
HAL Id: hal-02916810
https://inria.hal.science/hal-02916810v1

Submitted on 18 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

QuickCal: Assisted Calibration for Crystal-Free
Micro-Motes

Tengfei Chang, Thomas Watteyne, Filip Maksimovic, Brad Wheeler, David
Burnett, Titan Yuan, Xavier Vilajosana, Kris Pister

To cite this version:
Tengfei Chang, Thomas Watteyne, Filip Maksimovic, Brad Wheeler, David Burnett, et al.. Quick-
Cal: Assisted Calibration for Crystal-Free Micro-Motes. IEEE Internet of Things Journal, In press,
�10.1109/JIOT.2020.3015725�. �hal-02916810�

https://inria.hal.science/hal-02916810v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 1

QuickCal: Assisted Calibration
for Crystal-Free Micro-Motes

Tengfei Chang∗, Thomas Watteyne∗ Senior, IEEE, Filip Maksimovic†, Brad Wheeler†,
David C. Burnett†, Titan Yuan†, Xavier Vilajosana‡ Senior, IEEE, Kris Pister†

∗ EVA team, Inria, Paris, France
† BSAC, University of California, Berkeley, CA, USA
‡ Universitat Oberta de Catalunya, Barcelona, Spain

Abstract—The Single Chip Micro Mote (SCµM) is a crystal-
free single-chip mote that brings us one step closer to the Smart
Dust vision, in particular as it can communicate with off-the-
shelf IEEE802.15.4 and Bluetooth Low Energy devices. However,
before it can be part of such networks, the crystal-free SCµM
chip needs to be able to accurately tune its communication
frequency to synchronize to the network. This is a challenge
since its on-board RC and LC-based resonating circuits have a
drift rate that can be 3 orders of magnitude worse than crystal-
based oscillators typically used in today’s radios. This article
introduces QuickCal, a solution that allows a SCµM chip to self-
calibrate against off-the-shelf devices dedicated to assisting with
its calibration. We show that a SCµM chip can self-calibrate
against this QuickCal Box in fewer than 3 min. We further
validate that, once it has self-calibrated, a SCµM chip can reliably
communicate with off-the-shelf IEEE802.15.4 devices. Finally, we
demonstrate a heterogeneous network – composed of a SCµM
chip and an OpenMote device – implementing a full 6TiSCH
Industrial IoT protocol stack, which uses time synchronization
and channel hopping. This is the first time that a crystal-
free radio is participating in a channel-hopping enabled TSCH
network.

Index Terms—Crystal-free, single-chip mote, SCµM, calibra-
tion, 6TiSCH.

I. INTRODUCTION

Low-power wireless technology is ubiquitous in today’s
Industrial space with standards such as WirelessHART [1],
ISA100.11a [2], and 6TiSCH [3]. All of these standards are
based on Time Synchronized Channel Hopping (TSCH), a
networking technique where nodes synchronize to lower their
power consumption, and use channel hopping to increase
reliability. Tens of thousands of TSCH networks are deployed
today1. The major Industrial IoT (IIoT) applications are asset
performance monitoring [4], [5], logistic management [6], [7],
[8], and real-time control-process [9], [10]. It is predicted that
the industrial manufacturing sector will account for 33% of
the total IoT applications within the next decade [11].

The Single Chip Micro Mote (SCµM) [13] is a
2×3×0.3 mm3 crystal-free mote-on-chip, which features

Corresponding author: Tengfei Chang (email:
tengfei.chang@inria.fr). Copyright (c) 20xx IEEE. Personal
use of this material is permitted. However, permission to use this material
for any other purposes must be obtained from the IEEE by sending a request
to pubs-permissions@ieee.org.

1 One vendor alone, Emerson, reports over 53,000 networks, or 18 billion
hours of operation: https://www.emerson.com/en-us/expertise/automation/
industrial-internet-things/pervasive-sensing-solutions/wireless-technology.

Fig. 1. Development environment of the Single Chip Micro Mote (SCµM),
a 2×3×0.3 mm3 crystal-free mote-on-chip, which features an ARM Cortex-
M0, an IEEE802.15.4 radio operating at 2.4 GHz, and an optical receiver for
programming [12]. Once the firmware is loaded onto the SCµM chip, the
chip can then be removed from its development board; all it needs to operate
are a power source and an antenna.

an ARM Cortex-M0 core, a radio compliant with the
IEEE802.15.4 [14] (the Physical layer that 6TiSCH stack
builds on) and Bluetooth Low Energy standards, and an optical
receiver for programming. SCµM is specifically designed for
micro-robotic applications.

SCµM does not require any external components, except
power and an antenna, to operate. In particular, it does not
require an external clock source such as a crystal oscillator.
Without a crystal, SCµM relies on 4 internal oscillating
circuits for timekeeping: the “HF oscillator” (a 20 MHz RC
oscillator to clock the Cortex-M0), the “2M RC oscillator”
(to time the modulating and data rate when transmitting),
the 64 MHz RC oscillator (to time the modulating and data
rate when receiving, as well as the internal analog-to-digital
converters), and the 2.4 GHz “LC oscillator” (to control the
communication frequency of the IEEE802.15.4 radio).

The downside of such a crystal-free architecture is that
the operating frequency of these internal oscillators can drift
significantly, e.g., 16,000 ppm during a temperature change of
45 ◦C [15], much more than the 10-40 ppm typically seen
in crystal oscillators. This drift depends on many elements

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 2

in addition to temperature, including electronic noise, supply
voltage, and manufacturing process. Timing inaccuracies due
this high drift make it difficult for SCµM to communicate
since the oscillators are used to set the communication fre-
quency, time the modulation, and maintain general timekeep-
ing. The IEEE802.15.4 standard [14], for example, mandates
that all compliant radios use clocks that have a drift of less
than 40 ppm.

High drift is a common issue in crystal-free SoC designs,
including SCµM. This is because of the fact that the electronic
components used in the crystal-free oscillators are affected by
the elements mentioned above. In this article, we develop a
calibration proposed using SCµM, but our results carry over
directly to any other crystal-free SoC design.

In this article, we develop a technique we call “Quick-
Cal”, allowing a crystal-free radio chip to self-calibrate and
communicate with off-the-shelf IEEE802.15.4 radios. In this
article, we apply and test QuickCal on the SCµM chip.
QuickCal relies on a “QuickCal Box” being within range
of the SCµM chip. This QuickCal Box contains 16 off-the-
shelf IEEE802.15.4-compliant devices (we use the popular
OpenMote platform [16]) running firmware specific for this
calibration. The CC2538 system-on-chip of the OpenMote
uses an external 32 MHz crystal as a (high-accuracy) external
timing reference. Because of the requirement to have a Quick-
Cal Box nearby, we qualify our approach as an “assisted”
calibration.

The main oscillator running on SCµM is based on an
LC voltage-controlled oscillator (VCO) architecture and uses
three overlapping 5-bit capacitive digital-to-analog converters
(DACs) to control its frequency. The state of these switch
capacitors are mapped to registers, allowing the software to set
any of the 215 = 32, 768 frequency settings. The calibration
process consists of discovering the frequency settings that
allow SCµM to both transmit and receive IEEE 802.15.4
frames on each of the 16 frequencies of the 2.4 GHz band
defined in the standard. Because of the architecture of SCµM’s
radio, the setting for transmitting and for receiving at a given
communication frequency is different. This means that the
calibration process involves discovering 32 frequency settings.

Since the LC oscillator’s drift changes with temperature and
supply voltage, the same 32 frequency settings cannot be used
over temperature and supply voltage. A mechanism is required
to trigger re-calibration of the 32 frequency settings, which
ongoing work.

As detailed in Section III-C, the proposed QuickCal solution
relies on two behaviors. First, we program the devices in
the QuickCal Box to send and receive frames on each of
the 16 frequencies. Second, we have the SCµM chip sweep
its frequency settings, recording the settings on which it can
successfully transmit and receive frames to and from the
QuickCal Box.

QuickCal is a pioneering effort to not only develop a solu-
tion for the time-reference calibration of micro-motes but also
establish a methodology for the industrialization of the entire
fabrication process, closing the gap between technological
breakthroughs and industrial adoption. The contributions of
this article are three-fold:

• We characterize SCµM’s 2.4 GHz LC oscillator, in par-
ticular the relationship between the frequency setting and
the frequency.

• We design the QuickCal solution and associated protocol,
which allows a SCµM chip to self-calibrate in under
3 min.

• We evaluate the quality of the resulting calibration in
terms of Packet Delivery Ratio (PDR) of the communi-
cation between SCµM and an OpenMote and demonstrate
a heterogeneous 6TiSCH network.

The remainder of this article is organized as follows.
Section II summarizes related work on frequency calibration
in wireless systems. Section III characterizes SCµM’s LC
oscillator, specifically the relationship between the frequency
setting and the frequency. Section IV introduces the QuickCal
solution, including the QuickCal protocol, the frame format,
and the algorithms used to select frequency setting. Section V
evaluates QuickCal by measuring the quality of the resulting
calibration and running a full 6TiSCH Industrial IoT heteroge-
neous network of a SCµM chip and OpenMote boards. Finally,
Section VI concludes this article and presents future work.

II. RELATED WORK

Reducing the overall PCB design footprint and development
costs are two innovation directions recognized by both indus-
trial and academic researchers. The TI CC2652RB [17] chip is
one of the first commercialized crystal-less 2.4 GHz wireless
micro-controller. It is a System-in-Package which integrates a
Bulk Acoustic Wave (BAW) MEMS resonator consisting of
a piezoelectric material sandwiched between two electrodes.
This resonator provides a stable and accurate frequency for the
transceiver system. While indeed is allows for a crystal-less
design on a PCB, it is not a single-chip solution.

Oscillating circuits internal to a chip (RC- or LC-based)
can be used as a time reference. Song et al. [18] develop a
3.5 mm×3.5 mm crystal-less transceiver, used as a smart pill
to help diagnose gastrointestinal diseases. The signal carrier
is in the 402–405 MHz band, driven by a prescaled 1.6 GHz
Digitally Controlled Oscillator (DCO). The carrier drift needs
to be within ±1,000 ppm in order to be able to communicate
with an external hub device outside the body. The transceiver
includes a “Tunable Matching Network (TMN)”, which con-
tains two capacitor banks. During calibration, the TMN sweeps
the two capacitor banks and measures the TX output amplitude
through an ADC. The calibration stops when the TX output
amplitude reaches a pre-defined target level. The transceiver
is also calibrated using a phase-tracking RX approach [19]
while receiving packets from the external hub. The hub is
equipped with an external crystal, which serves as a high
accuracy time reference. Evaluation shows that the calibration
results in ±125 ppm drift with a 5% power supply variation.

Alghaihab et al. [20] create a crystal-less BLE transmitter
by using two LC oscillators for transmission and reception,
respectively. In the transmitter, a clock recovery circuit with an
8 MHz intermediate frequency provides the references for two
PLLs. These are used to lock to the frequency when a sequence
of 3 packets on an advertisement channel are received. Once

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 3

the packets are received, the LC oscillator for transmission is
calibrated, so that the transmitter is able to send packets over
the locked frequency. The transceiver is measured to have a
sensitivity of -86 dBm at a bit error rate of 10−3.

SCµM is the first crystal-free micro-mote that can inter-
operate with standards-compliant radios (IEEE802.15.4 and
Bluetooth Low Energy). Maksimovic et al. [13] give an
overview of SCµM. Because of its crystal-free nature, SCµM
uses an internal LC oscillator to synthesize the 2.4 GHz
communication frequency. The challenge is that this oscillator
exhibits a frequency with a variation of 2,100 ppm over the
commercial temperature range, orders of magnitude higher
than the 10-40 ppm drift typically seen with crystal oscil-
lators. SCµM features a digitally controlled oscillator with a
source-degenerated capacitive DAC, which allows the micro-
controller to fine-tune the frequency of the oscillator. The
software can compensate for the drift of the LC oscillator by
tuning the DAC and bring the frequency to within 40 ppm as
imposed by the IEEE802.15.4 standard.

Wheeler et al. [21] study the stability of SCµM’s LC
oscillator in the absence of temperature changes. By placing
an early version of the SCµM chip running a temperature
compensation algorithm into a temperature-controlled cham-
ber, at a constant 25 ◦C, the LC oscillator drifts by ±40 ppm
over 13 hours. This was done by using an off-chip current
source and regulator. Over a 50 ◦C temperature ramp, the
LC oscillator drifts by 4,000 ppm. The authors propose a
receiver-based feedback approach to counteract the impact
of temperature changes: each time SCµM receives a frame,
it monitors the “I” channel samples and counts the zero-
crossings during a 100 µs window. Based on that number,
SCµM determines whether to adjust the frequency of the LC
oscillator.

To run the TSCH protocol, a low-power timer needs to be
running continuously for a device to keep a precise notion
of time. Khan et al. [22] design a 25 MHz ring oscillator to
time the state machine of the TSCH protocol. To calibrate this
timer, the authors use an OpenMote [16] as a network time ref-
erence, an IEEE802.15.4-compliant off-the-shelf device. The
OpenMote sends packets at a fixed interval. By timestamping
the reception of the start-of-frame delimiter (SFD) of each
of these frames using the oscillator and knowing the period
of the frames, Khan et al. [22] calibrate the oscillator’s
frequency. This is similar to the same authors’ previous work
on calibrating an LC oscillator [23]. This approach yields a
maximum synchronization error of 853 µs for a 10-hop TSCH
network with a 1 s data generation period.

Similar to the current article, Suciu et al. [15] develop
a technique to calibrate the LC oscillator of SCµM. Their
approach consists of an offline characterization followed by an
online calibration. During the characterization step, the SCµM
chip sweeps though all of the settings of its LC oscillator,
and the LC counter, which is detailed in III-A, is used to
map these settings against the measured oscillator frequency.
The mapping is non-linear, so the authors explore different
linearization approaches: recursive least squares (RLS) and
moving average (MA) [24]. The results of this characterization
(i.e. the linearization function) are stored in the chip. During

online calibration, the SCµM chip sweeps through its LC oscil-
lator settings once again until it successfully receives a frame
sent by an OpenMote. The linearization function then allows
is to compute the LC oscillator settings corresponding to the
other 15 communication frequencies. The main downside of
this approach is that the linearization function is different from
mote to mote and potentially different over temperature.

The QuickCal technique we develop in Section III allows
us to avoid the offline characterization from [15] altogether.
Instead of the offline characterization of every chip, QuickCal
relies entirely on frequency sweeping using a QuickCal Box
containing off-the-shelf devices as a reference. QuickCal does
not rely on any linearization either. One added benefit is that
the frequency setting for each of the frequencies is measured
experimentally rather than computed, resulting in a more
dependable tuning.

In the work [12], a full 6TiSCH stack is running on
SCµM and form a hybrid network with OpenMote boards.
This did rely, however, on manual pre-calibration of a single
frequency, and the 6TiSCH implementation used a single
communication frequency, thereby not benefiting from the
high reliability channel hopping brings. QuickCal lifts this
restriction by allowing SCµM to self-calibrate its LC oscillator
for all frequency channels, thereby enabling channel-hopping
behavior.

In light of this related work, we start by characterizing
SCµM’s LC oscillator, the oscillator which sets the communi-
cation frequency and which is the most challenging to calibrate
(Section III). We then use the insight to design the QuickCal
solution (Section IV). QuickCal is then evaluated in Section V,
both in terms of Packet Delivery Ratio (PDR) and running a
full 6TiSCH network.

III. CHARACTERIZING SCµM’S LC OSCILLATOR

We first introduce the structure of the LC oscillator tuning
system. We then show the sawtooth-shaped output frequency
of SCµM over the LC oscillator settings on 2 SCµM devel-
opment boards. Finally, we present a frequency sweep mech-
anism against OpenMote, and show the frequency distribution
over all LC oscillator settings.

A. Overview of the LC Oscillator

Fig. 2 illustrates the structure of the LC oscillator tuning
system. The output frequency of the LC oscillator ranges
from 2.1 GHz to 2.6 GHz. The frequency is configured by
setting three 5-bit registers – named coarse, mid and fine
– which control 15-bits capacitive tuning DACs. In this paper,
we represent the frequency setting with a 3-value tuple: c.m.f ,
where c, m and f represent the value of the coarse, mid
and fine registers, respectively. The values of the frequency
settings range from 0.0.0 to 31.31.31, 32,768 steps in
total. A divider and a LC counter register are connected to
the output of the LC oscillator. The LC counter increments
at each cycle of the down-converted LC oscillator clock. The
output frequency of the LC oscillator can be calculated from
the value of the LC counter. For example, with the divider set

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 4

Fig. 2. The structure of the LC oscillator tuning system. The output frequency
of the LC oscillator ranges from 2.1 GHz to 2.6 GHz. The frequency is
configured by setting three 5-bit registers – named coarse, mid and fine
– which control 15-bits capacitive tuning DACs. The LC oscillator clocks a
counter through a divider, allowing us to measure its frequency.

Fig. 3. Procedure for measuring the frequency of the LC oscillator using a
second oscillator and some timing circuitry.

to 960, if the LC counter increments by 2549 after 1 ms, the
LC oscillator frequency is 2549·960

0.001 = 2.44704 GHz.
Throughout this section, we measure the frequency of the

LC oscillator. SCµM is designed with a timing circuitry
to allow us to perform this measurement internally. This is
illustrated in Fig. 3. We use the HF oscillator, which is
calibrated during bootloading [25], as a reference. The HF
20 MHz oscillator, is divided down to the 500 kHz RF timer,
which clocks a counter. A compare register is armed with a
value of 500, and triggers an interrupt each time the counter
of the RF timer reaches that value, i.e. every 1 ms. In the
handler of that interrupt, the software reads the value of the
LC counter, which is clocked by a divided-down version of
the LC oscillator. Per the calculation above, reading value
2549 indicates that the LC oscillator has a frequency of
2.44704 GHz.

During bootloading, the LC oscillator could in a way similar
to the HF oscillator. However, due to its inherent instability,
this coard calibration would not be sufficient for SCµM to
configure a correct communication frequency. For that reason,
we develop QuickCal.

B. LC Frequency as a Function of Frequency Setting

Figs. 4(a) and 4(b) depict the LC oscillator’s frequency on
SCµM development boards Q3 and Q8 as a function of the
frequency settings in the range from 22.0.0 to 29.31.31.
Fig. 5 is a zoomed-in version of Fig. 4(a), focusing on a
coarse frequency setting of 24.

The results show three characteristics of the LC oscillator:
• The frequency drops when the mid or fine fre-

quency settings roll over. This is designed intentionally

to have overlapping codes, so that there is no gap in the
code-to-frequency mapping.

• The frequency settings of the LC oscillator for trans-
mitting (TX) and receiving (RX) at the same frequency
are different. For example, in Fig. 4(a), to transmit on
channel 18 (2.440 GHz), the frequency setting needs to be
between 25.18.22 and 25.19.27. For receiving on
the same frequency, it needs to be between 25.21.25
and 25.22.28. This difference is partly because of load
pulling: during reception, the mixer is turned on while the
power amplifier is turned off; during transmission, the
mixer is turned off while the power amplifier is turned
on. This changes the capacitance of the LC oscillator,
resulting in a different register configuration to obtain the
same frequency. This difference is also because SCµM
uses a low-intermediate frequency (IF) receiver, which
requires a difference in the LC oscillator setting between
transmit and receive2. While the latter is specific to the
design of the SCµM radio, we believe the effect load
pulling to be generic and possibly affecting other designs.

• The frequency settings are different from chip to chip.
For example, to transmit on channel 18 (2.440 GHz)
the frequency setting needs to be between 25.18.22
and 25.19.27 on board Q3 (Fig. 4(a)) and between
25.14.6 and 25.15.6 on board Q8 (Fig. 4(b)). This
chip-to-chip variation is primarily due to effective refer-
ence mismatch between voltage regulators and DC supply
sensitivity of the oscillator. Because of the limited avail-
able room for on-chip capacitance for regulator stability,
the amplifier input pair needs to be kept small, which
results in a large and unpredictable offset.

Because frequency settings are different, it is essential to
be able to calibrate these settings automatically. Please note
that, while we fine-tune the specifics of the QuickCal solution
to SCµM, any crystal-free architecture requires similar (self-
)calibration.

C. Computer-Assisted Calibration

We develop the base principle of calibration in this section
using a computer. We then turn that base principle into a full
self-calibration routine (i.e. which SCµM carries out on its
own without computer assistance) in the QuickCal solution
(Section IV).

Fig. 6 shows the setup we use: a SCµM chip and an
OpenMote are connected to a computer and can send serial
data through that connection to the computer. The goal is to
determine the LC oscillator frequency setting SCµM needs
to use to both transmit to and receive from the OpenMote
on any IEEE802.15.4 frequency. Calibration happens in two
steps: to calibrate the TX (SCµM →OpenMote) and RX
(OpenMote→SCµM). In both cases, we have SCµM sweep
through its frequency settings, looking for the setting that
“works”.

2 For example, to communicate at 2.405 GHz, the LC oscillator needs
to have a frequency of 2.4055 GHz when transmitting and a frequency of
2.4025 GHz when receiving. There is hence a 3 MHz difference between the
required settings regardless of load pulling.

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 5

(a) Developing Board Q3 (b) Developing Board Q8

Fig. 4. Frequency of the LC oscillator as a function of the frequency setting in the range from 22.0.0 to 29.31.31 on SCµM development boards Q3
and Q8.

Fig. 5. Zoomed-in version of Fig. 4(a), focusing on a coarse frequency
setting of 24.

Fig. 6. Setup used to calibrate the SCµM LC frequency settings, using a
computer and an off-the-shelf IEEE802.15.4 device (OpenMote).

To calibrate SCµM’s LC oscillator for TX, we have the
OpenMote continuously listening on a particular channel and
reporting the RSSI and the frequency offset of the frames it
receives. We have SCµM sweep through all of its 32,768 fre-
quency settings and transmit 3 frames for each setting, one
every 5 ms. SCµM indicates the frequency setting it is using
inside the frame it sends. We do the opposite to calibrate
SCµM’s LC oscillator for RX: OpenMote continuously trans-
mits on a particular channel (a frame every 7 ms) while SCµM
sweeps through its frequency settings, listening for 15 ms
on each setting. We repeat this procedure for each of the
16 channels.

Fig. 7 illustrates the results of TX calibration (SCµM
→OpenMote) on channel 13. The x-axis is the frequency
setting. The top plot shows the frequency SCµM transmits
on, as in Fig. 4. Each dot in the bottom plots indicates that
the OpenMote has received a frame; these plots show the
frequency offset and the RSSI for that frame. As expected,
the OpenMote receives frames on channel 13 (highlighted in
green). The OpenMote also receives frames sent by SCµM on
frequencies 2.270 GHz and 2.343 GHz (highlighted in red) at
a much lower RSSI. The CC2538 should not be able to receive
signals at 2.270 GHz and 2.343 GHz but, without insight into
its design details, we cannot speculate as to the reason it is
able to receive SCµM transmissions at such low frequencies.

Fig. 8 illustrates the results of RX calibration
(OpenMote→SCµM) on channel 13. The bottom plot is
a histogram of the number of frames received by SCµM for
each frequency setting. As expected, SCµM received frames
for a narrow range of frequency settings.

The sweeping technique used in this section can be used to
allow SCµM to self-calibrate without a computer. This is the
base mechanism used by QuickCal.

IV. THE QUICKCAL SOLUTION

The goal of QuickCal is to allow a SCµM chip to self-
calibrate its LC oscillator, so that it can communicate with
other SCµM chips and off-the-shelf IEEE802.15.4 devices,
for example by forming a 6TiSCH network. QuickCal uses
off-the-shelf IEEE802.15.4 devices as references for the cali-
bration. Those devices form groups of 16 OpenMotes, called

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 6

Fig. 7. Results of TX calibration (SCµM →OpenMote) on channel 13. The top plot shows the frequency SCµM transmits on, as in Fig. 4. Each dot in the
bottom plots indicates that the OpenMote has received a frame; these plots shows the frequency offset and the RSSI for that frame.

Fig. 8. Results of RX calibration (OpenMote→SCµM) on channel 13. The top plot shows the frequency SCµM receives on. The bottom plot is a histogram
of the number of frames received by SCµM for each frequency setting.

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 7

Fig. 9. Several QuickCal Box’s are placed in the deployment area of the
SCµM chip, such that each SCµM chip is within communication range of
at least one QuickCal Box. SCµM uses a QuickCal Box as a reference to
self-calibrate.

a “QuickCal Box”. At least one QuickCal Box needs to be
within range of each SCµM chip for QuickCal to work, as
depicted in Fig. 9.

The OpenMotes of a QuickCal Box run firmware that
implements the QuickCal protocol. The firmware on SCµM
exchanges messages using the QuickCal protocol with the
QuickCal Box to self-calibrate. The self-calibration algorithm
SCµM uses is based on the sweeping mechanism explored in
Section III-C. The SCµM chip starts with no LC oscillator
calibration whatsoever; the objective is to determine 32 fre-
quency settings: one for transmitting and one for receiving at
each of the 16 frequencies. Conceptually, QuickCal works as
follows. The 16 OpenMotes in the QuickCal Box regularly
send frames, each on a different frequency. SCµM sweeps
over its frequency settings while listening to determine the
settings for receiving. It then sweeps again while sending a
frame and listening for an acknowledgement frame on the
same frequency, to determine the settings for transmitting. The
different timings of the QuickCal protocol, including when to
update the frequency setting, when to send the next frame, and
how long to wait a frame, are scheduled using the 500 kHz
RFTimer clock.

The goal for the remainder of this section is to turn the
high-level behavior described above into a working system
and provide all necessary details. Section IV-A introduces
the QuickCal protocol, based on only 3 frame types. Sec-
tion IV-B describes the QuickCal Box: its hardware compo-
nents and some details about the firmware implementation.
Sections IV-C and IV-D then detail the exact procedure SCµM
uses to self-calibrate its LC oscillator, both for receiving from
and transmitting to the QuickCal Box.

A. The QuickCal Protocol

The SCµM chip and the QuickCal Box exchange frames
that are of 3 types: CalBeacon, CalProbe, and CalAck.
The QuickCal Box continuously and periodically sends
CalBeacon frames, which SCµM listens for to calibrate
its LC oscillator for reception. To calibrate for transmission,

Fig. 10. Formats of the frames used in the QuickCal protocol. Greyed-out
bits are unused.

SCµM sends CalProbe frames to the QuickCal Box, which
responds with a CalAck frame.

Fig. 10 shows the format of these frames. They are valid
IEEE 802.15.4 frames: they start with a 4-byte physical
preamble, followed by a 1-byte start-of-frame delimiter (SFD)
and a 1-byte length field, and end with a 2-byte frame check
sequence (FCS). Because these frames are sent regularly, they
are designed to be as short as possible: they each have only
2 bytes of payload. Because they are sent at specific times (see
below), they cannot be confused for one another, so a “type”
field is not needed.

Each of the 16 OpenMotes in the QuickCal Box sends
CalBeacon frames regularly on a different frequency. These
contain the channel they are sent on in IEEE notation
(i.e. channel 11 corresponds to 2.405 GHz, channel 12 to
2.410 GHz, etc). They also contain a sequence number used
for joining (see Section IV-C1).

The SCµM chip sends CalProbe frames to the QuickCal
Box (see Section IV-D). In the channel field of these frames,
the SCµM chip indicates the channel on which it thinks
it is sending the frames This allows an OpenMote in the
QuickCal Box that receives the CalProbe to decide whether
to send back a CalAck frame. As a rudimentary method
for OpenMotes not to mistake a CalProbe for another 2-
byte frame sent by a nearby IEEE802.15.4 device, CalProbe
frames contains the magic field set to the value 0xCF (for
“Crystal-Free”).

The QuickCal Box sends a CalAck frame as a response
to a CalProbe frame. That CalAck frame contains the

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 8

Fig. 11. We reuse the OTBox from the OpenTestbed [26] to serve as a
QuickCal Box.

frequency offset (freq_offset field), which the CC2538 on
the OpenMote measured when receiving the CalProbe frame
(using its FREQ_OFFSET register). This provides the SCµM
chip with some information about how close its frequency
setting is to the standard frequency (2.405 GHz, 2.410 GHz,
etc).

Note that, per the results in Section III, the frequency
settings covering the 2.400–2.480 GHz band are located be-
tween frequency settings 22.0.0 and 28.31.31 at room
temperature. This means that only 7,168 frequency settings
span the entire IEEE802.15.4 2.4 GHz band, not the full
32,768 settings.

B. The QuickCal Box

We reuse the OTBox from the OpenTestbed [26], shown
in Fig. 11, to serve as a QuickCal Box. A QuickCal Box
is composed of 16 OpenMote devices, which we number
MM1 through MM16. Each OpenMote is assigned a different
frequency channel (channel 11 for MM1, channel 12 for MM2,
etc). The OpenMotes synchronize to one another to be able to
send their CalProbe frames one after the other.

The OpenMotes in the QuickCal Box implement the sched-
ule depicted in Fig. 12, which continuously repeats. Each
timeslot in the schedule is 3 s long; slots are numbered 0
through 15.

This schedule orchestrates when each OpenMote sends
and receives, so OpenMotes need to be synchronized to
one another. The OpenMote numbered MM1 is the time
master. At the beginning of timeslot 0, MM1 transmits
1,000 CalBeacon frames, one every 600 µs, on frequency
channel 11 (2.405 GHz). When switched on, other OpenMotes
continuously listen to channel 11 for these CalBeacon
frames. Each CalBeacon frame in a burst contains a field
with an counter that increments for each frame, allows Open-
Motes MM2–MM16 to compute when each of the slots in
the schedule starts. OpenMotes MM2–MM16 repeat this every

Fig. 12. The QuickCal Box schedule. Each OpenMote (numbered MM1–
MM16) is assigned a different frequency channel. One after the other, each
OpenMote sends 1,000 CalBeacon frames, one every 600 µs. Slot 0 is used
by MM2–MM16 to synchronize to MM1 by listening to its CalBeacon
frames. Whenever an OpenMote does not transmit CalBeacon frames, it
listens for CalProbe frames, to which it answers with a CalAck frame.

time slot 0 repeats (i.e. every 48 s), to stay synchronized to
OpenMote MM1.

In slots 1–16, each OpenMote is assigned a different fre-
quency: OpenMote MM2 is assigned channel 12, OpenMote
MM3 is assigned channel 13, etc. In addition, each OpenMote
is assigned a transmit slot: OpenMote MM2 is assigned slot 1,
OpenMote MM3 is assigned slot 2, etc. Similar to OpenMote
MM1, each other OpenMote sends 1,000 CalBeacon frames,
one every 600 µs, during its transmit slot. Since each Open-
Mote is configured to communicate on a different frequency,
this results in successive 1,000 CalBeacon frame bursts sent
by the QuickCal Box across all frequencies. The SCµM chip
will use this to calibrate its LC oscillator for reception.

When an OpenMote is not sending CalBeacon frames, it
continuously listens. The result is that, at any point in time,
one OpenMote will be sending CalBeacon frames, and the
others will be listening, each on a different frequency. When
listening, if an OpenWSN receives a CalProbe frame, it is
programmed to immediately send back a CalAck frame. The
SCµM chip will use this to decide whether it can successfully
send a CalProbe frame and receive a CalAck frame, as
part of calibrating its LC oscillator for transmission.

The SCµM chip calibrates in two steps: it calibrates its
LC oscillator to first receive frames from the QuickCal Box
(Section IV-C) and then to transmit frames to the QuickCal
Box (Section IV-D).

C. QuickCal Step 1: Receiving from the QuickCal Box

The goal of step 1 is for the SCµM chip to self-calibrate
for reception. It starts by synchronizing to the QuickCal Box
schedule, then sweeps its frequency settings, and then picks the
16 best frequency settings (one for each frequency channel).

1) Initial Synchronization: the SCµM chip starts by lis-
tening for CalBeacon frames sent on channel 11 by the
QuickCal Box. We know from Section III-B that the frequency
setting corresponding to channel 11 is in the 23.0.0–
24.31.31 range (2,048 settings). SCµM repeatedly listens
for 800 µs on each frequency setting, sweeping through

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 9

Fig. 13. QuickCal Step 1: receiving from the QuickCal Box. SCµM sweeps
is frequency settings while listening for CalBeacon frames sent on all
16 frequencies by the OpenMote devices in the QuickCal Box. OpenMote
MM1 sends CalBeacon frames on channel 11 in slot 0, OpenMote MM2
sends CalBeacon frames on channel 12 in slot 1, etc. The SCµM chip
receives beacons at multiple frequency settings; it uses the algorithm in
Section IV-C3 to determine the best setting.

all 2,048 settings, which takes 1.6 s. The SCµM chip
likely starts this process when MM1 is not transmitting
CalBeacon frames, therefore repeats the sweep until it
receives CalBeacon frames. Once the SCµM chip has
received at least one CalBeacon frame, it computes when
the different slots in the QuickCal Box schedule start.

2) Sweeping Frequency Settings: the SCµM chip knows
when slots 1 through 15 start. During each slot, it listens for
CalBeacon frames on a different frequency. It sweeps its
frequency settings “up”, starting from the frequency setting
select from the previous slot, for 2,048 settings. We know
from Section III-B that the range of settings covers the
2 MHz separating adjacent IEEE802.15.4 frequencies. Fig. 13
illustrates this sweeping process. The SCµM chip repeats this
process over the 16 slots in the QuickCal Box schedule. Each
time, it receives CalBeacon frames for multiple frequency
settings; it uses the algorithm in Section IV-C3 to determine
the best setting. At the end of one iteration of the QuickCal
Box schedule, the SCµM chip has determined the 16 frequency
settings for receiving on each channel.

3) Selecting the Best Frequency Setting: the SCµM
chip sweeps 2,048 frequency settings while listening for
CalBeacon frames on a particular frequency. During that
process, it records S = (f1, f2, ...fn), the set of n frequency
settings on which it has successfully received a CalBeacon.
In our experiments, n has an average of 65. SCµM then uses
Alg. 1 to select the “best” frequency setting f̂ out of S.

The idea is to select a frequency setting which is “in the
middle” of a range of frequency settings where reception is
possible. In case of a temperature change, the same frequency
setting results in a different frequency. To be as robust as
possible, we want to still be able to receive at that other fre-
quency. Given the saw-tooth shape of Fig. 5, we select a range
of frequency settings that share the same mid component.

This algorithm works as follows. It starts by splitting S
into subsets Scx of frequency settings with the same coarse
component, such that S = Sc1 ∪ Sc2. It selects Ŝc, the subset

with the most components. It splits Ŝc into subsets Smx of
frequency settings with the same mid component, such that
Ŝc = Sm1∪Sm2∪ It then selects Ŝm, the subset with the
most components. Finally, it selects the median value of Ŝm

as the “best” frequency f̂ .

Algorithm 1: Selecting the receive frequency setting

Result: f̂ , the frequency setting to use
S = f1, f2, . . . fn;
Sci = Set(fx) where x[coarse]==i;
i = 1;
while x ≤ n do

if len(Sci) == max(len(Sc1), len(Sc2), . . .) then
cmax = ci;
Sc = Sci;
break;

end
i++;

end
Smj = Set(fx) where x[coarse] == cmax and
x[mid] == j ;
j = 1;
while j ≤ n do

if len(Smj) == max(len(Sm1), len(Sm2), . . .)
then
mmax = mj;
Sm = Smj ;
break;

end
j++;

end
f̂ = median(Sm)

D. QuickCal Step 2: Transmitting to the QuickCal Box

The goal of step 2 is for the SCµM chip to self-calibrate
for transmission. It is already synchronized to the QuickCal
Box schedule and has just completed step 1.

1) Sweeping Frequency Settings: the core idea of step 2
is the same as step 1. The main difference is that, instead of
listening for CalBeacon frames sent by the QuickCal Box,
the SCµM chip sends CalProbe frames to the QuickCal Box
and then listens for CalAck frames sent by the QuickCal Box
as acknowledgements. The SCµM chip uses the frequency
setting it is sweeping to send CalProbe frames but uses
the frequency setting determined in step 1 when listening
for CalAck frames. As shown in Fig. 14, the SCµM chip
sends CalProbe frames on channel 11 (2.405 GHz) in slot
1, i.e. one slot after MM1 has transmitted CalBeacon frames
on channel 11, which we used in step 1.

A CalProbe frame is 320 µs long. After receiving it, the
QuickCal Box sends a CalAck approximately 300 µs later.
A CalAck frame is 320 µs long. To allow for enough time
to receive a possible CalAck frame, the SCµM chip sends
one CalProbe frame every 1.2 ms.

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 10

Fig. 14. QuickCal Step 2: transmitting to the QuickCal Box. SCµM sweeps its
frequency settings while transmitting CalProbe frames on all 16 frequencies
to the OpenMote devices in the QuickCal Box and waiting for CalAck
frames. It sends CalProbe frames to OpenMote MM1 on channel 11 in
slot 1, it sends CalProbe frames to OpenMote MM2 on channel 12 in
slot 2, etc. The SCµM chip receives CalAck frames for multiple frequency
settings; it uses the algorithm in Section IV-D2 to determine the best setting.

2) Selecting the Best Frequency Setting: selecting the best
frequency in step 2 is more straightforward than in step 1. The
CalAck frame contains the frequency offset measured by the
QuickCal Box (see Fig. 10). The “best” frequency setting is
the one with the lowest value in the frequency offset field of
the corresponding CalAck.

Algorithm 2: Selecting the transmit frequency setting

Result: f̂ , the frequency setting to use
S = f1, f2, . . . , fn, frequency settings CalProbe
frames are sent on;
O = o1, o2, . . . , on, frequency offsets contained in

corresponding CalAck frames;
x = 1;
while x ≤ n do

if abs(ox) == min(abs(o1), abs(o2), ...) then
f̂ = fx;
break;

end
x++;

end

V. EVALUATION

We first evaluate the quality of the frequency setting dis-
covered using QuickCal by measuring the resulting Packet
Delivery Ratio (PDR) between the SCµM chip that self-
calibrated and a nearby OpenMote (Section V-A). We then
analyze the energy consumption of QuickCal based on the
charge needed to transmit CalProbe frames and receive
CalBeacon and CalAck frames (Section V-B). At last
we run a heterogeneous 6TiSCH network composed of a
SCµM chip and one OpenMote, channel-hopping over all
16 frequency channels (Section V-C).

Fig. 15. SCµM sends 1,000 CalProbe frames and listens for CalAck
frames on each of the 16 frequency channels. We define the packet delivery
ratio (PDR) as the portion of CalAck frames received and use it to quantify
the quality of the QuickCal self-calibration routine.

A. Packet Delivery Ratio

QuickCal allows SCµM to self-calibrate 32 frequency set-
tings. It then uses those to send and receive data to other
devices, including off-the-shelf IEEE802.15.4 devices, such as
the OpenMote. To quantify the “quality” of the self-calibrated
32 frequency settings, we have SCµM chip exchange frames
with a nearby OpenMote device and measure the packet deliv-
ery ratio, i.e. the fraction of frames sent that are successfully
received. A PDR of 100% is the ideal case.

Specifically, as shown in Fig. 15, we have SCµM send
1,000 CalProbe frames and listen for CalAck frames the
OpenMote is programmed to send as a response. This is done
for each of the 16 frequency channels. We then compute the
PDR as the fraction of CalAck frames received, indicating
the fraction of times the two-way handshake succeeded. We
repeat this 200 times to obtain statistically relevant results.

Taking into account the time it takes to repeatedly reprogram
the different devices, the experiment is conducted overnight
and takes approximately 14 h. Fig. 16 shows the measured
PDR as a function of the frequency channel. The average PDR
of 13 of the 26 channels is above 90%, one is around 85%,
and two are around 70%. This distribution is typical for a
cluttered environment (such as the office this test was run
in) in which multi-path affects a handful of channels. WiFi
interference explains the outliers. Overall, results in Fig. 16
are perfectly in line with off-the-shelf IEEE802.15.4 devices.

B. Energy Consumption

To receive one CalBeacon from the OpenMote, SCµM
consumes about 0.15 µC. To transmit one CalProbe and
receive the corresponding CalAck frame, SCµM consumes
about 0.30 µC. These atomic charge values are calculated
based on the numbers presented in [12]. 2,048 settings and
1,024 settings are swept for calibrating one channel frequency
of RX and TX, respectively. As a result, the charge consumed
by QuickCal to calibrate all 16 frequencies is calculated as
16×0.15× 2048 + 0.3× 1024, about 9.83 mC. With a typical
coin cell battery holding 225 mAh of capacity, QuickCal con-
sumes 0.0012%. QuickCal is not meant be used continuously,

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 11

ch
.1
1

ch
.1
2

ch
.1
3

ch
.1
4

ch
.1
5

ch
.1
6

ch
.1
7

ch
.1
8

ch
.1
9

ch
.2
0

ch
.2
1

ch
.2
2

ch
.2
3

ch
.2
4

ch
.2
5

ch
.2
6

0

20

40

60

80

100
P
a
ck

e
t
D
e
liv

e
ry
 R
a
ti
o
 (
P
D
R
)

Fig. 16. We use the PDR to quantify the quality of the QuickCal self-calibration routine. The red line at the notch is the median, and the purple line is the
average. We plot a box between the first (Q1) and third (Q3) quartiles. Whiskers are between Q3 + 1.5 · IQR and Q1 − 1.5 · IQR, where IQR is the
difference between Q1 and Q3. In other words, the range between the whiskers covers 99.7% of the samples. Plus signs are outliers.

and runs only once but more a quick solution to find the initial
16 frequency settings each for TX and RX. For using once in
a life time, it is acceptable.

C. A Heterogeneous 6TiSCH Network

With Section V-A confirming the quality of the QuickCal
self-calibration, we can run a full protocol stack. Specifically,
we run the 6TiSCH Industrial IoT protocol stack recently stan-
dardized by the IETF [27]. 6TiSCH uses Time Synchronized
Channel Hopping (TSCH), in which devices synchronize to
one another and channel-hop across all available frequencies.
Its synchronized and channel-hopping nature makes 6TiSCH
a good “stress-test” for QuickCal.

We port OpenWSN, the reference implementation of
6TiSCH [28], onto the SCµM chip3. OpenWSN is already
ported onto the OpenMote.

The test setup consists of a SCµM chip operating as a
6TiSCH mote and joining an OpenMote that operates as
a 6TiSCH root. A QuickCal Box is nearby, allowing the
SCµM chip to self-calibrate before joining the network. We
purposefully keep the network atomically small and focus
on the behavior of the SCµM mote; its behavior here is
representative of its behavior in a larger 6TiSCH network.

The test is conducted in a typical office building, in which
several Wi-Fi routers operate on the 2.4 GHz band. During
office hours, the continuous interference from Wi-Fi activity
can be observed in the communication between OpenMote and
SCµM, as shown in Fig. 17.

The OpenMote sends broadcast frames (Enhanced Beacons
and RPL DIO frames) every 0.4 s on average. Once part of the
network, the SCµM chip sends application-level data packets
to the OpenMote every 8 seconds. The 6TiSCH guard time (the
maximum de-synchronization allowed between the devices) is
set to 1.3 ms.

As part of the 6TiSCH protocol stack, the SCµM chip re-
synchronizes to the OpenMote every time they exchange a
frame. We instrument the code on SCµM to output via its
serial port by how many micro-seconds it re-synchronizes.
Fig. 17 shows the time correction of SCµM over time. It

3 As an online addition to this article, the source code is published under
an open-source license at https://github.com/openwsn-berkeley.

also shows the type of synchronization: “Packet” indicates
SCµM synchronizes by receiving a broadcast frame from
the OpenMote and “Ack” indicates SCµM synchronizes by
receiving an acknowledgment frame from the OpenMote.

Fig. 17 shows that the time correction is well within the
1.3 ms guard time throughout most of the 40 min test.
The SCµM chip does get de-synchronized 4 times during
the experiment but resynchronizes in less than 70 s to the
OpenMote. De-synchronization is likely due to temperature
fluctuations (temperature compensation is left for future work
as described in Section VI) or external interference from Wi-
Fi. The HF RC oscillator is used for timing the 6TiSCH
TSCH protocol and keep synchronized to the network. A small
temperature change results in additional drift in the HF RC
oscillator, which translates into a larger time offset between
the SCµM chip and the OpenMote. Wi-Fi interference may
cause collisions, making it harder for SCµM to periodically
synchronize to the OpenMote.

Interference from the QuickCal Box could also impact
the 6TiSCH network between SCµM and OpenMote. After
QuickCal runs, SCµM participates in a 6TiSCH network. It
is possible that, at the same time, the QuickCal Box assists
another SCµM chip to calibrate. Since they are running on the
same 2.4 GHz band, there is a non-zero chance the 6TiSCH
frames collide with the frame sent by QuickCal Box. The
impact of this contention is limited because of the channel
hopping nature of the 6TiSCH communication.

The QuickCal Box repeatedly transmits on each channel for
3 s with an order of channels which is known a priori. When
SCµM running 6TiSCH stack sends a frame on channel 11
and a QuickCal Box is simultaneously sending frames on the
same channel, the the 6TiSCH transmissions likely fail. SCµM
will then retransmit in the next slotframe (roughly 2 s later,
assuming a 101 slot slotframe length and a 20 ms timeslot
duration). The channel hopping nature of 6TiSCH ensures that
retransmission happens on a different channel, avoiding further
contention with the QuickCal Box.

VI. CONCLUSION AND FUTURE WORK

The Single Chip Micro Mote (SCµM) is the first standards-
compliant single-chip crystal-free mote-on-chip. A crystal-free
architecture has two key advantages. First, cost: devices do not

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 12

Fig. 17. Time correction of SCµM against an OpenMote while they form a heterogeneous 6TiSCH network. We use the OpenWSN implementation, which
we have ported to the SCµM chip. SCµM de-synchronized 4 times during the experiment but re-synchronized quickly.

need to include crystal oscillators (which can cost as much as
the radio itself) and, in the extreme case, not even a printed
circuit board. Second, size: the resulting design can be the size
of a grain of rice, which opens up the possibility of using these
devices at the heart of micro-robots. However, using a crystal-
free architecture is challenging as the internal RC and LC
oscillators we are left with suffer from much worse frequency
stability.

QuickCal is a self-calibration routine that allows the
SCµM chip to be able to communicate with off-the-shelf
IEEE802.15.4 devices and eventually heterogeneous networks.
Using QuickCal, the SCµM chip self-calibrates by communi-
cation with a QuickCal Box: off-the-shelf IEEE802.15.4 de-
vices dedicated to assisting crystal-free chips to self-calibrate.
QuickCal is the combination of the QuickCal Box, the Quick-
Cal protocol, and the self-calibration routine implemented by
the SCµM chip. The goal of self-calibration is for the SCµM
chip to determine 32 calibration values, one for transmitting
and one for receiving at each of the 16 frequencies.

We implement QuickCal using a combination of OpenMote
devices and SCµM chips. We show that it takes SCµM less
than 3 min to fully self-calibrate. We then confirm that this
calibration allows it to communicate with an off-the-shelf
IEEE802.15.4 device on all frequencies. Finally, we demon-
strate a heterogeneous network with both a SCµM chip and
an OpenMote forming a 6TiSCH network. This is particularly
challenging as 6TiSCH relies on tight synchronization and
channel hopping.

The technique presented in this article relies on 16 Open-
Motes dedicated to calibrating SCµM chips. While in article
only a single SCµM chip is calibration, the same 16 Open-
Motes can be used to calibrate hundreds or thousands of
SCµM chips. Even then, the cost of the 16 OpenMotes is
significant. Our current work focuses on using 16 OpenMotes
which are already part of a network to temporarily switch to
a calibration role, possibly driven by a central orchestration
authority.

The work presented in this article opens up further avenues
for future work. First, we are working on SCµM to continu-
ously adapt its frequency settings as it participates in a net-
work, allowing it to adapt, for example, to temperature changes
without losing connectivity. Second, while having a QuickCal
Box allows for SCµM chips to operate, we acknowledge that

deploying a QuickCal Box is impractical. We are working on
integrating the QuickCal protocol into the 6TiSCH network
to allow the SCµM chip to self-calibrate against an operating
network without requiring dedicated hardware.

REFERENCES

[1] H. C. Foundation, WirelessHART Specification 75: TDMA Data-Link
Layer, HART Communication Foundation Std., Rev. 1.1, 17 May 2008.

[2] ISA, ANSI/ISA-100.11a-2011: Wireless Systems for Industrial Automa-
tion: Process Control and Related Applications, International Society of
Automation Std., 2011.

[3] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and
P. Thubert, “Ietf 6tisch: A tutorial,” IEEE Communications Surveys
Tutorials, vol. 22, no. 1, pp. 595–615, 2020.

[4] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks:
Challenges, Design Principles, and Technical Approaches,” IEEE Trans-
actions on Industrial Electronics, vol. 56, no. 10, pp. 4258–4265, 27
February 2009.

[5] J. Lee, B. Bagheri, and C. Jin, “Introduction to cyber manufacturing,”
Manufacturing Letters, vol. 8, pp. 11–15, 9 May 2016.

[6] M. Luvisotto, Z. Pang, and D. Dzung, “Ultra High Performance Wireless
Control for Critical Applications: Challenges and Directions,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1448–1459,
13 October 2016.

[7] L. L. Bello, J. Akerberg, M. Gidlund, and E. Uhlemann, “Guest Editorial
Special Section on New Perspectives on Wireless Communications in
Automation: From Industrial Monitoring and Control to Cyber-Physical
Systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3,
pp. 1393–1397, 5 June 2017.

[8] Z. Pang, M. Luvisotto, and D. Dzung, “Wireless High-Performance
Communications: The Challenges and Opportunities of a New Target,”
IEEE Industrial Electronics Magazine, vol. 11, no. 3, pp. 20–25, 21
September 2017.

[9] P. Charith, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on
Internet of Things From Industrial Market Perspective,” IEEE Access,
vol. 2, pp. 1660–1679, 7 December 2014.

[10] J. Höller, V. Tsiatsis, C. E. A. Mulligan, S. Karnouskos, S. Avesand,
and D. E. Boyle, From Machine-to-Machine to the Internet of Things:
Introduction to a New Age of Intelligence. Academic Press, Inc., April
2014.

[11] A. AI-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys & Tutori-
als, vol. 17, no. 4, pp. 2347–2376, 15 June 2015.

[12] T. Chang, T. Watteyne, B. Wheeler, F. Maksimovic, O. Khan, S. Mesri,
L. Lee, I. Suciu, D. Burnett, X. Vilajosana, and K. S. J. Pister, “6TiSCH
on SCµM: Running a Synchronized Protocol Stack without Crystals,”
Sensors, vol. 20(7), no. 1912, 25 March 2020.

[13] F. Maksimovic, B. Wheeler, D. Burnett, O. Khan, S. Mesri, I. Suciu,
L. Lydia, A. Moreno, A. Sundararajan, B. Zhou, R. Zoll, A. Ng,
T. Chang, X. Vilajosana, T. Watteyne, A. Niknejad, and K. S. J.
Pister, “A Crystal-Free Single-Chip Micro Mote with Integrated 802.15.4
Compatible Transceiver, sub-mW BLE Compatible Beacon Transmitter,
and Cortex M0,” in Symposium on VLSI Circuits, 9-14 June 2019.

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 13

[14] IEEE, IEEE Standard for Low-Rate Wireless Networks, IEEE Computer
Society Std., 22 April 2016.

[15] I. Suciu, F. Maksimovic, D. Burnett, O. Khan, B. Wheeler, A. Sun-
dararajan, T. Watteyne, X. Vilajosana, and K. S. J. Pister, “Experimental
Clock Calibration on a Crystal-Free Mote-on-a-Chip,” in Conference on
Computer Communications Workshops (INFOCOM), CNERT workshop,
29 April-2 May 2019.

[16] X. Vilajosana, P. Tuset, T. Watteyne, and K. S. J. Pister, “OpenMote:
Open-Source Prototyping Platform for the Industrial IoT,” in Interna-
tional Conference on Ad Hoc Networks (AdHocHets). Springer, 1-2
September 2015.

[17] “CC2652RB SimpleLink Crystal-less BAW Multiprotocol 2.4 GHz
Wireless MCU,” Texas Instruments Incorporated, Tech. Rep., December
2019, http://www.ti.com/product/CC2652RB.

[18] M. Song, M. Ding, E. Tiurin, K. Xu, E. Allebes, G. Singh, P. Zhang,
S. Traferro, H. Korpela, N. v. Helleputte, R. B. Staszewski, Y.-H. Liu,
and C. Bachmann, “A 3.5 mm× 3.8 mm Crystal-Less MICS Transceiver
Featuring Coverages of ±160 ppm Carrier Frequency Offset and 4.8-
VSWR Antenna Impedance for Insertable Smart Pills ,” in International
Solid- State Circuits Conference (ISSCC), 16-20 February 2020.

[19] Y.-H. Liu, V. K. Purushothaman, C. Lu, J. Dijkhuis, R. B. Staszewski,
C. Bachmann, and K. Philips, “A 770 pJb 0.85 V 0.3 mm2 DCO-
Based Phase-Tracking RX Featuring Direct Demodulation and Data-
Aided Carrier Tracking for IoT Applications ,” in International Solid-
State Circuits Conference (ISSCC), 5-9 February 2017.

[20] A. Alghaihab, X. Chen, Y. Shi, D. S. Truesdell, B. H. Calhoun, and D. D.
Wentzloff, “A Crystal-Less BLE Transmitter with -86 dBm Frequency-
Hopping Back-Channel WRX and Over-the-Air Clock Recovery from
a GFSK-Modulated BLE Packet,” in International Solid- State Circuits
Conference (ISSCC), 16-20 February 2020.

[21] B. Wheeler, F. Maksimovic, N. Baniasadi, S. Mesri, O. Khan, D. Burnett,
A. Niknejad, and K. S. J. Pister, “Crystal-free narrow-band radios
for low-cost IoT,” in Radio Frequency Integrated Circuits Symposium
(RFIC), 4-6 June 2017.

[22] O. Khan, D. C. Burrnett, F. Maksimovic, B. Wheeler, M. Sahar,
A. Sundararajan, B. L. Zhou, A. M. Niknejad, and K. S. J. Pister,
“Time Keeping Ability of Crystal-Free Radios,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 2390–2399, 10 September 2018.

[23] O. Khan, B. Wheeler, F. Maksimovic, D. Burnett, S. Mesri, K. S. J.
Pister, and A. Niknejad, “Frequency Reference for Crystal Free Radio,”
in International Frequency Control Symposium (IFCS), 9-12 May 2016.

[24] I. Suciu, F. Maksimovic, B. Wheeler, D. C. Burrnett, O. Khan, T. Wat-
teyne, X. Vilajosana, and K. S. J. Pister, “Dynamic Channel Calibration
on a Crystal-Free Mote-on-a-Chip,” IEEE Access, vol. 7, pp. 120 884–
120 900, 26 August 2019.

[25] B. Wheeler, A. Ng, B. Kilberg, F. Maksimovic, and K. S. J. Pister,
“A Low-Power Optical Receiver for Contact-free Programming and 3D
Localization of Autonomous Microsystems,” in Ubiquitous Computing,
Electronics & Mobile Comm. Conf. (UEMCON). IEEE, 2019.

[26] J. Munoz, F. Rincon, T. Chang, X. Vilajosana, B. Vermeulen, T. Walcar-
ius, W. Van de Meerssche, and T. Watteyne, “OpenTestBed: Poor Man’s
IoT Testbed,” in Conference on Computer Communications Workshops
(INFOCOM), CNERT workshop, 29 April-2 May 2019.

[27] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. S. J.
Pister, “6TiSCH: Industrial Performance for IPv6 Internet-of-Things
Networks,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1153–1165,
11 April 2019.

[28] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. S. J. Pister, “OpenWSN: a standards-based low-
power wireless development environment,” Emerging Telecommunica-
tions Technologies, vol. 23, no. 5, pp. 480–493, 2 August 2012.

Tengfei Chang received his PhD degree in Com-
puter Sciences from the University of Science and
Technology, Beijing in January 2018. In 2014, he
was a visiting scholar at the University of California,
Berkeley. He joined Inria Paris in 2015 as a research
engineer then postdoctoral reseach lead. He is cur-
rently leading the OpenWSN project, an open-source
project founded at UC Berkeley. He is one of the
main implementors of the IETF 6TiSCH protocol
stack. He is active in the standardization activity
where he serves as the editor the 6TiSCH Minimal

Scheduling Function (MSF) standard. His research interests are wireless
sensor and actuator networking, swarm robotics and embedded system design.

Thomas Watteyne is an insatiable enthusiast of
low-power wireless mesh technologies. He holds
an Research Director position at Inria in Paris, in
the EVA research team, where he leads a team
that designs, models and builds networking solutions
based on a variety of Internet-of-Things (IoT) stan-
dards. He is Senior Networking Design Engineer
at Analog Devices, in the Dust Networks product
group, the undisputed leader in supplying low power
wireless mesh networks for demanding industrial
process automation applications. Since 2013, he co-

chairs the IETF 6TiSCH working group, which standardizes how to use
IEEE802.15.4e TSCH in IPv6-enabled mesh networks, and is member of the
IETF Internet-of-Things Directorate. Prior to that, Thomas was a postdoctoral
research lead in Prof. Kristofer Pister’s team at the University of California,
Berkeley. He founded and co-leads Berkeley’s OpenWSN project, an open-
source initiative to promote the use of fully standards-based protocol stacks
for the IoT. Between 2005 and 2008, he was a research engineer at France
Telecom, Orange Labs. He holds a PhD in Computer Science (2008), an MSc
in Networking (2005) and an MEng in Telecommunications (2005) from INSA
Lyon, France. He is Senior member of IEEE. He is fluent in 4 languages.

Brad Wheeler received a B.S. degree in electrical
and computer engineering from the University of
Missouri, Columbia, in 2008, and a PhD degree
in electrical engineering from the University of
California, Berkeley, in 2019. His research interests
include system and circuit level design for low-
power communication systems.

Filip Maksimovic received a B.S. degree in electri-
cal engineering and aerospace engineering from the
University of Colorado at Boulder, and a PhD degree
in electrical engineering and computer sciences from
the University of California at Berkeley, Berkeley, in
2018. His research interests include low-power radio
frequency communication and wireless sensing.

IEEE INTERNET OF THINGS JOURNAL, AUGUST 2020 14

David C. Burnett received the B.S. and M.S.
degrees in Electrical Engineering from the Univer-
sity of Washington focusing on circuits, embedded
systems, and oceanographic instrumentation. He re-
cently completed the Ph.D in Electrical Engineering
and Computer Sciences at the University of Cali-
fornia Berkeley as an NDSEG Fellow focusing on
crystal-free fully-integrated wireless sensor nodes.
Prior to his Ph.D., he was Member of Technical
Staff at Sandia National Laboratories, Livermore,
Visiting Lecturer at Da Nang University of Technol-

ogy, Vietnam, and Electrical Engineer for an experimental ROV at McMurdo
Station, Antarctica. He has served on various ACM SIGGRAPH conference
committees, serving as submissions juror and responsible for special technical
projects and data networks. His research interests include RF communication,
low-power circuit design, and field-deployable sensor systems. He is a Senior
Member of the IEEE.

Titan Yuan received a B.S. degree in electrical
engineering and computer sciences from University
of California, Berkeley, in 2019 and is currently
pursuing his M.S. degree in electrical engineering
and computer sciences at University of California,
Berkeley, advised by Prof. Kristofer S.J. Pister. He
was named a Siebel Scholar in 2019 and is interested
in working on embedded systems and developing
new and exciting applications for SCµM.

Xavier Vilajosana is principal investigator at the
Wireless Networks (WiNe) research Lab at UOC and
full professor at the Computer Science, Telecom-
munications and Multimedia department. Xavier is
also co-founder of Worldsensing, and OpenMote
Technologies. Until March 2016 Xavier has been se-
nior researcher at the HP R&D Labs. From January
2012 to January 2014, Xavier was visiting Professor
at the University of California Berkeley holding a
prestigious Fulbright fellowship. In 2008, he was
visiting researcher of France Telecom R&D Labs,

Paris. Xavier has been one of the main promoters of low power wireless
technologies, co-leading the OpenWSN.org initiative at UC Berkeley, and
promoting the use of low power wireless standards for the emerging Industrial
Internet paradigm. He also contributed to the industrialization and introduction
of Low Power Wide Area Networks to urban scenarios through Worldsensing.
Xavier is author of different Internet Drafts and RFCs at the IETF, as part
of his standardization activities for low power industrial networks. Xavier is
contributing actively at the IETF 6TiSCH, 6Lo and ROLL Working Groups.
Xavier holds more than 30 patents, more than 50 high impact journal
publications and have contributed with several demos, tutorials and courses
in the field of low power wireless networks. Finally Xavier is IEEE Senior
Member and founding member and vocal of the IEEE Sensors Council in
Spain.

Kristofer S. J. Pister received a B.A. degree in
applied physics from UCSD, in 1986, and M.S. and
Ph.D. degrees in electrical engineering from UC
Berkeley, in 1989 and 1992, respectively. From 1992
to 1997, he was an Assistant Professor of electri-
cal engineering with UCLA, where he helped in
the development of the graduate MEMS curriculum
and coined the phrase Smart Dust. Since 1996, he
has been a Professor of electrical engineering and
computer sciences with the University of California
at Berkeley, Berkeley. In 2003 and 2004, he was

on leave from UCB as the CEO and then the CTO of Dust Networks, a
company he founded to commercialize wireless sensor networks. He has
participated in the creation of several wireless sensor networking standards,
including Wireless HART (IEC62591), IEEE 802.15.4e, ISA100.11a, and
IETF RPL. His research interests include MEMS, micro robotics, autonomous
microsystems, and low-power circuits.

