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Online System Identification and Optimal Control

for Mission-critical IoT Systems over MIMO

Fading Channels
Minjie Tang, Graduate Student Member, IEEE, Songfu Cai, Member, IEEE, and Vincent K. N. Lau, Fellow, IEEE

Abstract—With the rapid development of mobile computing,
mission-critical internet-of-things (IoT) systems have become
popular. Typical mission-critical IoT systems may contain com-
plicated unknown and unstable elements and it is of particular
importance to identify and stabilize them as unstable systems may
experience catastrophic consequences. We consider the identifi-
cation and optimal control for a mission-critical IoT system over
multiple-input multiple-output (MIMO) fading channels. First,
we focus on the optimal control of the mission-critical IoT system,
assuming that the system dynamics are known, and propose
a novel stochastic-approximation-based algorithm to learn the
optimal control solution for the IoT controller in an online
manner. Second, we extend the optimal control framework to
deal with the unknown mission-critical IoT system and propose
a novel normalized-stochastic-gradient-descent-based algorithm
to simultaneously identify and control the system in an online
manner. Using Lyapunov stability analysis, we theoretically show
the asymptotic optimality of the proposed learning algorithms.
Numerical results are analyzed for our proposed scheme and for
several state-of-the-art learning schemes in terms of the computa-
tional complexity, the convergence and the stability performance.
Specifically, the proposed scheme can be implemented more than
50% faster than the state-of-the-art learning schemes. Moreover,
the system identification performance of the proposed scheme can
achieve a normalized system identification mean square error
(MSE) of around 0.01 in 100 iterations. This is a substantial
improvement compared to the baseline algorithms, where the
normalized system identification MSE diverges.

Index Terms—Mission-critical IoT system, online system iden-
tification, optimal control, Markov decision process, Lyapunov
stability analysis.

I. INTRODUCTION

A. Background

W Ith the rapid development of mobile communication

technologies, such as 5G, in recent years, the connec-

tion between the physical world and the network world has

become increasingly close [1]–[4]. Under this development

situation, an emerging communication paradigm, namely IoT,

envisions a near future [5]–[7]. The IoT paradigm enables easy

access and interaction among various devices and hence it

boosts the development of a range of applications such as

smart transportation in supply chains [8], smart homes for
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Fig. 1: Illustration of the architecture of the mission-critical IoT system.

home automation [9], healthcare applications [10], agriculture

[11], autonomous driving [12] and industrial control systems

[13], that benefit from the framework.

B. Motivation and Challenges

In the aforementioned applications, the IoT systems may

contain complicated unknown and unstable elements in the

IoT network, and it is of a particular importance to identify

and stabilize the systems as unstable systems may experience

costly catastrophic consequences. For example, an unstable

flock of aircraft may crash [14], and unstable power grids

may explode [15]. Such kinds of IoT systems are considered

to be mission-critical IoT systems. A typical mission-critical

IoT system is comprised of an unknown and unstable dynamic

plant, an IoT controller and an actuator collocated with the

dynamic plant, as illustrated in Fig. 1. Specifically, the IoT

controller receives the instantaneous plant state, identifies

the system dynamics of the dynamic plant, and generates

the control signal at each timeslot. The real-time control

command will be delivered to the actuator over an unreliable

wireless network to neutralize the instability of the system.

The presence of the wireless network in between the IoT

controller and the actuator will induce various impairments,

such as fading and packet loss, and hence it will severely

jeopardize the stability of the system.

System identification and optimal control for mission-

critical IoT systems has been widely designed in an offline

manner [16]–[20]. However, the required number of system

state samples for the identification algorithm will grow with

the increase of the system dimensions, which leads to an expo-

nentially large sample memory and computational complexity
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for large-scale IoT systems. Moreover, when there is a wireless

network in between the IoT controller and the actuator, the

offline control solutions obtained via these approaches cannot

capture the transmission opportunities induced by the time-

varying wireless channel, and the system will be unstable.

Instead, the online system identification and optimal control

algorithm aims at generating the system model and optimal

control solutions using real-time system data, and hence it

enables low computational complexity at each timeslot. More-

over, the system is likely to be stabilized in the presence

of the wireless network between the IoT controller and the

actuator as the obtained online optimal control solutions can

fully capture the transmission opportunities induced by the

time-varying wireless channels in between the IoT controller

and the actuator. However, the online system identification

and optimal control algorithm design for mission-critical IoT

systems over a wireless network is extremely challenging, as

summarized in the following.

Challenge 1: Optimality Condition. It is important to ana-

lyze the existence condition for the optimal control solutions

for mission-critical IoT systems over the wireless network as

it provides sufficient requirements under which the unstable

systems are likely to be stabilized by optimal design of the

control solutions. In conventional mission-critical IoT systems

over static channels, such a requirement can be guaranteed

by the well-known controllability assumption for the dynamic

systems [21]. However, due to the time-varying wireless net-

work between the IoT controller and the actuator, the systems

are unlikely to be controllable at each timeslot, and hence the

existence analysis for the optimal control solutions becomes

challenging.

Challenge 2: Online Optimal Control Algorithm Design.

It is challenging to design an optimal control algorithm for

mission-critical IoT systems in an online manner when there is

a wireless network between the IoT controller and the actuator

because the time-varying wireless environment between the

IoT controller and the actuator may jeopardize the stability

performance of the control algorithm. When the dynamic plant

is unknown, the situation becomes even worse as the IoT

controller has no prior information on the internal behavior

of the dynamic plant that it targets to stabilize. However, such

information is critical for the optimal controller design.

Challenge 3: Online Identification Algorithm Design. It is

challenging to design the online identification algorithm for

mission-critical IoT systems in the presence of the wireless

network in between the IoT controller and the actuator. This

is because the random time-varying fading channels as well as

the additive noise induced by the wireless network will result

in the noisy plant states received at the IoT controller and

this will jeopardize the identification performance. When the

dynamic plant is unstable, the situation becomes even worse

in the sense that the plant state might drift away from its

desired value significantly throughout its sample path, which

may further reduce the identification accuracy.

Challenge 4: Asymptotic Optimal Convergence Analysis.

It is also important to theoretically analyze the asymptotic

optimal convergence performance of the proposed online iden-

tification and control algorithm as it provides the stability

guarantee for mission-critical IoT systems over the wireless

network based on the proposed online identification and con-

trol algorithm. However, such a task is challenging due to the

tight coupling between the identification and control algorithm

in an online manner.

C. Related Works

Category 1: System Identification. System identification is

important for an IoT-based communication framework. For

example, in [22] and [23], the IoT devices are identified using

federated learning for detection of the problematic IoT devices

in an IoT network for security and privacy. For mission-

critical IoT systems, identification of the unstable dynamic

plants is also important as it provides the critical information

for optimal control design to stabilize the systems. There

exist some works that identify the system dynamics of the

mission-critical IoT systems in an offline manner using a

least-square-based approach [16], maximum-likelihood-based

approach [17] and sampling-based algorithm [18]. However,

these algorithms require an exponentially large sample mem-

ory for identification and hence they are not applicable for

large-scale mission-critical IoT systems.

Online system identification for mission-critical IoT systems

over static channels has been proposed using a recursive

least square approach [24], [25], projected online identifica-

tion algorithm [26], and recursive maximum-likelihood (ML)

algorithm [27], [28]. However, brute-force applications of the

above algorithm over the wireless network between the IoT

controller and the actuator will lead to poor identification

performance because of the random channel noise. Gradient-

descent-based algorithms [29], [30] have been widely applied

in learning and identification problems under a random wire-

less environment. However, the standard stochastic-gradient

descent-based algorithms will not converge in the case of

unstable mission-critical IoT systems because the boundness

of the increment in the stochastic gradient descent (SGD)

update is not guaranteed. Different from the above works, we

propose a novel normalized-gradient-descent-based algorithm

to identify the system dynamics of the unknown mission-

critical IoT system over the wireless MIMO fading channels.

Our proposed identification scheme can track the true system

dynamics even in the presence of the unstable dynamic plant

and wireless network due to the normalization operator in the

SGD update.

Category 2: Optimal Control. Optimal control algorithms

for mission-critical IoT systems have recently been reported in

[31]–[33]. Specifically, in [31] and [32], the potential-learning-

based policy iteration and value iteration algorithms are de-

veloped for adaptive optimal control. In [33], the Q-learning-

based algorithm is proposed to solve the linear optimal state-

feedback control problems. Note that in the above works, the

static channels between the IoT controller and the actuator are

assumed and brute-force applications of the control solutions

in [31]–[33] under the random wireless network will lead

to the “curse of dimensionality” [34] issue induced by the

extended time-varying wireless channel state with infinitely

many possible fading realizations at each timeslot. As a result,
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the control solutions via [31]–[33] will deviate from the

optimal control solution when a wireless network is consid-

ered, and the systems will be unstable. Different from above

works, we consider the online data-driven optimal control

design for mission-critical IoT systems in the presence of a

wireless network between the IoT controller and the actuator.

Specifically, we exploit the i.i.d. properties of the wireless

channel state and learn the control solution by learning the

equivalent reduced-state value function (where the wireless

channel state is reduced in the value function) via a stochastic-

approximation-based online approach. The control algorithm

via the proposed approach learns the optimal control solution

even in the presence of the wireless network since there is no

“curse of dimensionality” issue in our proposed approach due

to the state reduction.

D. Contributions and Organization

We propose a novel online approach for simultaneous

identification and optimal control of an unstable mission-

critical IoT system over MIMO fading channels. The following

summarizes the key contributions of this work.

• Closed-form Optimality Condition. We provide the

closed-form characterization of the sufficient condition

for the existence of the optimal control solution over

the wireless MIMO fading channels by analyzing the

equivalent reduced-state optimality equation via positive-

semidefinite cone decomposition.

• Design of the Online Optimal Control Algorithm.

We propose a novel online optimal control approach

for the mission-critical IoT system with both known

and unknown system dynamics over wireless MIMO

fading channels via the stochastic-approximation-based

algorithm.

• Design of the Online Identification Algorithm. We also

provide a novel normalized-gradient-descent-based algo-

rithm to identify the system dynamics of the unknown

mission-critical IoT system over the wireless MIMO

fading channels.

• Asymptotic Optimal Convergence Analysis. Using the

Lyapunov analysis method, we theoretically show that the

control solution via the proposed control algorithm for the

IoT controller will converge to the optimal control solu-

tion, and the identified system dynamics via the proposed

identification algorithm will converge to the true system

dynamics asymptotically under the consideration of the

wireless MIMO channels between the IoT controller and

the actuator.

The remainder of this paper is organized as follows. In sec-

tion II, we outline the key components of the mission-critical

IoT system. In Section III, we focus on the optimal control of

the mission-critical IoT system with known system dynamics,

and we analyze the existing conditions for the optimal control

solution over static and MIMO fading channels. Based on this,

we propose a novel stochastic-approximation-based algorithm

to learn the optimal control solution for the IoT controller in

an online manner. In Section IV, we extend the optimal control

framework proposed in Section III to deal with the unknown

mission-critical IoT system, and propose a novel normalized-

stochastic-gradient-descent-based algorithm to simultaneously

identify and control the IoT system. Simulation results on

the performance are discussed in Section V, followed by the

concluding remarks in Section VI.

Notation: Uppercase and lowercase boldface denotes matri-

ces and vectors, respectively. The operator (·)T and Tr(·) is the

transpose, and trace of a matrix, respectively. Diag(a, b, ...) is

a diagonal matrix with the diagonal elements being {a, b, ...}.

R
m×n and S

a
+ denotes the set of m × n dimensional real

matrices and the set of a × a dimensional positive definite

matrices, respectively. ‖A‖ and ‖A‖F is the spectral norm of a

matrix A and the Frobenius norm of a matrix A, respectively.

1{a≥0} ∈ {0, 1} is the indicator function and 1{a≥0} = 1 if

and only if the statement a ≥ 0 holds true.

II. MISSION-CRITICAL IOT SYSTEM MODEL

In this section, we introduce the architecture of the mission-

critical IoT system, which is composed of dynamic plant

model, wireless MIMO fading channel model and the stability

metric of the mission-critical IoT system.

A. Dynamic Plant Model

We consider a time-slotted mission-critical IoT system with

S state variables. We assume the IoT controller and the system

identifier are equipped with Nt transmission antennas and the

actuator is equipped with Nr receiving antennas. The physical

dynamic plant of the mission-critical IoT system is modelled

by a set of first order coupled linear difference equations

representing the evolution of the system state, as follows:

xk+1 = Axk +Bûk +wk, k = 0, 1, 2, ..., (1)

where xk ∈ R
S×1 is the system state variable, A ∈ R

S×S is

the plant dynamics, B ∈ R
S×Nr is the control input matrix,

ûk ∈ R
Nr×1 is the received control signal from the IoT

controller and wk ∈ R
S×1 is the system noise with zero mean

and finite noise covariance matrix W ∈ S
S
+. We assume the

dynamic evolution (1) is potentially unstable1 and we have the

following assumption on the dynamic plant model (1).

Assumption 1: (Controllability of Dynamic Plant) The dy-

namic plant (1) is controllable, i.e., the matrix (A,B) ,

[B,AB,A2B, ...,AS−1B] ∈ R
S×SNr has a full row rank

(rank((A,B)) = S) [21]. �

The above controllability assumption is a common prereq-

uisite assumption in the study of closed-loop control sys-

tems [35]–[37]. This because an unstable linear time-invariant

(LTI) system can be stabilized by feedback control only if

it is controllable. In other words, if the LTI system is not

controllable, there does not exist any control action that can

stabilize the system. As a result, our work focuses on analyzing

the existence of and finding the optimal control action for

the controllable LTI systems. Therefore, Assumption 1 of

the controllability will not affect the novelty of the proposed

methods.

1“The dynamic evolution (1) is potentially unstable” means that plant
dynamics A contains possibly unstable eigenvalues, i.e., ‖A‖ > 1.
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Fig. 2: Illustration of a cascaded water tank IoT system.

The dynamic plant model in (1) can embrace many practical

scenarios of mission-critical IoT systems, such as the tempera-

ture and pressure control of a chemical factory or the velocity

of vehicles in a platooning system. As an illustrative example,

we consider a controlled cascaded water tank IoT system as

shown in Fig. 2. The IoT system consists of a water tank

equipped with orifices and a pump. The pump of the water tank

is connected to the IoT controller via a wireless network. Kp

is the pump constant and g is the gravitational acceleration. Q

is the cross-sectional area of the water tank and q is the cross-

sectional area of the outflow orifice at the bottom of the water

tank. The system samples the water level of the tank once

per timeslot with slot duration τ . At the k-th slot, Lk and Vk

denotes the water level of the tank and the voltage applied to

the pump, respectively. The system state is xk = Lk, which

represents the variations of the tank water level. The control

action uk denotes the desired control signal for variations of

the voltages applied to the water tank generated by the IoT

controller. ûk is the received signal at the pump for variations

of the voltages applied to the water tank. The evolution of

the system state xk is characterized by xk+1 = Axk + Bûk,

where B =
(lnA)−1(A−1)Kp

Q
and ûk = uk.

B. Wireless MIMO Fading Channel Model

We model the wireless communication channels from the

IoT controller and the system identifier to the actuator as

wireless MIMO fading channels, as illustrated in Fig. 1. At

the k-th time slot, the received control signal ûk ∈ R
Nr×1 at

the actuator is given by

ûk = δkHkuk + vk, (2)

where uk ∈ R
Nt×1 is the control action of the IoT controller,

and δk ∈ {0, 1} is the i.i.d. random access variable for the IoT

controller with Pr(δk = 1) = p. Hk ∈ R
Nr×Nt is the wireless

MIMO fading matrix from the IoT controller and the system

identifier to the actuator, and vk ∼ N (0, INr
) is the additive

Gaussian noise. We have the following assumption on Hk.

Assumption 2: (Wireless MIMO Fading Channel Model) The

random wireless MIMO channel realization Hk from the IoT

controller and the system identifier to the actuator is assumed

to be an i.i.d. Gaussian random process with zero mean and

unit variance [38]. �

The wireless MIMO fading channel model in Assump-

tion 2 is widely adopted in existing literature on wireless

communications [39]–[41]. Specifically, let us first consider

a single-input single-output (SISO) communication system.

When propagating through a wireless medium, a radio fre-

quency signal suffers from the following effects [42]: 1) path

loss, i.e., the reduction in power density (at tenuation) of

an electromagnetic wave as it propagates through space; 2)

shadowing due to the absorption, scattering and reflection

of the electromagnetic wave; and 3) fading, i.e., the phase

cancellation or reinforcement due to multipaths. Since the path

loss and shadowing typically change slowly with time and are

compensated via automatic gain control and power control, the

input–output relationship of the SISO communication channel

is represented as yk = hkxk+vk, where yk ∈ R is the received

signal, xk ∈ R is the transmitted symbol and hk ∈ R is

the random SISO channel coefficient, which is i.i.d. Gaussian

distributed with zero mean and unit variance and models the

channel fading. vk ∈ R is the additive channel noise. The

MIMO communication channel model in Assumption 2 is the

generalization of the SISO communication channel via equip-

ping the transmitter and the receiver with multiple antennas.

Specifically, a MIMO channel is composed of a collection of

SISO channels. As such, the MIMO channel in Assumption 2

with Nt transmit antennas and Nr receive antennas is modeled

as an i.i.d. Gaussian random matrix Hk ∈ R
Nr×Nt with each

element being i.i.d. Gaussian distributed with zero mean and

unit variance. Our work focuses on the system identification

and optimal control design over the Gaussian MIMO fading

channels. As a result, the correctness and novelty of the

proposed methods will not be affected by Assumption 2.

C. Stability Metric of the Mission-critical IoT System

The goal of the mission-critical IoT system is to stabilize the

potentially unstable plant (1) with limited wireless communi-

cation resources [43], [44]. Note that it is important to maintain

stability of the mission-critical IoT system. This is because

the instability of such a system will lead to catastrophic

consequences. Such consequences include the explosion of

chemical factories in industrial IoT systems [45] and traffic

accidents in autonomous vehicle control IoT systems [46].

Specifically, we have the following metric on the stability of

the mission-critical IoT system [43].

Definition 1: (Stability Metric of the Mission-critical IoT

System) The mission-critical IoT system with dynamic evolu-

tion (1) is stable if

lim sup
K→∞

1

K

K∑

k=1

E
{
‖xk‖2

}
< ∞, (3)

where the expectation is taken with respect to the randomness

of the plant noise wk, the channel noise vk, the wireless

MIMO fading matrix Hk, and the random access of the IoT

controller δk. �

To maintain stability of the mission-critical IoT system, the

IoT controller should be involved and the optimal control

policy may be considered. Note that the optimal control

policy for the IoT controller will be different under different

wireless communication channels between the IoT controller

and the actuator. This is because the optimal control gain
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for the IoT controller should adapt to not only the dynamic

system state realization but also the realization of the wireless

fading between the IoT controller and the actuator to capture

the dynamic urgency of the control and good transmission

opportunities induced by the fading channels. In the following

sections, we first introduce the optimal control solution for the

IoT controller under static and wireless MIMO fading channels

between the IoT controller and the actuator when the system

dynamics A is known. We provide the associated stability

conditions for the mission-critical IoT system. After that, we

further extend the optimal control framework to deal with

a mission-critical IoT system with unknown unstable system

dynamics. We provide an efficient online learning algorithm

to simultaneously identify the system dynamics and learn the

optimal control solutions for the mission-critical IoT system

in the presence of the MIMO fading channels between the IoT

controller and the actuator.

III. ONLINE OPTIMAL CONTROL FOR THE

MISSION-CRITICAL IOT SYSTEM OVER THE WIRELESS

CHANNELS WITH KNOWN SYSTEM DYNAMICS

In this section, we first focus on the optimal control solu-

tions of an IoT controller for a mission-critical IoT system

under the static and MIMO fading channels when the system

dynamics A is known.

A. Optimal Control Solution of the Mission-critical IoT Sys-

tem over Static Channels

Optimal control for mission-critical IoT systems over static

channels has been widely studied as optimal control for LTI

systems in the existing literature [47]–[49]. The system dy-

namics of the mission-critical IoT system can be considered as

a special case of system dynamics (1) in our case by restricting

ûk = Huk, 1 ≤ k ≤ K, where H ∈ R
Nr×Nt is a constant

matrix. Specifically, a control policy π for the IoT controller

consists of a sequence of mappings π =
{
Ω0,Ω1, ...

}
. The

mapping Ωk : R
S×1 → R

Nt×1 at the k-th timeslot is a

mapping from the system state xk to the control action of

the IoT controller uk, i.e., uk = Ωk(xk). r(xk,uk) =
xT
kQxk+uT

kRuk is the per-stage cost reflecting the quadratic

cost of state xT
kQxk, and the control cost uT

kRuk, Q ∈ S
S
+

and R ∈ S
Nr

+ are the weighting matrices.

The optimal control for noisy plant can be formulated using

the infinite horizon ergodic control formulation given by [50].

Problem 1: (Optimal Control Problem for a Mission-critical

IoT System over Static Channels)

min
π

J π = lim sup
K→∞

1

K
Ewk,vk

{
K∑

k=0

r(xk,uk)

}

subject to xk+1 = Axk +BHuk +Bvk +wk,

(4)

where the expectation in the objective function of Problem 1

is w.r.t. the random non-state variables wk and vk.

The sufficient condition for the existence of the solution to

Problem 1 is given by

Lemma 1: (Sufficient Condition for the Existence of

the Solution to Problem 1) Problem 1 has a solu-

tion (i.e., lim supK→∞
1
K
E[
∑K

k=0 r(xk,uk)] < ∞) if

(A,BH) , [B,ABH,A2BH, ...,AS−1BH] ∈ R
S×SNt

and (AT ,
√
Q

T
) , [

√
Q

T
,AT

√
Q

T
, ..., [AS−1]T

√
Q

T
] ∈

RS×S2

has a full row rank, i.e., rank((A,BH)) = rank

((AT ,
√
Q

T
)) = S.

Proof : Please refer to [50]. �

The optimal control solution to Problem 1 can be obtained

via the solution of the Bellman optimality equation for Prob-

lem 1 given by [51]:

θ∗ + V ∗(xk) = min
uk

[r(xk,uk) + Ewkvk
[V ∗(xk+1)|xk,uk)]],

(5)

where the value function V ∗(xk) = xT
kPxk, P ∈ S

S
+ is a

positive definite matrix and the optimal average cost θ∗ =
Tr(PW +BTPB).

Using the structure properties of the value function V ∗(xk)
as well as the optimal average cost θ∗ in (5), and applying (1)

to (5), the closed-form optimal control solution to (5) has a

linear state-feedback form given by

u∗
k = argminuk

[r(xk,uk) + Ewk,vk
[V ∗(xk+1)|xk,uk]]

= −(R+HTBTPBH)−1HTBTPAxk.
(6)

Note that when the wireless channel matrix Hk and the

random access variable δk are random and i.i.d. in each time

slot, brute-force application of the control solution (6) will

lead to poor stability performance. For instance, the system

dynamics in (1) becomes

xk+1 = (A−δkBHk(R+HTBTPBH)−1HTBTPA)xk+wk.

(7)

Note that if the system dynamics A is unstable, i.e.,

‖A‖ > 1 and the wireless fading Hk follows an i.i.d.

Gaussian random process with zero mean and unit variance,

lim supk→∞ E‖xk‖2 = ∞ and the mission-critical IoT system

will be unstable.

Challenge 1: Optimal Control Solution of the IoT controller

for a Mission-critical IoT System over MIMO Fading Channels.

In the following, we shall extend the solution to ergodic

optimal control over general random fading channels between

the IoT controller and the actuator.

B. Optimal Control Solution of the Mission-critical IoT Sys-

tem over the MIMO Fading Channels

Note that the instability of the mission-critical IoT system

over the MIMO fading channels under the optimal control

solution u∗
k to Problem 1 is induced by the independency

between u∗
k and the wireless channel state δkHk. As a result,

to properly formulate the optimal control problem over the

MIMO fading channels in the sense that the optimal control

solution is likely to stabilize the system, the objective func-

tion in the optimal control problem over the MIMO fading

channels should incorporate the wireless channel state δkHk.

Since the non-state random variables will be averaged out in

the objective function of the optimal control problem, it is

desirable to extend the state space Sk = (xk, δkHk) ∈ S to

include both the system state xk and the channel state δkHk
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in the formulation of the optimal control problem over MIMO

fading channels. Correspondingly, the dynamic control policy

Ωu is extended into a mapping from S → U , so that the

control action of the IoT controller can be adaptive to both the

realizations of the system state xk (reflecting the urgency of the

control) and the channel state δkHk (revealing the transmis-

sion opportunities in the wireless channels). Furthermore, the

per-stage cost should include both the state error xT
kQxk, the

actuator cost Evk
[ûT

kMûk] and the transmission cost uT
kRuk.

As a result, the per-stage cost is given by

r(Sk,uk) = xT
kQxk + uT

kRuk + Evk
[ûT

kMûk]. (8)

In addition, the extended state sequence Sk is a controlled

Markov process [52] with the transition kernel given by

Pr[Sk+1|Sk,uk]

= Pr[Hk+1|Sk,uk] Pr[xk+1|Sk,uk]

= Pr[Hk+1] Pr[xk+1|Sk,uk].

(9)

Substitute (2) into (1), we have the equivalent linear system

dynamics given by

xk+1 = Axk + δkBHkuk +Bvk +wk. (10)

Based on these, the optimal control problem for the mission-

critical IoT system over the MIMO fading channels can be

formulated as an infinite horizon ergodic control problem over

the extended state space S .

Problem 2: (Optimal Control Problem for a Mission-critical

IoT System over MIMO Fading Channels))

min
U={u0,u1,...}

lim sup
K→∞

1

K
Ewk,vk

{
K∑

k=0

r(Sk,uk)

}

subject to xk+1 = Axk + δkBHkuk +Bvk +wk.

(11)

We first provide the sufficient condition for the existence of

the solution to Problem 2 as follows.

Theorem 1: (Sufficient Condition for the Existence and

Uniqueness of the Solution to Problem 2) Let the SVD of

δkBHk

(
HT

kMHk +R
)−1

HT
kB

T be

δkBHk

(
HT

kMHk +R
)−1

HT
kB

T = VT
k ζkVk, (12)

with the diagonal elements of ζk in descending order. Let

rank
(
δkBHkH

T
kB

T
)

= γk and Πk =

[
Iγk

0

0 0

]

S×S

.

Problem 2 has a solution if the following condition (13) is

satisfied:
∥∥E

[
ATVT

k (IS −Πk)VkA
]∥∥ < 1. (13)

Proof: Please see Appendix A.

The optimality condition (13) in Theorem 1 delivers some

key system design insights. Specifically,

• Impact of Dynamic Plant. Less unstable dynamic plant,

i.e., ‖A‖ is small, is more favorable for the optimality

condition (13) because a less unstable dynamic plant will

lead to the L.H.S. of (13) being smaller and the optimality

condition (13) easier to satisfy. This physically means that

a less unstable mission-critical IoT system is easier to be

controlled compared to an unstable one.

• Impact of the Random Access of the Controller. A

larger activation probability of the controller p is favor-

able for the optimality condition (13) because a larger p

will lead the rank of the term Πk in the L.H.S. of (13)

to being larger statistically, which makes the value of the

L.H.S. of (13) smaller and the optimality condition (13)

more likely to be satisfied. This physically means that a

larger activation probability of the IoT controller would

benefit the stability of the mission-critical IoT system.

• Impact of Communication Antennas. A larger number

of transmission antennas Nt and receiving antennas Nr

is favorable for the optimality condition (13) because a

larger Nt and Nr would lead the term IS − Πk in the

L.H.S. of (13) to be smaller. This would further lead

to a smaller value of the L.H.S. of (13), and hence the

optimality condition (13) would be easier to satisfy. This

physically means that more communication antennas will

enhance the control ability for the mission-critical IoT

system.

The optimal control solution to Problem 2 can be obtained

via the solution of the Bellman optimality equation for Prob-

lem 2, as summarized in the following Theorem.

Theorem 2: (Bellman Optimality Equation for Problem 2)

Under the condition (13) in Theorem 1, the optimal solution

to Problem 2 is equivalent to the solution of the Bellman

optimality equation given by

θ∗ + V ∗(Sk) = min
uk

[r(Sk,uk) + Ewk,vk
[V ∗(Sk+1)|Sk,uk]],

(14)

where

• a) θ∗ = JΩ∗

u = infΩu
JΩu is the optimal average cost in

Problem 2;

• b) V ∗(Sk) is the optimal value function of the extended

state Sk.

Proof : Please see Appendix B. �

There are various standard techniques, such as value itera-

tion [32] or Q-learning [53], that can be used to solve the Bell-

man equation (14). However, there is a challenge to solving

(14) due to the curse of dimensionality in the extended state

space S . Specifically, the total dimensions of the extended state

space are S +Nr ×Nt × 2, which can be huge when Nr and

Nt are large. If we adopt the standard Q-learning approach,

which is model-free [53], the domain of the Q-function to be

learned has
(S+Nt+Nt×Nr×2)×(S+Nt+Nt×Nr×2+1)

2 variables,

which is huge. As a result, the learning process will take a

very long time. If we learn the value function [32], the domain

of the value function involves
(S+Nt×Nr×2)×(S+Nt×Nr×2+1)

2
variables, which is also huge.

Challenge 2: Huge Dimension of Variables Involved in

the Value Function V ∗(Sk) or the Q-function Q(Sk,uk).

To address Challenge 2, we exploit the special structure in

the transition kernel (9) and propose an equivalent reduced-

state Bellman optimality equation.

Theorem 3: (Reduced-State Bellman Optimality Equation)

Under the condition (13) in Theorem 1, the optimal solution
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to Problem 2 is equivalent to the solution of the equivalent

reduced-state Bellman optimality equation given by

θ̃∗ + Ṽ ∗(xk) = EδkHk
[min
uk

[r(Sk,uk)+

Ewk,vk
[V ∗(Sk+1)|Sk,uk]],

(15)

where

• a) Ṽ ∗(xk) = E[V ∗(xk, δkHk)|xk] = xT
kPxk is the

reduced-state value function and P ∈ S
S
+ is a positive

definite matrix;

• b) The optimal average cost θ̃∗ = θ∗ = JΩ∗

u =
infΩu

JΩu = Tr(M+PW +BTPB);
• c) The optimal control policy Ω∗

u = {u∗
k, ∀k}, where u∗

k

is the solution to (15) and Problem 2. Furthermore, the

optimal control solution of the IoT controller u∗
k has a

linear state-feedback form given by

u∗
k = −(R+HT

k (B
TPB+M)Hk)

−1δkH
T
kB

TPAxk.

(16)

Proof : Please see Appendix C. �

Compared to the control policy over static channels in (6),

the control rule (16) is adaptive to both the system state xk and

channel state δkHk. As such, both the the dynamic urgency

of the control and the transmission opportunities induced by

the fading channels can be captured by the control rule (16).

In order to obtain the optimal control solution of the IoT

controller u∗
k in (16), the reduced-state value function Ṽ ∗(xk)

should be learned. Note that the reduced-state value function

Ṽ ∗(xk) is a function of the system state xk only. The number

of variables in the domain of Ṽ ∗(xk) is reduced to
S(S+1)

2 .

As such, learning the reduced-state value function Ṽ ∗(xk)
would be much easier compared to learning the original value

function. Specifically, using the structure properties of the

reduced-state value function Ṽ ∗(xk), the optimal average cost

θ̃∗ as well as the optimal control solution of the IoT controller

u∗
k in Theorem 3, the Bellman optimality equation (15) can

be written as

xT
kPxk = xT

k (EδkHk
[Q+ATPA− δkA

TPBHk(H
T
k (B

T

PB+M)Hk +R)−1HT
kB

TPA])xk.

(17)

Note that Equation (17) is an algebraic equation with

an unknown variable P. Thus, we shall utilize stochastic

approximation theory to construct an online learning algorithm

to learn P based on the algebraic equation (17). The learned P

can then be applied to obtain the reduced-state value function

Ṽ ∗(xk) and the optimal control solution for the IoT controller

u∗
k.

Specifically, we first rewrite (17) into the standard form

f(P) = 0, where f(P) is given by

f(P) = EδkHk
[Q+ATPA− δkA

TPBHk(H
T
k (B

TPB

+M)Hk +R)−1HT
kB

TPA]−P.

(18)

To obtain the roots of f(P) = 0, we can apply the stochastic

approximation algorithm as shown in Algorithm 1.

In Step 2 and Step 3 of Algorithm 1, realization of the

channel state δkHk will be required. This can be obtained

Algorithm 1 Online learning Algorithm for the Optimal

Control Solution of the IoT Controller for a Mission-critical

IoT System over the MIMO Fading Channels.

Initialization: Given a feasible initial value P0 = P0 ∈ S
S
+,

the initial estimated reduced-state value function is given by

V0(x0) = xT
0 P0x0, (19)

and the estimated optimal control solution at the initial timeslot

is given by

u0 = −(R+HT
0 (B

TP0B+M)H0)
−1δ0H

T
0 B

TP0Ax0.

(20)

For k = 1, 2, 3, ...
Step 1: (Update reduced-state value function) Using Pk

updated at the (k − 1)-th timeslot, the estimated reduced-

state value function at the k-th timeslot is given by

Vk(xk) = xT
kPkxk. (21)

Step 2: (Update the optimal control solution) Using

Pk updated at the (k−1)-th timeslot, the estimated optimal

control solution at the k-th timeslot is given by

uk = −(R+HT
k (B

TPkB+M)Hk)
−1δkH

T
kB

TPkAxk.

(22)

Step 3: (Update the unknown value P in (17)) Pk+1 is

updated using Pk and Hk given by

Pk+1 = Pk + αk(Q+ATPkA− δkA
TPkBHk(H

T
k (B

TPk

B+M)Hk +R)−1HT
kB

TPkA−Pk),
(23)

where αk > 0 is the learning stepsize at k-th timeslot.

End

by standard channel estimation at the actuator based on the

received pilot symbol from the controller and channel feedback

to the controller2.

Note that Algorithm 1 requires knowledge of the system

dynamics A. In the following section, we shall extend this to

deal with optimal control for a mission-critical IoT system

with unknown system dynamics A in the presence of the

wireless MIMO fading channel between the IoT controller

and the actuator. Specifically, we propose an efficient online

algorithm to simultaneously identify the system dynamics A

and learn the optimal control solution for the IoT controller

u∗
k in (16) over the MIMO fading channel between the IoT

controller and the actuator.

Challenge 3: Simultaneous Online Identification and

Optimal Control for the Mission-critical IoT System.

2In the existing LTE framework, the actuator transmits the pilot symbol
T ∈ RNt×Nt to the IoT controller at each timeslot, and the received pilot
signal at the IoT controller y

p

k
= δkHkT+v

p

k
can be utilized to obtain the

realizations of the channel state δkHk via the least square approach.
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IV. ONLINE IDENTIFICATION AND OPTIMAL CONTROL

FOR THE MISSION-CRITICAL IOT SYSTEM OVER THE

MIMO FADING CHANNEL WITH UNKNOWN SYSTEM

DYNAMICS

In this section, we extend the online optimal control frame-

work in Section III to deal with the unknown mission-critical

IoT system in the sense that the system dynamics as well as

the optimal control solutions for the IoT controller can be

learned simultaneously in an online manner. Specifically, we

first formulate the online identification problem for the system

dynamics of the mission-critical IoT system. After that, we

propose a novel online learning algorithm to simultaneously

identify the system dynamics and learn the optimal control

solutions for the mission-critical IoT system.

A. Problem Formulation for System Identification of the

Mission-critical IoT System over the MIMO Fading Channel

The online system identification of the mission-critical IoT

system over the wireless MIMO fading channel between the

IoT controller and the actuator can be formulated as an

optimization problem as follows.

Problem 3: (Identification of System Dynamics A)

min
Â

E

[
‖xk+1 −Axk − δkBHkuk‖2

]
, ∀k ≥ 1. (24)

Note that Â = A is obviously the global op-

timal solution of (24) because the objective function

E

[
‖xk+1 −Axk − δkBHkuk‖2

]
achieves its minimum

value Tr
(
BBT +W

)
if and only if Â = A. Since the objec-

tive function in (24) is a convex function, one may consider

utilizing the stochastic gradient descent (SGD) algorithm to

obtain the solution to Problem 3 [15], [16], as summarized in

the following Algorithm 2.

Algorithm 2 Online Identification for System Dynamics via

the Stochastic Gradient Decent Algorithm [15].

Initialization: Set the initial value of Â as Â0 = A0, where

A0 is an S × S dimensional constant matrix.

Step 1 (Update of the identified A): At the k-th timeslot,

∀k > 0, the identified system dynamics Âk is updated using

the system state xk,xk−1, control action of the IoT controller

uk−1, and the channel state δk−1Hk−1 as follows:

Âk = Âk−1 + αk(xk − Âk−1xk−1 − δk−1BHk−1

uk−1)x
T
k−1,

(25)

where αk > 0 is the learning stepsize at the k-th timeslot.

Step 2 (Termination): If ‖Âk − A‖2 < ǫ, where ǫ > 0
is an arbitrary small value, then obtain the identified system

dynamics Âk. Otherwise, go to Step 1.

Note that the convergence of the SGD-based system iden-

tification algorithm, Algorithm 2, depends heavily on the

statistical boundness of the system state xk, as summarized

in the following Theorem 4.

Theorem 4: (Convergence Conditions of Algorithm 2) If the

following two conditions are satisfied:

• Stepsize Condition: The stepsize sequence {αk, k ≥ 0}
obeys

∞∑

k=1

αk = ∞,

∞∑

k=1

α2
k < ∞, (26)

• Bounded Conditional Variance: There exist two bounded

constants η > 0 and µ > 0 such that the conditional

variance E

[
xkx

T
k

∣∣ Âk

]
is bounded and satisfies

ηIS < E

[
xkx

T
k

∣∣ Âk

]
< µIS , ∀k ≥ 1, (27)

then Âk in Algorithm 2 converges to the true system dynamics

A almost surely.

Proof: Please see Appendix D.

Note that when Â∗ = A is stable, Âk obtained by the

SGD update in (25) can converge to Â∗ for arbitrary bounded

control sequence {uk, k ≥ 0} because the closed-loop system

is mean-square stable, which implies the conditional variance

E

[
xkx

T
k

∣∣ Âk

]
is also bounded. As such, online system iden-

tification can be considered separately from the control as in

[16]-[17]. However, when Â∗ is unstable, the control sequence

{uk, k ≥ 0} cannot be an arbitrary bounded control sequence

and it plays a critical role in maintaining the conditional

variance E

[
xkx

T
k

∣∣ Âk

]
to be bounded in the identification

process. Moreover, the design of control uk and Âk will be

coupled. Brute-force application of uk in (22) in Algorithm 1

cannot achieve bounded E

[
xkx

T
k

∣∣ Âk

]
because uk in (22) is

not a stabilizing control solution when Âk deviates from Â∗,

which will result in closed-loop instability.

Challenge 4: Simultaneous Learning of System Dynamics

and Optimal Control for the Mission-critical IoT System

with an Unstable Dynamic Plant.

In order to address above challenge, in the following, we

modify the SGD algorithm in (25) and propose a novel

normalized stochastic gradient descent algorithm (NSGD) to

simultaneously learn the system dynamics A and the optimal

control u∗
k for the mission-critical IoT system in an online

manner.

B. Simultaneous Learning of the System Dynamics and the

Optimal Control Solution for the Mission-critical IoT System

over the MIMO Fading Channel

Since the divergence of Algorithm 2 is due to the unbounded

conditional variance of the system state E

[
xkx

T
k

∣∣ Âk

]
, we

propose a novel normalization method to solve Challenge

4, where the learning stepsize is dynamically normalized

based on the realization of the system state at each timeslot.

We summarize the proposed normalized stochastic gradient

descent algorithm in the following Algorithm 3.

Compared to Algorithm 2, the conditional variance of

the system state xk is changed from E

[
xkx

T
k

∣∣ Âk

]
to
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Algorithm 3 Online System Identification and Optimal Con-

trol for the System Dynamics via the Normalized Stochastic

Gradient Decent Algorithm.

Initialization: Set the initial value of Â as Â0 = A0, where

A0 is an S × S dimensional constant matrix.

Step 1 (Update of the learned A): At the k-th time slot,

∀k > 0, the learned system dynamics Âk is obtained using the

system states xk,xk−1, control action uk−1 and the channel

state δk−1Hk−1 as follows:

Âk = Âk−1 + α̂k

(
xk − Âk−1xk−1 − δk−1BHk−1

uk−1)x
T
k−1,

(28)

where α̂k > 0 is the normalized learning stepsize, given by

α̂k =




αk, if ‖xk−1‖2 < 1;

αk

‖xk−1‖
2 , otherwise,

(29)

and {αk, k ≥ 0} is the stepsize sequence.

Step 2 (Update of the control uk): At the k-th time slot,

∀k > 0, the control action uk is updated using plant state xk,

Pk and the channel state δkHk according to (22), and Pk is

updated as

Pk+1 = Pk + αk(Â
T
kPkÂk − δkÂ

T
kPkBHk(H

T
kB

TPkBHk

+HT
kMHk +R)−1HT

kB
TPkÂk −Pk +Q). (30)

Step 3 (Termination): If ‖Âk − A‖2 + ‖Pk+1 − P‖2 <

ǫ, where ǫ > 0 is an arbitrary small value, then obtain the

identified system dynamics Âk and the unknown Pk+1. The

optimal control solution for the IoT controller uk is given by

(22). Otherwise, go to Step 1.

E

[
xkx

T
k 1{‖xk‖

2<1} +
xkx

T
k

‖xk‖
21{‖xk‖

2≥1}
∣∣∣ Âk

]
, which is up-

per bounded by IS due to the normalization factor ‖xk‖2 in

the normalized stepsize α̂k (29). As a result, the convergence

of the proposed online learning algorithm, Algorithm 3, can

be guaranteed.

C. Convergence Analysis

Since the learned control solution for the IoT controller

uk in Step 2 of the proposed online learning Algorithm 3

is obtained based on the successive update of Âk and Pk, the

convergence analysis for the learned control solution uk can

be obtained by analyzing the convergence of Âk and Pk. The

convergence of the online system identification in Step 1 of

Algorithm 3 is summarized below.

Theorem 5: (Convergence of Online System Identification) If

the learning stepsize sequence {αk, k ≥ 1} satisfies Condition

(26), then Âk obtained by (28) in Step 1 of Algorithm 3

converges to the true system dynamics A almost surely, i.e.,

Pr

(
lim
k→∞

Âk = A

)
= 1. (31)

Proof: Please see Appendix E.

Due to the convergence of Âk to A, if Pk converges to

P, then the limiting convergent point P must be the root of

f(P) = 0. Furthermore, if Pk in (30) converges, uk in (22)

will also converge to the optimal control action u∗
k in (16). The

convergence results of Pk in (30) and uk in (22) are formally

summarized in the following theorem.

Theorem 6: (Almost Sure Convergence of Online Learning

of the Value Function and Control Action) Let P be the unique

root of f(P) = 0. If the sufficient condition (13) in Theorem

1 is satisfied and the stepsize sequence {αk, k > 0} satisfies

the condition (26), then

• Convergence of Pk: Pk obtained by (30) in Step 2 of

the proposed online learning Algorithm 3 converges to

P almost surely, i.e., Pr (limk→∞ Pk = P) = 1.

• Convergence of the Value Function and Control Action:

The learned value function Ṽk (xk) in (21) converges to

the optimal value function Ṽ (xk) = xT
kPxk in Theorem

3 almost surely, i.e.,

Pr

(
lim
k→∞

Ṽk (xk) = Ṽ (xk)

)
= 1. (32)

Moreover, the learned control action uk in Step 2 of

the proposed online learning Algorithm 3 converges to

the optimal control action u∗
k = Ω∗

u (Sk) in Theorem 3

almost surely, i.e.,

Pr

(
lim
k→∞

uk = u∗
k

)
= 1. (33)

Proof: Please see Appendix F.

The convergence results in Theorem 6 reveal the

fact that less unstable dynamic plant (i.e., smaller

‖A‖) and more communication resources (i.e., smaller∥∥E
[
ATVT

k (IS −Πk)VkA
]∥∥) are more favorable for the

convergence of the proposed online optimal control algorithm,

Algorithm 3.

V. NUMERICAL RESULTS

In this section, we shall verify the performance advantages

of the proposed learning algorithms for the optimal control

solution of the IoT controller as well as the system dynamics

for the mission-critical IoT system. Specifically, we compare

the proposed scheme with various baselines.

• Baseline 1 (Known System Dynamics and Known Op-

timal Control Solution [54]): The system dynamics A

and the optimal control solution for the mission-critical

IoT system over the MIMO fading channels in (16) are

known. Based on the received system state xk at each

k-th timeslot, the IoT controller generates the optimal

control signal via (16).

• Baseline 2 (Q-learning-based Control with Known Sys-

tem Dynamics [49]): The system dynamics A is known.

At each k-th timeslot, the dynamic plant transmits the

system state xk to the IoT controller. The IoT controller

generates the control signal uk via solving the unknown

kernel value of the Q function with the knowledge of the

system dynamics A.

• Baseline 3 (Q-learning-based Control with Identified

System Dynamics via the Least-square-based Approach
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[16]): At each k-th timeslot, the dynamic plant transmits

the system state xk to the IoT controller. The system

dynamics A is identified via the least-square-based ap-

proach using the system state trajectory {x0,x1, ...xk}.

The IoT controller generates the control signal uk via

solving the unknown kernel value of the Q function based

on the identified system dynamics Â for A.

• Baseline 4 (Q-learning-based Control with Identified

System Dynamics via the SGD-based Approach [55]): At

each k-th timeslot, the dynamic plant transmits the system

state xk to the IoT controller. The system dynamics A

is learned via the SGD-based algorithm using the system

state trajectory {x0,x1, ...xk}, as shown in Algorithm

2. The IoT controller generates the control signal uk via

solving the unknown kernel value of the Q function based

on the identified system dynamics Â for A.

• Baseline 5 (Potential-learning-based Control with Known

System Dynamics [32]): The system dynamics A is

known. At each k-th timeslot, the dynamic plant transmits

the system state xk to the IoT controller. The IoT

controller generates the control signal uk via solving

the unknown kernel value of the value function with the

knowledge of the system dynamics A.

We consider an end-to-end mission-critical IoT sys-

tem in the presence of a MIMO fading channel be-

tween the IoT controller and the actuator of the dy-

namic plant. Specifically, we consider both the stable

and unstable dynamic plant with system dynamics given

by A1 =




0.0470 0.0172 −0.0054 0.0019

0.0117 0.0267 −0.0004 0.0066

−0.0132 0.0096 0.0021 −0.0113

−0.0002 0.0022 −0.0151 0.0099


 and A2 =




0.9970 0.0172 −0.0054 0.0019

0.0117 1.0167 −0.0004 0.0066

−0.0132 0.0096 0.9920 −0.0113

−0.0002 0.0022 −0.0151 0.9941


, respectively. The control

input matrix B =




0.3661 0.3920

−0.3717 0.5731

−1.2367 0.2821

−1.2242 0.4940


. The system noise variance

for all the simulation results is W = I4 ∈ S
4
+.

A. CPU Computational Time Analysis

The CPU computational time versus the dimension of

system state S, the number of transmission antennas Nt

and the number of receiving antennas Nr is illustrated

in Figure 3, 4 and 5, respectively. As shown in the fig-

ures, the CPU computational time for 104 simulation runs

of the proposed scheme is substantially less than that of

Baseline 2-5. This is because the Q-learning-based con-

trol algorithm in Baseline 2-4 involves computation of the

Q-function with
(S+Nt+Nt×Nr×2)×(S+Nt+Nt×Nr×2+1)

2 un-

known variables. The potential-learning-based control algo-

rithm in Baseline 5 involves computation of the value func-

tion with
(S+Nt×Nr×2)×(S+Nt×Nr×2+1)

2 unknown variables.

Differently, the proposed scheme only requires computation

for the reduced-state value function with
S(S+1)

2 unknown

variables, which are strictly smaller then those in each of

Baseline 2-5, and hence the computational complexity can be

significantly reduced. We also observe that Baseline 1 has

Fig. 3: CPU computational time versus the dimension of system states for 104

iterations. The number of transmission antennas Nt = 4 and the number of
receiving antennas Nr = 4. The dynamic plant A ∈ RS×S and the control
input matrix B ∈ RS×4 are randomly generated. Specifically, each element
in matrix A and B are i.i.d. generated following a Gaussian distribution with
zero mean and unit variance.

Fig. 4: CPU computational time versus the number of transmission antennas
for 104 iterations. The number of system states S = 4 and the number of the
receiving antennas Nr = 2. The system dynamics is given by the unstable
matrix A2.

optimal performance in terms of computational complexity

since the system dynamics and the optimal control solution

are known. However, as shown in Figure 3-5, the CPU

computational time of the proposed scheme is similar to that

of Baseline 1. As such, the proposed online identification and

control algorithm for the mission-critical IoT system has low

computational complexity.

B. Convergence Analysis

The MSE between the learned control solution and the

optimal control solution versus iteration number under a stable

and an unstable system is illustrated in Fig. 6 and Fig.

7, respectively. As shown in the figures, when the system

is stable, all the schemes achieve a good MSE over time.

However, when the system is unstable, the learned control

solutions deviate from the optimal one in Baseline 2-5, while

our proposed scheme tracks the optimal one asymptotically.

Specifically, the control solutions obtained via the Q-learning-

based control algorithm in Baseline 2-4 and the potential-

learning-based control algorithm in Baseline 5 deviate from the

optimal control solution due to the “curse of dimensionality”

issue during the learning process for the Q-function and
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Fig. 5: CPU computational time versus the number of receiving antennas
for 104 iterations. The number of system states S = 4 and the number
of transmission antennas Nt = 1. The system dynamics are given by the
unstable matrix A2. The control input matrix B ∈ R4×Nr is randomly
generated. Specifically, each element of the matrix B is randomly generated
following a Gaussian distribution with zero mean and unit variance.

potential function with extended large state space. When the

system is unstable, the mismatch between the learned control

solution and the optimal control solution in Baseline 2-5 will

be enlarged. Our proposed control algorithm, however, only

learns the reduced-state value function with a small state space

without the “curse of dimensionality” issue and hence it can

achieve the optimal control solution.

The MSE between the learned system dynamics and the

true system dynamics versus iteration number under a stable

and an unstable system is illustrated in Fig. 8 and Fig. 9,

respectively. As shown in figures, when the system is stable,

all the schemes achieve a good MSE over time. However,

when the system is unstable, the learned system dynamics of

Baseline 3 and Baseline 4 cannot converge to the true system

dynamics. On the other hand, the learned system dynamics via

the proposed scheme will asymptotically converge to the true

system dynamics. Specifically, the least-square-based identifi-

cation algorithm in Baseline 3 suffers from serious numerical

error when learning the system dynamics since the noisy

system states collected by the IoT controller will jeopardize

the performance. The SGD-based identification algorithm in

Baseline 4 cannot learn the true system dynamics since the

stability assumption for internal dynamics ‖A‖ is not satisfied

and the boundness of the increment in the SGD update is

not guaranteed. Our proposed identification scheme, however,

can track the true system dynamics even in the presence of

an unstable dynamic plant and wireless network due to the

normalization operator in the SGD update.

C. Stability Analysis

The sample path of the averaged l2-norm of the system

state is illustrated in Fig. 10. As shown in the figure, the l2-

norm of the system state of Baseline 2-5 increases over time.

This is because Baseline 2-5 cannot learn the optimal control

solution due to the “curse of dimensionality” issue and hence

the system is unstable. Our proposed scheme, however, can

stabilize the system and achieves a similar performance to that

in Baseline 1. This is because the proposed control scheme

tracks the optimal control solution and stabilizes the system.

Fig. 6: MSE between the learned control solution and optimal control solution
versus iteration number under a stable system. The number of system states
S = 4, the number of transmission antennas Nt = 1 and the number of
receiving antennas Nr = 2. The system dynamics are given by the stable
matrix A1.

Fig. 7: MSE between the learned control solution and optimal control solution
versus iteration number under an unstable system. The number of system
states S = 4, the number of transmission antennas Nt = 1 and the number
of receiving antennas Nr = 2. The system dynamics are given by the unstable
matrix A2.

Fig. 8: MSE between the learned system dynamics and the true system
dynamics versus iteration number under a stable system. The number of
system states S = 4, the number of transmission antennas Nt = 1 and
the number of receiving antennas Nr = 2. The system dynamics are given
by the stable matrix A1.
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Fig. 9: MSE between the learned system dynamics and the true system
dynamics versus iteration number under an unstable system. The number of
system states S = 4, the number of transmission antennas Nt = 1 and the
number of receiving antennas Nr = 2. The system dynamics are given by
the unstable matrix A2.

Fig. 10: Average l2-norm of the system state versus iteration number. The
number of system states S = 4, the number of transmission antennas Nt = 1

and the number of receiving antennas Nr = 2. The system dynamics are given
by the unstable matrix A2.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we considered the online identification and op-

timal control problem for a mission-critical IoT system in the

presence of wireless MIMO fading channels between the IoT

controller and the actuator. Specifically, we first theoretically

analyzed the existing condition for the optimal control solution

of the mission-critical IoT system in the presence of the MIMO

channels between the IoT controller and the actuator via the

PSD decomposition technique. After that, we proposed a novel

stochastic-approximation-based algorithm to learn the optimal

control solution for the IoT controller in an online manner

with known system dynamics. We further extended the optimal

control framework to deal with unknown system dynamics,

and proposed a novel normalized-SGD based identification

and control algorithm that can learn the system dynamics

and the optimal control solution simultaneously in an online

manner. Numerical simulations demonstrate the superiority of

our proposed algorithms compared to the existing approaches.

Our proposed scheme is of practical use. Notice that in

the practical scenarios, many mission-critical IoT systems

such as vehicle platooning IoT systems and water tank IoT

systems, can be modelled as linear dynamic systems over

the wireless network. Our proposed online identification and

optimal control approach can be applied to identify and control

such systems purely based on the real-time plant system state

information and the channel state information without prior

knowledge of the system dynamics of the systems. Moreover,

our work can be extended to solve new practical problems.

(1) Notice that the proposed online learning scheme for the

optimal control solution is obtained by the state-reduction

technique due to the i.i.d. properties of the fading channels

across timeslots. However, when the wireless fading realiza-

tions are correlated among timeslots, the proposed approach

cannot be brute-forcely applied and it is desirable to develop

new methods based on the current work to learn the optimal

control solution in an online manner; (2) Notice that the IoT

system considered in our work follows linear dynamics. When

a nonlinear system is considered, brute-force applications of

our proposed system identification method will lead to model

mismatch. Since the control policy applied in our work is

based on the identified system dynamics, the system will be

unstable under the learned control policy. As a result, it is

desirable to develop new methods based on the current work to

identify the nonlinear system dynamics and learn the optimal

control solution in an online manner.

APPENDIX

A. Proof of Theorem 1

Problem 2 can be solved via MDP techniques. Specifically,

Problem 2 has a solution if there exists a pair of
(
θ, Ṽ (xk)

)

such that the following optimality equation is satisfied:

θ̃ + Ṽ (xk) = E

[
min

u(xk,Hk)

[
r (xk, δkHk,u (xk, δkHk))

+
∑

xk+1

Pr [xk+1|xk, δkHk,u (xk, δkHk)] Ṽ (xk+1)

]
, ∀xk.

(34)

To solve the optimality equation (34), we first assume that

the reduced-state value function Ṽ (xk) has a quadratic form

of xk given by Ṽ (xk) = xT
kPxk with P ∈ S

S
+ being a

constant positive definite matrix. Then, Equation (34) can be

represented as

θ̃ + xT
kPxk = E

[
min
uk

[
xT
kQxk + uT

k

(
R+HT

kMHk

)
uk

+Tr (M) + (Axk + δkBHkuk)
T
P (Axk + δkBHkuk)

+ Tr (PW) + Tr
(
BTPB

) ]
, (35)

and u∗
k that achieves the minimum value of (35) is given by

u∗
k

= −
(
R+HT

kMHk +HT
kB

TPBHk

)−1
δkH

T
kB

TPAxk.

(36)

Substituting (36) into (35), the optimality equation (35) can

be further represented as

θ̃ + xT
kPxk = Tr

(
M+PW +BTPB

)
(37)

+ xT
k E [S (P)]xk, ∀xk, (38)
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where S (P) is a matrix-valued function in terms of P, and is

given by

S (P) = Q+ATPA− δkA
TPBHk(R+HT

kMHk

+HT
kB

TPBHk)
−1HT

kB
TPA.

Assuming Ṽ (xk) exists, i.e., P exists, it follows that

θ̃ = Tr
(
M+PW +BTPB

)
, (39)

Ṽ (xk) = xT
kPxk = xT

k E [S]xk, ∀xk. (40)

As a result, for any given realization of channel state δkHk,

the solution to Problem 2, i.e., θ̃ in (39), Ṽ (xk) in (40) and

u∗
k in (36), is uniquely determined by P. Further note that (40)

is satisfied for all xk, it follows that P satisfies the following

matrix equation:

P =E [S (P)] = ATPA− E[δkA
TPBHk(δkH

T
kB

TPBHk

+ δkH
T
kMHk +R)−1HT

kB
TPA] +Q. (41)

As a result, it suffices to prove that the solution P∗ to the

matrix equation (41) exists, then the solutions of θ̃ , Ṽ (xk)
and u∗

k to Problem 2 all exist.
We now prove the existence of P∗ such that P∗ = E [S (P)]

under the sufficient condition (13). Note that there is a P(1) =
0 such that P(1) = 0 < g

(
P(1)

)
= Q. Moreover, for any

given channel state δkHk, E [S (P)] can be represented as

E [S (P)] = Q+AT
E [Puc

k ]A+

E[ATPc
kA−ATPc

kBHk(H
T
kB

TPc
kBHk

+HT
kMHk +R)−1HT

kB
TPc

kA], (42)

where

Pc
k =VT

k

[ (
VkPVT

k

)
γk

(
VkPVT

k

)
γk

Σk

ΣT
k

(
VkPVT

k

)
γk

ΣT
k

(
VkPVT

k

)
γk

Σk

]
Vk;

(43)

Puc
k =VT

k (IS −Πk)VkPVT
k (IS −Πk)Vk

−VT
k diag

(
0S−γk

,ΣT
k

(
VkPVH

k

)
γk

Σk

)
Vk, (44)

and

Σk =
(
VkPVT

k

)−1

γk

(
VkPVT

k

)
(1:γk;γk+1:S)

. (45)

Additionally, denote ζ̃k = Diag((ζk)
1
2
γk , IS−γk

), it follows that

δkBHk(δkH
T
kMHk+R)−1HT

kB
T = VT

k ζ̃kΠk ζ̃kVk. (46)

Let VkPVT
k )γk

= Pγk
and (ζK)

1
2
γk(VkPVT

k )γk
(ζK)

1
2
γk =

P̃γk
. The Pc

k dependent terms in (17) can be represented as

AT
E[Pc

kA− δkA
TPc

kBHk(δkH
T
kB

TPc
kBHk + δkH

T
k

MHk +R)−1HT
kB

TPc
k]A

= AT
E[(Pc

kΞkΞ
T
k + IS)

−1Pc
k]A

= AT
E[VT

k (VkP
c
kV

T
k ζk + IS)

−1VkP
c
kV

T
k Vk]A

= AT
E[VT

k ζ̃
−1
k (ζ̃kVkP

c
kV

T
k ζ̃kΠk + IS)

−1ζ̃k

VkP
c
kP

c
kV

T
k ζ̃k ζ̃

−1
k Vk]A

= AT
E[VT

k ζ̃
−1
k ]

[
(I+ P̃−1

γk
)−1 (I+ P̃−1

γk
)−1Pγk

Σk

ΣT
kPγk

(I+ P̃−1
γk

)−1 ηk

]

ζ̃−1
k Vk]A,

(47)

where

Ξk = δkBHk(δkH
T
kMHk +R)−

1
2 , (48)

ηk = ΣT
kPγk

Σk − ΣT
kPγk

(I+ P̃−1
γk

)−1Pγk
Σk. (49)

Substituting (47) into (42), it follows that

E[S(P)] = Q+AT
E[VT

k (I−Πk)VkPVT
k (I−Πk)Vk]A+AT

E[VT
k

[
(ζk)

− 1
2

γk (I+P−1
γk

)−1(ζk)
− 1

2
γk (I+ P̃−1

γk
)−1Pγk

Σk

ΣT
kPγk

(I+ P̃−1
γk

)−1 −η̃k

]
]

Vk]A,

(50)

where

η̃k = ΣT
kPγk

(I+ P̃−1
γk

)−1Pγk
Σk. (51)

Note that (I+ P̃−1
γk

)−1 ≤ I and η̃k ≥ 0, it follows that

E [S (P)] ≤ Q+AT
E[Puc

k ]A+ ‖A‖2 E[Tr((ζk)−1
γk

)]I

≤ AT
E[VT

k (I−Πk)VkPVT
k (I−Πk)Vk]A

+Q+ ‖A‖2 E[Tr((ζk)−1
γk

)]I. (52)

We now construct two matrix sequences
{
P

(1)
k : P

(1)
k+1 = g(P

(1)
k ),P

(1)
0 = P(1), k ≥ 0

}
, (53)

and {
P

(2)
k : P

(2)
k+1 = g(P

(2)
k ),P

(2)
0 = P(2), k ≥ 0

}
. (54)

Due to the monotonicity of E [S (P)] w.r.t. P, it follows that

P
(1)
k+1 ≥ P

(1)
k , ∀k ≥ 0, and P

(2)
k+1 ≤ P

(2)
k , ∀k ≥ 0. Therefore,

we have

P
(1)
k ≤ P

(1)
k+1 ≤ P

(2)
k+1 ≤ P

(2)
k ≤ P(2). (55)

Therefore, the monotonically increasing sequence{
P

(1)
k , k ≥ 0

}
is bounded from above, i.e.,

P
(1)
k ≤ P(2), ∀k ≥ 0, it follows that the sequence{
P

(1)
k , k ≥ 0

}
is convergent, i.e., there is a

(
P(1)

)∗
such that

lim
k→∞

P
(1)
k =

(
P(1)

)∗

= E

[
S
((

P(1)
)∗)]

. (56)

Therefore, the existence of P∗ that satisfies (41) under the

sufficient condition (13) in Theorem 1 is proved.

We further prove the uniqueness of P∗ that satisfies (41)

under the sufficient condition (13) in Theorem 1. Suppose

there exist (P∗)(1) and (P∗)(2), which satisfies (42) and

(P∗)(1) 6= (P∗)(2). There is a positive constant γ ∈ (0, 1)
such that (P∗)(1) ≥ γ(P∗)(2) and (P∗)(1) 6≥ γ

′

(P∗)(2), where

γ
′

> γ, since

E[S(P∗)(2)] = E[A(ζkζ
T
k + (γ(P∗)(2))−1)−1AT ] +Q

≥ (1 + ∆)γE[S(P∗)(2)],
(57)

where ∆ = (1−γ)σmin(Q)
‖E[S(P∗)(2)]‖

> 0 and σmin(Q) = 1
‖Q−1‖ .

On the other hand, we have

(P∗)(1) ≥ (1 + ∆)γE[S(P∗)(2)] = (1 + ∆)γ(P∗)(2). (58)

As a result, (1 + ∆)γ > γ. Since ∆ > 0, it contradicts our

assumption, and hence (P∗)(1) = (P∗)(2) and the solution to

(42) is unique. This completes the proof for Theorem 1.
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B. Proof of Theorem 2

MDP theory indicates that the Bellman optimality equation

(14) is satisfied by a pair of (θ, V (Sk)), then the following

inequality holds:

r(Sk,uk) +
∑

Sk+1

Pr(Sk+1|Sk,uk)V (Sk+1) ≥ θ + V (Sk),

(59)

where the equality holds if and only if uk = u∗
k is the

minimizer for the L.H.S. of (59).

Taking full expectation on both sides of (59), it follows that

E[r(Sk,uk)] + E[V (Sk+1)] ≥ θ + E[V (Sk)]. (60)

Summing up the above Inequality (60) on both sides from

k = 0 to k = K and dividing both sides by K, it follows that

θ ≤ 1

K

K∑

k=0

E[r(Sk,uk)] +
1

K
(E[V (Sk+1 − V (S0))]). (61)

Moreover, (35) indicates that

V (Sk) = lim sup
T→∞

T∑

t=0

Eu∗

k+t
[r(Sk+t,u

∗
k+t)− θ]. (62)

Equation (61) and (62) indicate that

(K + T )θ = lim sup
(K+T )→∞

K+T∑

k=0

E[r(Sk,u
∗
k)], (63)

and

θ = lim sup
K→∞

1

K

K∑

k=0

E[r(Sk,u
∗
k)]. (64)

Hence, if there exists a pair (θ, V (Sk)) that satisfies (59), then

V (Sk) is the optimal value function over the extended state

space Sk given by (62) and θ is the optimal average cost for

Problem 1 given by (64). u∗
k is the optimizer to Problem 1.

This concludes the proof for Theorem 2.

C. Proof of Theorem 3

Exploiting the i.i.d. property of the MIMO fading channels

Hk and the controller random access δk, the optimality

equation for Problem 1 in Theorem 2 can be represented as

θ + V (xk, δkHk) = min
uk

[r(xk, δkHk,uk) +
∑

xk+1,δk+1Hk+1

Pr(xk+1, δk+1Hk+1|xk, δkHk,uk)V (xk+1, δk+1Hk+1)]

= min
uk

[r(xk, δkHk,uk) +
∑

xk+1

Pr(xk+1|xk, δkHk,uk)

(
∑

Hk+1

Pr(Hk+1)
∑

δk+1

Pr(δk+1)V (xk+1, δk+1Hk+1))]

= min
uk

[r(xk, δkHk,uk) +
∑

xk+1

Pr(xk+1|xk, δkHk,uk)Ṽ (xk+1)].

(65)

Taking the expectation of both sides of (65) over δkHk, it

follows that

θ + Ṽ (xk) = E[min
uk

[r(xk, δkHk,uk) +
∑

xk+1

Pr(xk+1|xk,

δkHk,uk)Ṽ (xk+1)]].
(66)

As a result, if there exists a pair of (θ̃, Ṽ (xj)) that solves (66),

then θ̃ = θ is the optimal average cost for Problem 1 given by

Theorem 2. Ṽ (xk) = E[V (Sk)|xk] is the reduced-state value

function, and the optimal control policy for Problem 1 is given

by u∗
k, which achieves the minimum value of the L.H.S. of

the (66) and (59). This concludes the proof for Theorem 3.

D. Proof of Theorem 4

We define a Lyapunov function as follows [22]:

Vk =
∥∥∥A− Âk

∥∥∥
2

F
. (67)

The associated Lyapunov drift is given by

Λ
(
Âk

)
= E

{
Vk+1 − Vk| Âk

}
. (68)

Substitute (28) and (67) into (68), the Lyapunov drift is

upper bounded as follows:

Λ
(
Âk

)
≤

E

{
Tr

(
α2
kxkx

T
k

(
A− Âk

)T (
A− Âk

))

+Tr

(
−2αkxkx

T
k

(
A− Âk

)T (
A− Âk

))
+ α2

kxkx
T
k

∣∣∣∣Âk

}
.

(69)

Note that if the bounded conditional variance condition

in Theorem 4 is satisfied, the Lyapunov drift (69) can be

simplified as

Λ
(
Âk

)
≤ η

(
α2
k − αk

) (
A− Âk

)T (
A− Âk

)
+ α2

kµI.

(70)

As a result, if the step-size condition in Theorem 4 is also

satisfied, it follows that lim supk→∞ E

[∥∥∥A− Âk

∥∥∥
2

F

]
= 0,

which results in the almost sure convergence of Âk to A.

Therefore, Theorem 4 is proved.

E. Proof of Theorem 5

We shall analyze the convergence of Âk in Step 1 of

Algorithm 3 using the theory of Lyapunov drift. Specifically,

we define a Lyapunov function as follows [22]:

Vk =
∥∥∥A− Âk

∥∥∥
2

F
. (71)

The associated Lyapunov drift is given by

Λ
(
Âk

)
= E

{
Vk+1 − Vk| Âk

}
. (72)

Substitute (28) and (71) into (72), the Lyapunov drift is

upper bounded as follows:

Λ
(
Âk

)
≤ E

{
Tr((xkx

T
k 1{‖xk‖

2<1} +
xkx

T
k

‖xk‖2
1{‖xk‖

2≥1})
(
A− Âk

)T (
A− Âk

)
)
(
α−2
k − 2α−1

k

)

+ α2
k

xkx
T
k

‖xk‖4
∣∣∣∣Âk

}
. (73)
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Let αk satisfy the Condition (26). It follows that(
k−2 − 2k−1

)
< 0. Note that the last term in (73) is

bounded due to the normalization α2
k

xkx
T
k

‖xk‖
2 ≤ 1

k2 IS . More-

over, the normalized condition variance is upper bounded

as E

[
xkx

T
k

‖xk‖
2

∣∣∣ Âk

]
< µIS , where µ > 0 is a constant.

Further note that E

[
xkx

T
k

∣∣ Âk

]
> W > 0, it follows

that Rank
(
E

[
xkx

T
k

∣∣ Âk

])
= Rank

(
E

[
xkx

T
k

‖xk‖
2

∣∣∣ Âk

])
= S.

Further note that E
[

xkx
T
k

‖xk‖
2

∣∣∣ Âk

]
= 0 if and only if xk = 0,

it follows that there exists a positive constant η such that

E

[
xkx

T
k

‖xk‖
2

∣∣∣ Âk

]
> ηIS . Therefore, we have

Λ
(
Âk

)
≤ η

(
k−2 − 2k−1

) (
A− Âk

)T (
A− Âk

)
+ k−2.

(74)

It follows that

E

[∥∥∥A− Âk+1

∥∥∥
2

F

]
<

(
1 + η

(
k−2 − 2k−1

))

· E
[∥∥∥A− Âk

∥∥∥
2

F

]
+ k−2, ∀k > 0.

(75)

According to the standard Lyapunov theory, it follows

that lim supk→∞ E

[∥∥∥A− Âk

∥∥∥
2

F

]
= 0, which results in

Pr
(
limk→∞ Âk = A

)
= 1. Therefore, Theorem 5 is proved.

F. Proof of Theorem 6

We use the ordinary differential equation (ODE) method

to analyze the convergence of Pk. Specifically, under the

condition for stepsize sequence {αk, k ≥ 0} in Theorem 5,

the update rule in (30) can be approximated by the following

ODE:

Ṗ(t) = f(P(t)),P(0) = P0, t ∈ R, (76)

and the following lemma characterizes the relationship be-

tween the convergence of the the update rule in (30) and the

ODE trajectory (76).

Lemma 2: (Relationship between the Convergence Behavior

of Pk and the ODE Trajectory (76)) If the limiting ODE

(76) has a unique equilibrium point P∗ that is globally

asymptotically stable, then Pk via (30) will converge to P∗

almost surely.

Proof: According to Theorem 2.1 of [56], the proof can be

concluded by verifying the following three conditions:

• (a) (Lipschitz Continuity) f(P) satisfies ‖f(P(1)) −
f(P(2))‖ ≤ (1+‖A‖2)‖P(1)−P(2)‖, ∀P(1),P(2) ∈ S

S
+;

• (b) (Martingale Difference Noise) Let f̂(Pk) = Q +
ATPkA − δkA

TPkBHk(H
T
k (B

TPkB + M)Hk +

R)−1HT
kB

TPkA−Pk and Nk = f̂(Pk)−f(Pk). Then,

the sequence {Nk, k ≥ 0} is a martingale difference se-

quence w.r.t. the filtration
{
Fk , σ(P0, δ0H0, ...δkHk)

}

satisfying E[Nk+1|Fk] = 0S×S ;

• (c) (Square Integrability) The sequence {Nk, k ≥ 0} is

square-integrable with E[‖Nk+1‖2|Fk] ≤ 2‖A‖2(1 +
‖Pk‖2), ∀k > 0.

For Condition (a), we first note that

f(P(1))− f(P(2)) ≤ E[AT (I−K
(2)
k Ξ)(P(1) −P(2))

(I−K
(2)
k Ξ)TA].

(77)

Since ‖AT (I−K
(2)
k Ξ)‖ ≤ ‖A‖, it follows that

‖f(P(1))− f(P(2))‖ ≤ ‖P(1) −P(2)‖+ E[‖AT (I−K
(2)
k Ξ)‖2

‖P(1) −P(2)‖] ≤ (1 + ‖A‖2)‖P(1) −P(2)‖,
(78)

and Condition (a) is verified.

For Condition (b), we note that for any given realiza-

tion of Pk, Nk+1 = f̂(Pk+1) − f(Pk+1) is a function

of {δk+1Hk+1}. It follows that E[Nk+1|Fk] = 0S×S and

Condition (b) is verified.

For Condition (c), it can be verified by

E[‖Nk+1‖2Pk] ≤ E[‖f̂(Pk+1)−Q‖2 + ‖f(Pk+1)−
Q‖2|Pk] ≤ 2‖APkA

T ‖2 ≤ 2‖A‖2‖Pk‖2.
(79)

�

The task now turns to analyze the existence of the unique

equilibrium point P∗ for the limiting ODE (76) that is globally

asymptotically stable. To achieve this goal, we introduce the

following virtual fixed-point process
{
P̃k, k ≥ 0

}
:

P̃k+1 = P̃k + ξf
(
P̃k

)
, P̃0 = P0, ∀k ≥ 0, (80)

where ξ ∈ (0, 1) is a constant. We have the following lemma

to characterize the relationship between the state trajectory of

the virtual fixed-point process (80) and the state trajectory of

the solution to the limiting ODE (76).

Lemma 3: (Relationship between the ODE Trajectory (76)

and the Virtual Fixed-point Process (80)) Let tk = kξ, ∀k ≥ 0.

We define a continuous piece-wise linear function P̄(t), ∀t ≥
0, by P̄(tk) = P̃k with linear interpolation on the interval

[tk, tk+1] as

P̄(t) = P̃k + ξ−1(t− tk)(P̃k+1 − P̃k). (81)

Let Pl (t) , t ≥ l, denote the trajectory of ODE (76) with initial

condition Pl(t)|t=l = P̄(l), ∀l ∈ R
+. Then, for any l > 0 and

L > 0, it follows that

sup
t∈[0,L]

∥∥P̄ (l + t)−Pl (l + t)
∥∥ = O (ξ) . (82)

Proof: Let L = Nξ for some N > 0. For t > 0, let [t] =
max {kξ : n > 0, kξ < t}. For n ≥ 0 and 1 ≤ l ≤ L, we have

P̄(tk+l) = P̄(tk) +

∫ tk+l

tk

f(P̄([t]))dt, (83)

Ptk(tk+l) = P̄(tk) +

∫ tk+l

tk

f(Ptk([t]))dt+

∫ tk+l

tk

(f(Ptk(t))− f(Ptk([t])))dt.

(84)
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It follows that

sup
0≤j≤l

‖P̄(tk+j)−Ptk(tk+j)‖ ≤ c1ξ(1 + P̄(tk)) + ξL‖A‖2

l−1∑

m=0

sup
j≤m

‖P̄(tk+j)−Ptk(tk+j)‖,

(85)

where c1 is a constant. By the Gronwall inequality, it follows

that

sup
k≤j≤k+N

‖P̄(tj)−Ptk(tj)‖2 ≤ c2ξ, (86)

where c2 is a constant. Since both suptj≤t≤tj+1
‖P̄(t) −

P̄(tj)‖2 and suptj≤t≤tj+1
‖Ptk(t) − Ptk(tj)‖2 are O(ξ), it

follows that

sup
t∈[0,L]

‖P̄(l + t)−Pl(l + t)‖ ≤ c3ξ, (87)

where c3 is a constant. This concludes the proof. �

As a result, the gap between the state trajectory of the virtual

fixed-point process (80) and that of the limiting ODE (76) is

O (ξ), which can be made arbitrarily small by letting ξ → 0.

Therefore, the convergence of the state trajectory of the virtual

fixed-point process (80) under arbitrary ξ ∈ (0, 1) implies the

convergence of the state trajectory of the limiting ODE (76),

which in turn leads to the convergence of Pk updated by (30).

Hence, the task turns to prove the convergence of the state

trajectory of the virtual fixed-point process (80) under arbitrary

ξ ∈ (0, 1).
We now analyze the convergence behaviors of the virtual

fixed-point process
{
P̃k, k ≥ 0

}
in (80) under arbitrary ξ ∈

(0, 1). Denote g̃(P) = P + ξf (P). We know that if the

sufficient condition (13) in Theorem 1 is satisfied, the solution

P∗ to the fixed-point equation P∗ = g̃(P∗) exists and is

unique. Using the same techniques as in Appendix A, there

is a P̃(1) = 0 such that P̃(1) < g̃
(
P̃(1)

)
, and a sufficiently

large P̃(2) such that P̃(2) > g̃
(
P̃(2)

)
. We now construct the

following two matrix sequences:
{
P̃

(1)
k : P̃

(1)
k+1 = g̃(P̃

(1)
k ),P

(1)
0 = 0, k ≥ 0

}
, (88)

{
P̃

(2)
k : P̃

(2)
k+1 = g̃(P̃

(2)
k ),P

(2)
0 = P̃(2), k ≥ 0

}
. (89)

Let the initial condition of the fixed-point process be 0 ≤
P̃0 ≤ P̃(2), it follows that P̃

(1)
k ≤ P̃k ≤ P̃

(2)
k . Let k → ∞

and note that P∗ exists and is unique, it follows that

P∗ = lim
k→∞

P̃
(1)
k ≤ lim

k→∞
P̃k ≤ lim

k→∞
P̃

(2)
k = P∗. (90)

Since P̃(2) can be arbitrarily large, it follows that for

any bounded initial value P̃0, the virtual fixed-point process{
P̃k, k ≥ 0

}
in (80) converges to P∗. Therefore, the limiting

ODE (76) has a unique equilibrium point P∗ that is globally

asymptotically stable. It follows that the Pk obtained by the

proposed Algorithm 3 converges to P∗ almost surely. Based

on the structural properties in Theorem 3, it follows that

Ṽk (xk) and uk (xk) converges to the optimal value function

Ṽ (xk) and optimal control action u∗ (xk) w.p.1., respectively.

Therefore, Theorem 6 is proved.
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[52] M. El Chamie, Y. Yu, B. Açıkmeşe, and M. Ono, “Controlled Markov
processes with safety state constraints,” IEEE Trans. Autom. Control,
vol. 64, no. 3, pp. 1003–1018, 2018.

[53] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A
double deep Q-learning model for energy-efficient edge scheduling,”
IEEE Trans. Serv. Comput., vol. 12, no. 5, pp. 739–749, 2018.

[54] A. S. Leong, S. Dey, and J. Anand, “Optimal LQG control over
continuous fading channels,” IFAC Proceedings Volumes, vol. 44, no. 1,
pp. 6580–6585, 2011.

[55] Y. Li and Y. Liang, “Learning overparameterized neural networks via
stochastic gradient descent on structured data,” Adv. Neural Inf. Process.

Syst., pp. 8157–8166, 2018.
[56] H. Kushner and G. G. Yin, Stochastic approximation and recursive

algorithms and applications. Springer Science & Business Media,
2003, vol. 35.

Minjie Tang (Graduate Student Member, IEEE) re-
ceived the B.Eng. degree in information and commu-
nication engineering from the Huazhong University
of Science and Technology, Wuhan, China, in 2018.
He is currently working toward the Ph.D. degree
at the Department of Electronic and Computer En-
gineering, Hong Kong University of Science and
Technology (HKUST), Hong Kong. His research
interests include wireless communication, industrial
Internet of Things (IIoT), learning-driven control,
wireless sensing and networked control systems.

Songfu Cai (Member, IEEE) received the Ph.D. de-
gree in electronic and computer engineering (ECE)
from The Hong Kong University of Science and
Technology (HKUST) in 2019. He is currently a
Post-Doctoral Research Fellow with the Department
of ECE, HKUST. He received the Hong Kong Ph.D.
Fellowship (HKPF) in 2013. His research interests
include wireless communication, industrial Internet
of Things (IIoT), learning-driven radio resource
management, and networked control systems.

Vincent K. N. Lau (Fellow, IEEE) obtained B.Eng
(Distinction 1st Hons) from the University of Hong
Kong (1989-1992) and Ph.D. from the Cambridge
University (1995-1997). He was with Bell Labs from
1997-2004 and the Department of ECE, Hong Kong
University of Science and Technology (HKUST) in
2004. He is currently a Chair Professor and the
Founding Director of Huawei-HKUST Joint Inno-
vation Lab at HKUST. His current research focus
includes wireless communications for 5G systems,
content-centric wireless networking, wireless net-

working for mission-critical control, and cloud-assisted autonomous systems.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 23,2022 at 02:39:28 UTC from IEEE Xplore.  Restrictions apply. 


