VI-D Provenance Creation Algorithm

	VII Implementation
	VIII Evaluation
	VIII-A Experimental Setup
	VIII-B Performance of the T-IoT Blockchain
	VIII-C Performance of the Ordering Protocol
	VIII-D Experiments on Provenance Creation

	IX Related Work
	X Conclusions
	References

