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Abstract—Current machine learning and deep learning ap-
proaches are cutting-edge methods for solving classification tasks.
Comparing the performances of classification models has become
a prominent task since the outbreak of these techniques. The
performance of such classification models is measured by the
ratio between the correctly predicted samples and the others.
The most widely used visualization to represent this information
is the Confusion matrix. Yet, if this technique is suited to
apprehend one model performances, very few works use this
representation to compare models. In that paper, we present the
Relative Confusion Matrix (RCM), a new matrix visualization
that leverages Confusion matrices and a color encoding to
expose the class-wise differences of performances between two
models. We conduct a user evaluation to compare RCM with two
confusion matrix variants. Our results show that RCM encoding
leads to a more efficient comparison of two models than existing
approaches.

Index Terms—Confusion Matrix, Models comparison, Evalua-
tion

INTRODUCTION

Machine Learning (ML) and Deep Learning (DL) algo-
rithms are widely used to solve detection [14], segmenta-
tion [15] or classification [16] problems. In the literature,
instances of theses algorithms are called models. Prior to be
used, these models must be trained to setup their hyperparam-
eters. Then these models can be benchmarked to measure their
accuracy and behavior. The focus of that paper is to present
a comparison and a user evaluation of different visualization
techniques which enable to compare results obtained by two
different trained models on the same classification task.

A classification task consists in assigning to an input data
(for instance, an image) a label called class (for instance
“cat”) from a bounded dictionary (ie. alphabet). One calls
a prediction the output class. To benchmark models, one
computes predictions on an input dataset for which classes
are already known (ground truth) and then predictions are
compared to ground truths.

The performance of a model can be evaluated at different
levels. (1) At a global-level, measures such as the accuracy
(good predictions / number of samples) provide a score for the
entire test set. (2) At a class-level, measures are used to assess
the performance of the model through the prism of a specific
class. For instance, the recall of a class indicates whether the
samples of that class were correctly classified.

A lot of works [2], [6], [7], [13] leverage class-level
measures for models analysis and rely on a visualisation called
confusion matrix (CM) [8].

A CM is a matrix where the rows represent the ground truth
of input samples and the columns represent the predictions
of a model, in the same order. The cell (row, col) counts
the percentage of samples of ground truth row predicted as
class col. Standard representation of CM fill each cell using a
gradient of colors mapped to the percentages. Some variants
display the percentages in each cell. A dark color is tied to a
high percentage while a light color is tied to a low percentage.

Confusion matrices were designed to compare the class
performance within a model. However, when designing a new
model, a common approach consists in training several model
and then selecting the best one. In such a case, confusion
matrices may not be sufficient to efficiently compare the
performance of two (or more) models. While the accuracy can
provide some cues about the overall behaviors of the compared
models, it does not support the comparison of models at a
class level. In particular, when comparing two models it is
important to assess (1) whether one of the models achieves
better performance for all classes or (2) one model is better
for a set of classes but worst for another one. Identifying these
classes can also be important to the application domain; some
classes may be more crucial than others.

In this work, we study different strategies to compare two
models that solve the same classification task. The contribution
of this paper is twofold. First, we present the Relative Con-
fusion Matrix (RCM) which allows a class-level performance
comparison between two models. Last, we conducted a user
evaluation to compare RCM with two existing visualization
methods to compare two models at a class-level.

In the next section, we provide a brief state of the art of
model comparison techniques. Then, we present RCM and
how it differs from other visualizations. Then, we describe
the user evaluation protocol and the results of the evaluation.
Finally, we discuss the results and draw conclusions.

RELATED WORK

In this paper, we are interested in the visual comparison
of two models performances. This section discusses about
existing techniques for that purpose.

To visually compare quantitative information, it is well
established that position-based [4] visualizations like bar
charts are the most efficient approaches. They are particularly
adapted to compare one or two variable over a few models [3],
for example to compare a user response time or an accuracy
error over several views during a user evaluation. For binary



Fig. 1: Example of Twin Confusion Matrix (TCM) represen-
tation

Fig. 2: Example of Combined Confusion Matrix (CCM)
representation.

Fig. 3: Example of Relative Confusion Matrix (RCM) repre-
sentation.

classification models, the Receiver Operating Characteristic
(ROC) [12] curve in a form of a line chart can be drawn. The
curve gives information about how much the model benefits,
making correct predictions for a class, compared to how much
it costs, incorrectly classifying samples from another class
into that class. However, it is less suitable for problems with
more than two classes due to overlaps. In Squares [13], Ren
et al. compare multiple classification models in rows using
an horizontal histogram per class to show the distribution of
samples in each class.

Alsallakh et al. [7] spread the classes along a confusion
wheel to visualize more information about the content of
the classes. In particular, for each class, they use colors to
differentiate common performance measures like true posi-
tives (TP), false positives (FP), false negatives (FN) and true

negatives (TN) in histograms of classification probabilities. In
this representation, each class along the wheel requires enough
space to display a curved histogram. This may be problematic
when comparing two spatially distant classes, especially when
the number of classes increases.

Most of the time, to compare the performance of a model
at a class-level, a confusion matrix is used [6], [10]. CM have
the advantage of being model-agnostic. Instead of filling the
cells of a CM using a gradient of colors, NEO [9] encodes
the percentages in the cells with rectangles of different sizes.

As Hinterreiter et al. [2] stated, very few works address the
problem of comparing two models at a class level. In general,
this comparison is implicit. For example, Li et al. [5] display
one CM per neural network obtained through iterations of
pruning. The CM of two distinct models are not displayed
at a time, which may require memory attention from the user
to compare both models.

For comparison problems in general, Gleicher [1] suggested
three ways to design components. The first and most common
way to compare objects is the juxtaposition of instances of
the same visualization. Talbot et al. [6] compared multiple
classifiers by juxtaposing confusion matrices. The second
way is the superimposition of two instances of the same
visualization. Basak et al. [11] make the parallel between
superimposed directed weighted graphs and superimposed
matrices. In each cell of their CM, they display two colored
concentric rectangles to encode the result of two models on
that cell. The third way uses a special encoding to combine
the information of the two objects. In this last category,
ConfusionFlow [2] suggest to compare multiple confusion
matrices in a single visualization using lines in each cell.
The points of the lines in each cell estimate the variation of
the percentage of samples in that cell for all models. This
representation allows a global comparison of several models
at a class-level.

DESIGN CHOICES

In this section, we present the three visualizations we de-
cided to compare in our user evaluation. First, we describe our
contribution: the Relative Confusion Matrix (RCM). This
matrix is designed specifically to compare two models that
solve the same classification task, and more precisely, to show
where a model B improves or deteriorates the performance of
a model A. From now on, we consider both model process the
same input data and have the same number of output classes.

The design of the RCM is very similar to the design of
standard confusion matrices: it is a square table where rows
represent all possible ground truths and columns represent all
possible predictions, sorted with the same order.

Two different models may have different percentages in
every cell. The goal of RCM is to highlight these differences
between two models A and B. Each cell of RCM contains the
cell-by-cell absolute percentages difference between B and A.
To ease the interpretation of RCM, a gradient of colors is used
to fill in the cells. A dark color is used when the difference
is high. A light color is used when the difference is small. In



addition, if there is some difference between the two models
on a cell, a + (resp. -) is displayed on that cell to indicate
that B is better than A (resp. A better than B). A blank cell
indicates there is no difference between A and B on that cell.

We chose + and − to indicate which model is the best
on a cell. It is particularly interesting in a context of B
being a variant of A. Then, the symbol answers the question
of B improving or deteriorating the performance of the cell
compared to A (Fig. 3). A or B could have been a reasonable
choice but these letters are written with more pixels than
simple + and −, and they contain loops. Especially when
the number of classes is high, the color perception of the
cells could be altered with letters. Moreover, we did not
use more than one gradient of colors (e.g to differentiate
diagonal cells from the other cells or to differentiate cells
showing improvements from cells showing deterioration) for
RCM to avoid comparisons between the lightness of two or
more different colors.

In our evaluation, we compared RCM with two matrix-
based representations: the Twin Confusion Matrix (TCM),
which is a special case of the EnsembleMatrix [6] and the
Combined Confusion Matrix (CCM) which is based on
Basak et al. [11] matrix. This way, we compare visualizations
of the three categories: juxtaposition, superimposition and
special encoding [1]. We call TCM the juxtaposition of two
confusion matrices, one for A, the other for B. We consider
this representation as the baseline of our comparisons. The
CCM superimposes the matrices of both A and B in a
single matrix. Each cell contains two nested colored rectangles
indicating the performance of each model on that cell.

The goal of the evaluation is to study three hypothesis: first,
we make the assumption that comparing two models with a
superimposed visualization or a visualization that encodes the
difference is better than a side-by-side visualization (Hvis).
Second, we want to study, for the comparison of two models,
if symbols are better suited than colors (Hsymb). Third, we
make the assumption that finding the darkest color is easier
than comparing contrasts (Hdark).

USER EVALUATION

In this section, we describe the protocol we established to
build our evaluation. It is based on the Purchase protocol [3].
We define four tasks to solve on these visualizations, how data
have been generated, and how the sessions were organized.

A. Visualizations

This evaluation targets the comparison of two models on
three visualizations (TCM, CCM and RCM). This means we
are not interested in how a model performs alone, but relatively
to another. Thus, none of the tasks targets the performance of a
single model. We focus on the functionalities all visualizations
share.

B. Tasks

Our tasks are inspired from those defined for Squares [13]
to compare models. For example, one of their tasks consists

in detecting the classifier with the largest number of errors.
Another of their tasks consists in comparing distributions of
classes. We have retained the two ideas of giving the best
model under a given condition (T1 and T2) and comparing
two distributions (T3 and T4), which led to the following tasks,
formulated as questions:

• T1: Which model does correctly classify more samples
for the highlighted class?

• T2: Which model is the best on the highlighted cell?
• T3: On which class is there the most difference of correct

predictions between the two models?
• T4: Among incorrect predictions, which pair (GT, pre-

diction) shows the greatest difference between the two
models?

For T1 (resp. T2), given a diagonal cell (resp. non-diagonal
cell) the best model on that cell has to be selected. In both
cases, the given cell is chosen randomly and displayed with a
distinct color directly on the matrix or on the matrices. Both
the line and the column of the chosen cell are framed with
that color. To solve T3 (resp. T4), the diagonal cell (resp.
non-diagonal cell) that show the greatest difference between
models A and B has to be selected. The difference between
T1 and T2 (resp. T3 and T4) is that the reasoning is inverted.
Indeed, diagonal cells refer to correct predictions while non-
diagonal cells refer to incorrect predictions.

C. Dataset

We randomly generated data (matrices) to ensure generaliz-
ability of the results [11]. For each trial, we generated a pair of
matrices of same size, one for A and one for B. We generated
two pairs of matrices per task (T1-T4), per visualization
(TCM, CCM, RCM) per size (2x2, 10x10 or 30x30). We added
two constraints in our generator that aims to simulate models
with relatively average or high performance, which is often
the case with real models. First, we arbitrarily fixed the same
density at 0.3 for all matrices, which means only 30% of the
nondiagonal cells of each individual matrix contain at least
one sample. Thus, the percentage of nondiagonal cells that are
different between A and B are in [30%, 60%]. Our generator
imposes as a second constraint that all classes of each model
have a minimal recall of 0.3. This means for each class, at
least 30% of samples of that class are correctly classified,
on the diagonal. For T1 and T2, the highlighted cells are
chosen randomly with a uniform probability distribution. For
all matrices created for a specific task, we know the answer
by construction. For each trial, we verified the uniqueness of
the answer. We generated several additional pairs of matrices
with various sizes for the tutorial, and for training [3].

D. Protocol

During the whole evaluation, all the participants are super-
vised by the same person. Each participant starts the evaluation
with a tutorial that explains what confusion matrices are, how
TCM, CCM and RCM are built, and the four tasks to solve.
Fig. 1 and Fig. 2 are parts of the tutorial and are accompanied
by textual explanations and examples. For each task in the



tutorial, the participant is given one answered example per
visualization followed by one example per visualization to
train. The participant can see the correction for all examples,
retry or come back at any point in the tutorial, and ask as
many questions as she wants to the supervisor until the end
of the tutorial. Once the participants have finished the tutorial,
they are all given the same instructions and indications for
the next part of the evaluation. The instructions insisted on
not answering randomly or too fast, but correctly as fast as
possible.

For the whole evaluation, the resolution of all matrices in
pixels are the same. 2x2 matrices are displayed in 300x350,
10x10 matrices are displayed in 400x450, and 30x30 matrices
are displayed in 500x550.

During the evaluation, the trials are grouped by task since
we do not measure how participants adapt to a task, but how
they solve it. For generalizability, two latin squares are used
to ensure the participants do not face neither the same trials in
the same order nor the same tasks in the same order. However,
all participants are given one minute to answer each trial, with
three seconds break between each trial. A break is scheduled
between each task. At the end, the participants are asked to
give their opinions on the visualizations and tasks through a
short survey.

RESULTS

In this section, we present the results of our user evaluation.
We analyze the results under three conditions which are the
three visualizations (TCM, CCM, RCM).

Participants. 26 volunteers performed the evaluation in
total with a mean age of 31.5 years. We had to not consider 3
of them due to their lack of focus and because some trials were
answered randomly according to both the participants and the
supervisor. For each participant, we collected both the answer
to compute the Error Percentage (EP), and the mean Response
Time (RT) per trial. Some participants did not answer within
the time limit for specific trials. We decided to not include their
answers to these trials in the response time measurements. In
the following, we report the statistical analysis and results.

Significance per visualization. We start with a high-level
comparison to detect if there is a global significant difference
between the visualizations for both EP and RT. For at least one
condition, the data are not normally distributed for both EP and
RT. We chose a non-parametric statistical approach, using the
Kruskal-Wallis independent measures test, with a significance
threshold of 0.05. This test indicates an overall significant
difference on the mean RT (p-valueRT = 4.9 ∗ 10−8 < 0.05).
However, the same test on the EP does not reveal any
significant difference (p-valueEP = 0.17 > 0.05). For further
posthoc pairwise comparison on RT, we use the Conover test
with corrected p-values which reveals a significant difference
between all pairs of conditions. In Fig. 4, a red bar indicates
a significant pairwise difference to all other conditions. The
mean response times of all conditions reveal that globally,
RCM is the most efficient visualization. We conduct further
experiments to analyze the reason of these differences.
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Fig. 4: Mean Error Percentages and Mean Response Times
with standard deviation bars per visualization. Statistical tests
showed that the visualization had a significant effect on the
MRT. A bar with a red color indicates that the posthoc
pairwise comparisons of this visualization against all others is
significant (p-value < 0.05) according to Conover test [17].
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Fig. 5: Mean Error Percentages and Mean Response Times
with standard deviation bars per task and per visualization. A
red bar indicates that the posthoc pairwise comparisons of this
visualization against all others is significant. An arc connecting
two blue bars indicates a significant posthoc comparison
between the two visualizations.

Significance per task, per visualization. By aggregating
data per task and per visualization before computing the
mean RT and Error, we aims to highlight what visualizations
characteristics may be more efficient than others. At this level,
a Kruskal-Wallis test reveals an overall significant difference
for both EP and the mean RT per task. Fig.5 shows the posthoc
pairwise comparisons between each visualization. From this
figure, we can notice several interesting results. For T1 and
T3, the only significant differences are between TCM and
the other visualizations. TCM has the worst response times
and the worst error percentages. The juxtaposition of the two
matrices of A and B forces the participants to memorize



colors for comparisons of two distant cells which increases the
response time of each trial and the risk of errors. Interestingly,
the pairwise tests do not reveal any significant difference
neither for EP nor RT when comparing all nondiagonal cells
to detect the greatest difference of incorrect predictions (T4).
Though, we observe a large standard deviation for this task
that has to be explored with further investigation. The second
significant difference lies in T2. There is a significant mean
RT difference between CCM and RCM, RCM being more
efficient. However, CCM is more confusing to participants
than other visualizations. Participants answer relatively fast
but tend to be misled by the color inversion of CCM between
diagonal and nondiagonal cells, until they realize their mistake.

Significance per task, per matrix size, per visualization.
From these results, we investigate further to see whether the
size of matrices impact the performances on the different
visualizations. These measures are shown in Fig. 6. In this
figure, the same phenomenon described before appears on
CCM with T2. The EP difference is more relevant as the
matrices size grows. The examples of CCM with a size of
30x30 have indeed a small visible difference between light
colors. With comparable matrices size, RCM outperforms both
TCM and CCM: participants make less errors within less time.
As shown in Fig. 6, statistical tests also reveal participants
answered significantly faster for RCM without committing
significantly more or less mistakes. The only case CCM
outperforms RCM is for the comparison of all nondiagonal
cells to find the greatest difference (T4) on large matrices
(30x30). The reason of RCM being less efficient than CCM
could be the density of black symbols in the matrices that
affect the light colors perception. The last important remark is
that TCM almost never outperforms the other visualizations.

Participants preference. All participants rated the three
visualizations between 0 and 4, 4 being the best mark. We
collected their rates for each individual task, and globally.
We analyzed them with the Kruskal-Wallis test. Globally, the
overall difference between the three visualizations is signif-
icant. Posthoc comparisons using the Conover test reveal a
significant difference between all pairs after p-values cor-
rection. In general, users preferred RCM to CCM to TCM.
This tendency is exactly the same for each individual task (see
Fig 7).

DISCUSSION AND CONCLUSION

The user evaluation we conducted reveals that most users are
not comfortable with manipulating side-by-side visualizations
to compare models. Such comparisons are relatively slow and
require from the user to memorize at least four different colors
at a time. As we expected, the spatial distance between the
elements to compare makes the tasks hard to solve. This
validates our hypothesis Hvis.

Surprisingly, the symbols do not make the tasks T1 and T2
faster to solve. After surveying our participants, it appeared
that, unlike for the two other visualizations (TCM and CCM),
they needed to check systematically the legend on the left to
remember the meaning of the + and - symbols. This validation

0

100

M
ea

n 
Er

ro
r (

%
) T1 - S2 T2 - S2 T3 - S2 T4 - S2

0

100

M
ea

n 
Er

ro
r (

%
) T1 - S10 T2 - S10 T3 - S10 T4 - S10

TCM CCM RCM

0

100

M
ea

n 
Er

ro
r (

%
) T1 - S30

TCM CCM RCM

T2 - S30

TCM CCM RCM

T3 - S30

TCM CCM RCM

T4 - S30

(a) Mean Error Percentage (MEP) per task, per matrix size, per
visualization

0

25

M
ea

n 
RT

 (s
) T1 - S2 T2 - S2 T3 - S2 T4 - S2

0

25

M
ea

n 
RT

 (s
) T1 - S10 T2 - S10 T3 - S10 T4 - S10

TCM CCM RCM
0

25

M
ea

n 
RT

 (s
) T1 - S30

TCM CCM RCM

T2 - S30

TCM CCM RCM

T3 - S30

TCM CCM RCM

T4 - S30

(b) Mean Response time (MRT) per task, per matrix size, per
visualization

Fig. 6: Mean Error Percentages and Mean Response Times
with standard deviation bars per task, per matrix size, and per
visualization. A red bar indicates that the posthoc pairwise
comparisons of this visualization against all others is signifi-
cant. An arc connecting two blue bars indicates a significant
posthoc comparison between the two visualizations.

step they performed only for RCM artificially increased their
response time. We strongly believe that an expert of the three
visualizations that would be able to learn the meaning of the
symbols without constantly using the legend, would answer
significantly more efficiently on RCM (Hsymb).

The results on task T3 validated half of the hypothesis
Hdark. Indeed, participants found the darkest diagonal cell
of RCM faster than the greatest contrast of TCM or CCM.
However, when the matrix is large and dense, the symbols
that better highlight the small differences tend to disturb
the perception of the colors in the cells. Some participants
mentioned this problem for large matrices. To solve this
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Fig. 7: Mean Ratings per visualization, and per task per
visualization with standard deviation bars. All bars are red,
indicating that all the rating differences between pairs of vi-
sualizations are significant. The means and standard deviation
indicate RCM is the most preferred visualization.

problem, we suggest to make RCM interactive by adding
a slider that determines the minimum required amount of
differences in a cell, from which symbols + and − need
to be displayed. Otherwise, this threshold could control the
percentage of cells that show the greatest difference between
the two models in which symbols have to be displayed.

Participants also mentioned the neighborhood of a cell can
falsify the perception of its color(s), especially for TCM and
CCM, when the aforesaid cell is close to the diagonal dark
cells.

In the end, we validate the effectiveness of the Relative
Confusion Matrix to compare two classification models, up to
30 classes. To address more classes and reduce the number
of rows and columns of the confusion matrices, we suggest
to establish a hierarchy that groups similar classes if it does
not exist, and apply hierarchical interactions, as described by
Görtler et. al. [9]. To enhance the most important symbols for
large and dense matrices, we suggest to add an interaction like
a slider to threshold the display of symbols.

Eventually, one may not want to compare only two classifi-
cation models. To adapt our visualization to more classification
models, we can imagine to designate each model with a unique
symbol, that can be written with as few pixels as possible.
Instead of displaying + and − symbols in the cells, we could

display the symbol representing the best model in this cell.
Then, the color of the cells could represent how much this
model is better in this cell than the other.

ACKNOLEDGMENT

We thank the Nouvelle-Aquitaine Region, Bordeaux
Métropole and SUEZ, le LyRE for mainly funding and sup-
porting this work through the Convention N°AAPR2020-2019-
8171810.

REFERENCES

[1] Gleicher, M. (2017). Considerations for visualizing comparison. IEEE
transactions on visualization and computer graphics, 24(1), 413-423.

[2] Hinterreiter, A., Ruch, P., Stitz, H., Ennemoser, M., Bernard, J., Strobelt,
H., & Streit, M. (2020). ConfusionFlow: A model-agnostic visualization
for temporal analysis of classifier confusion. IEEE Transactions on
Visualization and Computer Graphics.

[3] Purchase, H. (2012). Experimental Human-Computer Interaction: A
Practical Guide with Visual Examples. Cambridge University Press.

[4] Mackinlay, J. (1986). Automating the Design of Graphical Presentations
of Relational Information. ACM Trans. Graph., 5(2), 110-141.

[5] Li, G., Wang, J., Shen, H. W., Chen, K., Shan, G., Lu, Z. (2020). CN-
NPruner: Pruning Convolutional Neural Networks with Visual Analytics.
IEEE Transactions on Visualization and Computer Graphics, 1.

[6] Talbot, J., Lee, B., Kapoor, A., Tan, D. S. (2009). EnsembleMatrix:
interactive visualization to support machine learning with multiple
classifiers. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 1283–1292.

[7] Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., Rauber, A.
(2014). Visual methods for analyzing probabilistic classification data.
IEEE Transactions on Visualization and Computer Graphics, 20(12),
1703–1712.

[8] Powers, D. M. (2020). Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation. arXiv preprint
arXiv:2010.16061.
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