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Abstract—Channel State Information at the Transmitter (CSIT) is of

utmost importance in multi-user wireless networks, in which transmission

rates at high SNR are characterized by Degrees of Freedom (DoF, the

rate prelog). In recent years, a number of ingenious techniques have been

proposed to deal with delayed and imperfect CSIT. However, we show

that the precise impact of these techniques in these scenarios depends

heavily on the channel model (CM). We introduce the use of linear Finite

Rate of Information (FRoI) signals (which could also be called Basis

Expansion Model (BEM)) to model time-selective channel coefficients.

The FRoI dimension turns out to be well matched to Degree of Freedom

(DoF) analysis since the FRoI CM allows compressed feedback (FB) and

captures the DoF of the channel coefficient time series. Both the block

fading model and the stationary bandlimited channel model are special

cases of the FRoI CM. However, the fact that FRoI CMs model stationary

channel evolutions allows to exploit one more dimension: arbitrary time

shifts. In this way, the FroI CM allows to maintain the DoF unaffected

in the presence of CSIT feedback (FB) delay, by increasing the FB rate.

We call this Foresighted Channel FB (FCFB). FRoI CM relates also to

(predictive) filterbanks and we work out the optimization details in the

biorthogonal case (different analysis and synthesis filters). The FRoIC

model with multiple basis functions accommodates FB delay beyond the

coherence time and handling of users with unequal coherence times.

I. INTRODUCTION

In this paper, Tx and Rx denote transmit/transmitter/ transmit-

ting/transmission and receive/receiver/receiving/reception. Interfer-

ence is undoubtedly the main limiting factor in multi-user wireless

communication systems. Tx side or Rx side zero-forcing (ZF) beam-

forming (BF) or joint Tx/Rx ZF BF (signal space interference align-

ment (IA)) allow to obtain significant Degrees of Freedom (DoFs)

(= multiplexing factor, or rate prelog). These technique require

very good Channel State Information at Tx and Rx (CSIT/CSIR).

Especially CSIT is problematic since it requires feedback (FB) which

involves delay, which may be substantial if FB Tx is slot based.

We shall remark here up front that these observations advocate the

design of wireless systems in which the FB delay is made as short as

possible. In a TDD system this may be difficult but in a FDD system

the FB delay can be made as short as the roundtrip delay! These

considerations are independent of the fact that we can find ways to

get around FB delay, as we elaborate below, because a reduction in

FB delay always leads to improvements (be it in terms of DoF, or

NetDoF or at finite SNR).

II. DELAYED CSIT STATE OF THE ART

It therefore came as a surprise that with totally outdated Delayed

CSIT (DCSIT), the MAT scheme [1] is still able to produce significant

DoF gains for multi-antenna transmission compared to TDMA. In the

DCSIT setting, (perfect) CSIT is available only after a FB delay Tfb

(Tfb taken as the unit of time in number of the following schemes).

† EURECOM’s research is partially supported by its industrial members:
BMW Group R&T, iABG, Monaco Telecom, Orange, SAP, SFR, ST Micro-
electronics, Swisscom, Symantec, and also by the EU FP7 projects WHERE2
and NEWCOM#.

The channel correlation over Tfb can be arbitrary, possibly zero.

Perfect overall CSIR is assumed (which leads to significant NetDoF

reduction due to CSIR distribution overhead [2], [3]). The MISO BC

(Broadcast Channel) and IC (Interference Channel) cases of [1] have

been extended to some MIMO cases in [4].

Using a sophisticated variation of the MAT scheme, [5] was able to

propose an improved scheme for the case where the FB delay Tfb is

less than the channel coherence time Tc (define as the inverse of the

Doppler bandwidth (BW)). Let’s focus on the temporal correlation

of one channel coefficient h. The channel FB leads to an estimate

and estimation error: h =
̂̂
h+

˜̃
h with FB SNR

σ2
̂̂
h

σ2
˜̃
h

= O(ρ) where ρ

is the system SNR. At the Tx, on the basis of
̂̂
h, channel prediction

over a horizon Tfb leads to a prediction with error: h = ĥ+ h̃ with

prediction SNR
σ2
ĥ

σ2
h̃

= O(ρ
1−

Tfb
Tc ). The scheme of [5] attains for

MISO BC or IC with K = 2 users a sumDoF = 2(1 −
Tfb

3Tc
) =

2( 2
3

Tfb

Tc
+1−

Tfb

Tc
) using a sophisticated combination of analog and

digital FB. The scheme is limited to mostly MISO and to K = 2.

They also consider: imperfect CSIT (apart from delayed) and the DoF

region.

It was generally believed that any delay in the feedback necessarily

causes a DoF loss. However, Lee and Heath in [6] proposed a scheme

that achieves Nt (sum) DoF in the block fading underdetermined

MISO BC with Nt transmit antennas and K = Nt + 1 users if

the feedback delay is small enough (≤ Tc

K
). We introduce FRoI

channel models and exploit their approximately stationary character

to propose a simple ZF scheme based on Foresighted Channel FB

(FCFB). The DoF of FCFB ZF are also insensitive to FB delay.

III. SOME CHANNEL MODEL STATE OF THE ART

One category of popular channel models is the (first-order) au-

toregressive (Gauss-Markov) channel model, see e.g. [7]. However,

these models (at finite and especially low order) do not allow perfect

prediction and hence do not lead to interesting DoF results. These

models are called regular in [8]. The two classical (nonregular)

channel models that allow permanent perfect CSIT for Doppler rate

perfect channel feedback are block fading and bandlimited (BL)

stationary channels. The block fading model dates back to the time

of GSM where it was quite an appropriate model for the case of

frequency hopping. However, though this model is very convenient

for very tractable analysis (e.g. for sinngle-user MIMO [9]), it is

inappropriate for DoF analysis which works at infinite SNR and

requires exact channel models. Now, whereas exact channel models

do not exist, channel models for DoF analysis should at least be

good approximations. Indeed, mobile speeds and Doppler shifts are

finite. This leads to a strictly BL Jakes Doppler spectrum. However,

in the Jakes model, the mobile terminal has a certain speed without



Fig. 1. A bandlimited (BL) Doppler spectrum and its noisy version.

ever moving (attenuation, directions of arrival, path delays, speed

vector etc. are all constant forever). In reality, the channel evolution

constantly evolves from one temporarily BL Doppler spectrum to

another, leading to a possibly overall stationary process but that is

not BL.

Another aspect is that there is a difference between channel

modeling for CSIR only and for CSIT. In the CSIR case, causality

is not much of an issue and channel estimation can be done in a

non-causal fashion. Hence block processing and associated channel

models as in [7] and references therein are acceptable. In the CSIT

case however, the CSI needs to be fed back for adaptation of the

Tx. Due to the feedback delay, the channel estimation in the CSIT

scenario is necessarily causal (case of prediction). Hence different

channel models are required.

IV. THE BANDLIMITED (BL) DOPPLER SPECTRUM CASE

In an optimal approach, all channel coefficients (in the channel

impulse response) need to be treated jointly. However, if no deter-

ministic relations exist between the channel coefficients, then for the

purpose of DoF analysis, we may consider the case of i.i.d. channel

coefficients. In what follows we consider one such generic channel

coefficient h. Its temporal evolution is a stationary discrete-time

process, at the sampling rate (channel uses) of the communications

channel. We assume this sampling rate to be normalized to 1. We

assume the Doppler spectrum Sh(f), the spectrum of the process

h, to be bandlimited to Fc, which is the total Doppler Bandwidth

(as the channel coefficients are complex, the position of the Doppler

spectrum w.r.t. the carrier frequency is less crucial, so we can assume

the Doppler support to be [0, Fc] as in Fig. 1; also, Sh(f) is periodic

in frequency f with period 1). We denote the coherence time as

Tc = 1/Fc. Due to the (deterministic) estimation of the channel in

the downlink, and its imperfect feedback to the Tx, the Tx has a

noisy version
̂̂
h with additive estimation noise

˜̃
h (h′, h′′ in Fig. 1)

(note that the use of a prior channel distribution in a Bayesian

approach can be postponed until the prediction operation to follow).

The noisy spectrum is Ŝ̂
h
(f) = Sh(f) + S˜̃

h
(f) = Sh(f) + σ2

˜̃
h

assuming independent white noise
˜̃
h. Let Tfb be the delay with

which the channel estimate
̂̂
h arrives at the Tx for (instantaneous)

adaptation of the transmitter. That means that the Tx has to perform

channel prediction over a horizon of Tfb. Assuming a Gaussian

channel and estimation noise, linear minimum mean squared error

(LMMSE) prediction is optimal (if MMSE is the optimality criterion).

Prediction over a horizon of Tfb samples will become prediction

by one sample if we downsample the channel estimate signal by a

factor Tfb. Downsampling in the time domain leads to a expansion

of the spectrum support by a factor Tfb (of course, prediction from

a subsampled version is of a degraded quality in the noisy case).

Considering Fig. 1, as long as FcTfb < 1 (or Tfb < Tc), the

downsampled channel signal remains bandlimited. Let S(f) denote

the downsampled version of Ŝ̂
h
(f). Then we get for the (infinite

order) one sample ahead prediction MSE

σ̃2 = e
∫
1

0
lnS(f) df ∼ σ

2(1−FcTfb)

˜̃
h

. (1)

A similar behavior is obtained for the Tfb ahead prediction error from

the original unsubsampled process. The prediction error h̃′ considered

in (1) is actually the error in estimating
̂̂
h from its past. However,

what we are really interested in is estimating h from the past of
̂̂
h,

with prediction error h̃. Now, since
˜̃
h is white noise, we get in fact

σ2
h̃
= σ2

h̃′
− σ2

˜̃
h

. When Tfb > 0, the dominating term at high SNR

is still σ2
h̃′

though.

Let P (f) = 1 −
∑∞

n=1 pne
−j2πfn be the (one sample ahead)

prediction error filter for
̂̂
h (monic: p0 = 1). The −pk, k > 0 are

the coefficients for predicting both
̂̂
h or h. As infinite order prediction

succeeds in whitening the prediction error, we have that

Ŝ̂
h
(f) =

σ̃2

|P (f)|2
(2)

which is the Kolmogorov representation, an infinite order autoregres-

sive (AR(∞)) model. Since |P (f)| is a scaled version of 1/
√

Ŝ̂
h
(f),

it can easily be seen that P (f) is a high-pass filter, and converges

to an ideal high-pass filter as the SNR increases [10]. This has led a

number of researchers (see [10] and references therein) to construct

predictors for bandlimited signals simply by approximating ideal

high-pass filters. These FIR filters are typically chosen to be linear

phase and are made monic (p0 = 1) by dividing the filter by its

first coefficient. However, the prediction error filter P (f) is not only

monic but also minimum-phase.

A. The Noiseless BL Case: two-time scale model

Now consider the noiseless case, σ2
˜̃
h

= 0. Then clearly the

prediction errors become zero, σ2
h̃

= σ2
h̃′

= 0. Hence the signal

can be perfectly predicted from its past. For simplicity let Tc be an

integer. Let hk denote the channel coefficient at discrete time k and

consider one sample ahead prediction, then hk =
∑∞

n=1 pn hk−n.

Note that the prediction error filter P (f), which is an ideal high-

pass filter, can be chosen to be independent of the actual Doppler

spectrum Sh(f) within its support, and can be chosen to be only a

function of the Doppler spread Fc = 1
Tc

. Let us denote this spectrum

independent prediction error filter as PTc(f). As we have perfect

prediction, we can repeat the one sample ahead prediction recursively

to perfectly predict multiple samples ahead. Can this be repeated

indefinitely? Yes if we have all samples available to predict from,

but no if T -ahead prediction is based on a T times downsampled

version. In that case, when we hit prediction horizon Tc, Tc-ahead

prediction being here (in terms of zero prediction error) equivalent to

1-ahead prediction on a Tc times downsampled signal, downsampling

(and hence stretching its support) Sh(f) by a factor Tc makes it

non-singular at all frequencies (non bandlimited). Note also that

due to the perfect predictibility over the horizon {1, . . . , Tc − 1},

linear estimation in terms of the complete past is equivalent to

linear estimation in terms of a Tc times downsampled version of

the past, since the samples in between can be filled up causally

from a downsampled version. At prediction horizon Tc now, from

a Tc times downsampled past, we are dealing with standard 1-ahead

linear prediction of a non bandlimited stationary process, which under

some regularity conditions can be considered as an AR(∞) process

(Kolmogorov model). Let the infinite order prediction error filter for

the Tc times downsampled process be A(f). The reasoning above

allows us to formulate the following theorem.



Theorem 1: Two-Time Scale BL Model The prediction error filter

for a stationary process hk bandlimited to 1/Tc (Tc integer) can be

modeled as

P (f) = PTc(f)A(Tcf) (3)

where PTc(f) is the prediction error filter for a BL process with

flat Doppler spectrum and A(f) is the prediction error filter for the

downsampled hkTc .

Let G(f) = 1/PTc(f) =
∑∞

n=0 gn e−j2πfn which is like PTc(f)
again a minimum-phase monic causal filter. Note that G(f) behaves

like an ideal low-pass filter with bandwith 1/Tc, hence the Tc times

downsampled version of its impulse response is a delta function:

gnTc = g0 δn0. Then the stationary BL process hk can be generated

as

hk = gk ∗ h↓↑
k (4)

where h↓↑
k is the Tc times downsampled and then Tc times upsampled

(inserting Tc − 1 zeros between consecutive samples) version of hk

and ∗ denotes convolution. The block fading model is similar to (4)

with gk now a rectangle: gk = 1, k = 0, 1, . . . , Tc − 1 and zeros

elsewhere. With this similarity, the block fading and BL stationary

case have in common that for every consecutive coherence period Tc,

if the first sample (and the past) is known, then the remaining Tc−1
samples of the current coherence period are known [11].

B. Back to the Noisy BL Case

The prediction of a BL process is not a stable operation [12]

as can be seen from (1) where σ̃2 grows more rapidly than linear

in σ2
˜̃
h

(assuming σ2
˜̃
h

is small). This is related to the fact that the

(noiseless) prediction coefficients pk are of infinite length and are not

rapidly decaying. In [13], it was shown (for CSIR purposes) that the

stationary BL model and the block fading model become equivalent

as Fc → 0. Such equivalence in the limit will also result for CSIT

purposes here. But we want to go beyond the limit of very small

Doppler spread.

Consider the (infinite order) autoregressive (Kolmogorov decom-

position) and moving-average (Wold decomposition) representations

of a noisy BL stationary process with spectrum as in Fig. 1 :

S(f) =
σ̃2

|P (f)|2
= σ̃2 |G(f)|2 (5)

with monic (first coefficient equal to 1) minimum-phase infinite order

prediction error filter P (f) and spectral factor G(f) and infinite

order prediction error variance σ̃2 such that the prediction error SNR

becomes at high SNR (in the rest of this subsection T = Tc)

σ2
h

σ̃2
= σ2

h e−
∫
lnS(f) df = T−1/T

(
σ2
h

σ2
˜̃
h

)1−1/T

. (6)

where the channel estimation/FB SNR
σ2

h

σ2

˜̃
h

is assumed to be propor-

tional to the system SNR ρ (even if only for large ρ) . It appears that

analytical expressions for P (f) do not exist in the literature and the

following may explain why. We get straightforwardly

|P (f)|2 =
σ̃2

S(f)
=





(
Tσ2

h

σ2

˜̃
h

)−(1−1/T ) f ∈ [0, 1/T ]

(
Tσ2

h

σ2

˜̃
h

)1/T f ∈ [1/T, 1]
(7)

and hence we get for the energy in P (f)

||P ||2 = 1/T (
Tσ2

h

σ2
˜̃
h

)−(1−1/T ) + (1− 1/T )(
Tσ2

h

σ2
˜̃
h

)1/T → ∞ (8)

which explodes as ρ → ∞ ! Similarly for the monic causal spectral

factor G(f) = 1/P (f) and hence its energy

||G||2 = 1/T (
Tσ2

h

σ2
˜̃
h

)1−1/T + (1− 1/T )(
Tσ2

h

σ2
˜̃
h

)−1/T → ∞ (9)

explodes also when we insist on monicity (g0 = 1). Of course, it

is possible to find a spectral factor G with finite energy, but then

g0 → 0.

C. No exact BL model anywhere

In [14], the behavior of (1) is exploited to show the resulting DoF

of the 2 user MISO BC. However, what is not mentioned there is

that these results correspond to a channel model that needs to be

in a range between two extreme models. The one extreme model

is block fading over blocks of length Tfb, with stationary Fc-BL

evolution of the value of the blocks, and channel feedback every

Tfb. The other extreme is a genuine Fc-BL stationary channel model,

but then the channel needs to be fed back every sample (which

is normally unacceptable in terms of NetDoF)! In [2] still another

approach is taken in which block fading over some T is assumed,

plus BL stationary evolution between blocks (such that one of the

interpretations of [14] corresponds to this with T = Tfb).

The other popular model is the block fading model of course. In

[11], it was shown that the DoFs of [14] can be reproduced very

simply in the case of a block fading model, by the MAT-ZF scheme,

a simple combination of MAT (during Tfb, while waiting for the

channel FB) and ZF for the rest of the coherence period (see further

discussion below). In [15] it was shown in an alternative fashion

that the channel FB rate could be reduced w.r.t. [14] by a factor

Tc/Tfb (equivalent to FB every Tc instead of every Tfb, as our FRoI

approach also indicates, see below). To reproduce these results for

the stationary BL case is not easy though, and the scheme of [14]

is quite intricate, involving, as in MAT, FB of (residual) interference

(now necessarily digital, with superposition coding and sequential

decoding).

The models we introduce next allow to retain the simplicity

of block fading models and even go beyond them (by exploiting

stationarity).

V. LINEAR FINITE RATE OF INNOVATION (FROI) CHANNEL

MODELS (CM)

FRoI signal models were introduced in [16]. Innovation here could

be a somewhat misleading term since historically (in Kalman filter

parlance) the term ”innovations” has been used to refer to the infinite

order prediction errors. In [16] and here, the rate of innovation could

be considered to be the DoF of signals (i.e. the source coding rate

prelog). FRoI represents the time series case of sparse modeling.

The FRoI signal models that have been considered in [16] could

be in general non-linear. In other words, the FRoI represents the

average number of parameters per time unit needed to describe

the signal class and these parameters could enter the signal model

in an arbitrary fashion. For instance, the signal could be a linear

superposition of basis functions of which also the positions (delays,

and in the channel modeling case e.g. also Doppler shifts) are

parameterized. For the purpose of channel modeling and FB, with

essentially stationary signals that need to be processed in a causal

fashion, it would appear reasonable to stick to linear FRoI models,

in which the parameters are just the linear combination coefficients of

fixed, periodically appearing basis functions, commensurate with the

Doppler bandwith. This also corresponds exactly to so-called Basis

Expansion Models (BEMs), which were probably introduced in [17]



and used for estimating time-varying filters in the eighties and for

channel modeling in [18] and many follow-up works.

Fig. 2. Finite Rate of Innovation (FRoI) time-varying channel modeling.
In the case of a single basis function, the FRoI channel model is

similar to (4):

hk = gk ∗ a↑
k (10)

where a↑
k is a Tc times upsampled discrete-time signal of which

the non-zero samples (parameters) appear once every Tc sampling

periods, and gk is a basis function, see Fig. 2. The resulting FRoI

model encompasses the following existing models:

• block fading: gk =

{
1 , k = 0, 1, . . . , Tc − 1
0 , elsewhere

• stationary bandlimited (BL):

gk = sinc(πk/Tc) =
sin(πk/Tc)

πk/Tc
.

In our case, gk is a causal FIR approximation to an ideal lowpass

filter with (overall) bandwidth Fc. The length of the basis function

gk is intended to span several Tc. By making the filter longer

however, a bandlimited characteristic can be better approximated.

Obviously, the BL model (4) can be obtained by letting the filter

length become infinite. Starting from a stationary sequence ak,

the process hk generated by (10) is cyclostationary. By letting gk
better approximate a lowpass (or bandpass) filter, the cyclostationary

process gets closer to stationary. In any case, at the start of each

new coherence period Tc, knowing the past, the estimation of the

sample hk allows the estimation of the new parameter a↑
k involved.

And this in turn allows to determine the evolution of hk for the next

Tc−1 samples. In the presence of noise, it is clearly desirable to have

a first coefficient g0 that is large (though any non-zero coefficient

is sufficient for DoF analysis purposes). Due to the finite length

and energy of the filter gk, the effect of noise is limited and the

prediction error variance over the coherence period will remain of

the order of σ2
˜̃
h

, the noise level in the channel FB. As the sampling

rate (and hence FB frequency) of BL signals increases, the horizon

of perfect prediction increases proportionally, and becomes infinite as

the continuous-time past signal becomes available [12]. Of course, for

all real-world signals for which a BL model seems plausible (e.g. the

speech signal), this does not work because real-world signals are only

approximately stationary and bandlimited over a limited time horizon.

For instance, it is impossible to predict what a speaker is saying. In

wireless communications, although Doppler shifts are finite because

speed is finite, the Doppler spectrum becomes non-BL because the

Doppler shifts are time-varying. If the channel response would be a

deterministic function of the mobile terminal position, prediction of

the channel would correspond to prediction of the mobile position

which is impossible on a longer time scale. From this point of view,

linear FRoI models which are approximately bandlimited but with

a finite memory might be better approximations of approximately

BL real-world signals. A lot of work on estimating FRoI signals has

focussed on non-causal approaches [19]. However, what is needed

for the application of FRoI to channel feedback is a design with

prediction in mind.

The linear FroI model can also be considered as a filterbank with

a single subband (more discussion to follow below). The synthesis

filter is gk, and there is an analysis filter fk. The analysis-synthesis

cascade leads to

an =
∑

k fk hnTc−k

hnTc+i =
∑

l an−l glTc+i , i = 0, 1, . . . , Tc − 1 .
(11)

Perfect reconstruction for a strictly BL process requires:

gk ∗ fk = sinc(πk/T ) . (12)

This can be satisfied with e.g. gk = sinc(πk/T ) , fk = δk0
(Kronecker delta). In the case of an orthogonal filterbank with causal

gk, this requires fk = g∗−k, and (gk ∗ g∗−k)k=nT = δn0 (the

convolution gk∗g
∗
−k (correlation sequence of gk) should be a Nyquist

pulse). In this case, if hk is not a BL signal, the reconstructed signal

resulting from applying the FRoI model in (11) would produce the

least-squares projection of the signal hk on the subspace of Fc-BL

signals [20]. However, this requires fk = g∗−k (matched filter) to be

non-causal! As can be seen from Fig. 2, the optimal computation of

coefficient an requires the correlation of the signal hk that follows

from the time instant k = nTc onwards with the basis function gk.

This is impractical for the channel feedback application in which both

gk and fk should be causal, and the computation of an should be

based (for optimal DoF considerations) on the first sample only of

this correlation. Hence g0 plays an important role (can not be small).

For a number of applications (handling of multiple users with

different Tfb or different Tc, see further also), the use of FRoI models

with multiple, N , basis functions might be desirable. In this case the

FRoI model becomes

hk =
N∑

n=1

g
(n)
k ∗ a

↑ (n)
k (13)

where the a
↑ (n)
k are N sequences of parameters that are now NTc

times upsampled, to preserve a RoI of Fc. As the g
(n)
k represent N

different basis functions that are essentially bandlimited and also time

limited, there might be some connection with prolate spheroidal wave

functions [7], [12]. However, to limit FB delay, the first N coefficients

of these basis functions play a particularly important role here.

VI. BASIS FUNCTION OPTIMIZATION

Although the true channel model cannot be strictly BL, it is

nevertheless reasonable to use a BL model for the optimization of the

FRoI model. Here we consider the FRoI model for a single generic

channel coefficient. To be optimal however, all (correlated) channel

coefficients would have to be treated jointly.

A. Single Basis Function Case

Consider first the case N = 1. Let gk span LT (we will denote

T = Tc in this section to simplify): gk , k = 0, 1, . . . , LT − 1.

Decompose discrete time as k = nT + i where i = k mod T ,

n = ⌊k/T ⌋. Then the FRoI or BEM channel model can be written

as

hk =

L−1∑

l=0

an−lglT+i , i = 0, 1, . . . , T − 1 . (14)



B. Approach 1: FRoI model based Analysis

Rx Side:

Now assume that the UE disposes of a channel estimate

ĥk = hk + h̃k (15)

where we assume h̃k to be white noise with variance σ2
h̃

. (Net)DoF

optimization requires to use minimal (just identifiable) data to esti-

mate the basis expansion coeffients an. Hence, if we assume the BEM

coeffients an to be estimated without delay, then they get estimated

from one channel signal sample, as soon as their corresponding basis

function starts. Hence an gets estimated from the following data

model



ĥnT

ĥnT−1

...

ĥ(n−1)T

ĥ(n−1)T−1

...

ĥ(n−2)T

...




=




g0 gT g2T · · ·

0 gT−1 g2T−1 · · ·
...

...
...

g0 gT · · ·

0 gT−1 · · ·
...

...

g0 · · ·
. . .







an

an−1

an−2

...




+




h̃nT

h̃nT−1

...

h̃(n−1)T

h̃(n−1)T−1

...

h̃(n−2)T

...




(16)

which can be rewritten compactly as

ĥ
n
= Ga

n
+ h̃

n
. (17)

The least-squares solution for a
n

yields

â
n
= (GTG)−1GT ĥ

n
(18)

and hence

ân = f ĥ
n

with f = eT1 (G
TG)−1GT

(19)

where eT1 = [1 0 0 · · ·]. The main characteristic of Approach 1 is

that the analysis filter f is a function of the basis function (synthesis

filter) g, and not of the actual channel h.

Tx Side:

The feedback to the Tx leads to the availability of

ˆ̂an = ân + ˜̃an (20)

at the Tx, on the basis of which the Tx reconstructs the channel signal

as 


̂̂
h(n+1)T−1

...
̂̂
hnT


 =

L−1∑

l=0




g(l+1)T−1

...

glT


 ˆ̂an−l . (21)

At least, we shall consider this simple deterministic reconstruction

for the purpose of optimizing the basis function gk. (Alternatively

the Tx could account for the fact that the ˆ̂an are noisy.)

Basis Function Optimization:

Note that the matrix G is of the form

G =

[
g0 gT

0 G
′

]
(22)

where gT = [gT g2T g3T · · ·]. The optimization of the basis function

g now follows by minimizing the MSE associated to (21) where the
ˆ̂an follow from (20) and (19). However, this leads to a quite nonlinear

criterion. Now, it is clear that the hnT are used for the estimation

of the an (and not for data transmission). Hence the g appears to

be irrelevant for the reconstruction of h. Furthermore, having g 6= 0

would seem to only deteriorate the estimation of the an. Hence we

shall consider here a constrained optimization problem with g = 0.

This leads to the T -downsampled version of gk to be a delta function.

With g = 0, we get

ân = ĥnT , ˆ̂an = hnT + h̃nT + ˜̃an . (23)

For the design of the gk, we consider the sum MSE over one

coherence period in (21). This decouples to the MSE per sample

hnT+i −
̂̂
hnT+i = hnT+i −

L−1∑

l=0

glT+i
ˆ̂an−l , i = 0, 1, . . . , T − 1

(24)

where we mentioned that we shall omit the consideration of i = 0
(or possibly even i = 0, 1, . . . , Tfb − 1 to account for FB delay).

Note that (24) corresponds to the prediction of hnT+i on the basis

of the L ˆ̂an−l. The MSE (for i > 0) is dominated by approximation

error at high SNR, hence we shall consider the noiseless case for the

design of the gk. We thus get the following MSE criterion

MSEi = E |hnT+i −

L−1∑

l=0

glT+i h(n−l)T |
2 . (25)

This leads to the following normal equations

R g
i
= ri (26)

where we have a Toeplitz covariance matrix R

R=




r0 rT · · · r(L−1)T

rT r0
. . .

...
. . .

...

r(L−1)T r(L−2)T · · · r0




(27)

and

ri=




ri
ri+T

...

ri+(L−1)T


 , g

i
=




gi
gi+T

...

gi+(L−1)T


 (28)

with the correlation sequence rm = Ehk+mhk. For the case of an

ideal lowpass Doppler spectrum, we have rm = σ2
h T

sin(πm/T )

πm
(so r0 = σ2

h). The resulting MSEi is

MSEi = r0 − rTi R
−1ri . (29)

The normalized average MSE (or inverse approximation SNR) is

NMSE =

∑T−1
i=t MSEi

(T − t)σ2
h

(30)

where t = Tfb ≥ 1. Another evaluation criterion is |G(f)|2 =
|
∑LT−1

k=0 gke
−j2πfk|2 which should approximate an ideal low-pass

filter. In particular the ratio of power outside and inside the frequency

interval [− 1
2T

, 1
2T

] can be considered.

C. Approach 2: Biorthogonal Approach with decoupled Analysis and

Synthesis filters

Let f = [f0 f1 · · · fM−1] in ân = f ĥ
n

be unconstrained (where

now ĥ = [ĥnT ĥnT−1 · · · ]
T is of length M ), not only to simplify the

MSE cost function, but to get a better approximation capability, in

particular also to reduce pressure on g0. The channel reconstruction

(average) MSE criterion becomes

MSE =
1

T
E

∥∥∥∥∥hn −

L−1∑

l=0

gl (f ĥ
n−l

+ ˜̃an−l)

∥∥∥∥∥

2

(31)



which is now quadratic in f or g separately. This can be solved by

alternating minimization, quite similar to joint transmitter/receiver

design via MMSE.

1) Optimization w.r.t. g for a given f : We can rewrite the criterion

(31) as

E
∥∥∥hn −G (F ĥ

′

n
+ ˜̃an)

∥∥∥
2

(32)

where ˜̃an = [˜̃an
˜̃an−1 · · · ˜̃an−L+1]

T , ĥ
′

n
is an extended version of

ĥ
n

of length J = M + L(L− 1), G = [g0 g1 · · ·gL−1] and

F = T (f) =




f 01×L(L−1)

01×L f 01×L(L−2)

. . .

01×L(L−1) f


 (33)

which is hence a banded block Toeplitz matrix (obtained by taking

every Lth row of a banded Toeplitz matrix). With (32) we can rewrite

(31) as

MSE = r0+
1

T
tr{G(F(R

ĥ
′
ĥ
′+σ2

h̃I)F
T+σ2

˜̃aI)G
T−2R

hĥ
′F

T
G

T } .

(34)

Optimizing (34) leads to

G = R
hĥ

′F
T (F(R

ĥ
′
ĥ
′ + σ2

h̃I)F
T + σ2

˜̃aI)
−1

(35)

where we have R
ĥ
′
ĥ
′ = RJ is a symmetric Toeplitz covariance

matrix of the form (for arbitrary N )

RN =




r0 r1 · · · rN−1

r1 r0
. . .

...
. . .

...

rN−1 rN−2 · · · r0




(36)

and finally we have the Toeplitz matrix

R
hĥ

′ =




rT−1 rT · · · rJ+T−2

...
...

. . .
...

r1 r2 · · · rJ
r0 r1 · · · rJ−1


 (37)

where again J = M + L(L− 1).

2) Optimization w.r.t. f for a given g: Note that the FB noise ˜̃an

has no effect on the optimization of f . Criterion (31) now becomes

E

T−1∑

k=0

|hnT+k − f

L−1∑

l=0

gk+lT ĥ
n−l

|2 (38)

The optimal analysis filter f is solution to the following normal

equations

f A = b ⇒ f = bA
−1

(39)

where

b =

T−1∑

k=0

EhnT+k

L−1∑

l=0

gk+lT ĥ
T

n−l

=

T−1∑

k=0

L−1∑

l=0

gk+lT EhnT+lT+k ĥ
T

n

= g Eh′
nĥ

T

n
= g Eh′

nh
T

n
= g Rh′h

(40)

where h′
n = [hnT hnT+1 · · ·hnT+LT−1]

T , we exploited the station-

arity of hk, g = [gT
0 gT

1 · · ·gT
L−1] = [g0 g1 · · · gLT−1] and we have

the Hankel matrix (constant along antidiagonals)

Rh′h =




r0 r1 · · · rM−1

r1 r2 · · · rM
...

... . . . ...

rLT−1 rLT · · · rM+LT−2


 . (41)

Finally

A =

T−1∑

k=0

L−1∑

l=0

L−1∑

m=0

gk+lT gk+mT E ĥ
n−l

ĥ
T

n−m

=

L−1∑

l=0

L−1∑

m=0

g
T
l gm E ĥ

n−l
ĥ
T

n−m

=

L−1∑

k=−(L−1)

rg,k (RM,k + σ2
h̃IM,kT )

= rg,0 (RM + σ2
h̃
IM )

+

L−1∑

k=1

rg,k (RM,k +RM,−k + σ2
h̃(IM,kT + IM,−kT ))

(42)

where we have the M ×M Toeplitz covariance matrix

RM,k =




r|kT | r|kT+1| · · · r|kT+M−1|

r|kT−1| r|kT | · · · r|kT+M−2|

...
... . . . ...

r|kT−M+1| r|kT−M+2| · · · r|kT |


 ,

(43)

the shifted M ×M identity matrix IM,n,

[IM,n]i,j = δi−n,j (44)

where δi,j is the Kronecker delta, and

rg,k =

L−1−|k|∑

n=0

g
T
n+|k|gn (45)

which can be computed as

[rg,0 rg,1 · · · rg,L−1] = [g 01×L(L−1)] T (g)T (46)

where the block Toeplitz function T (.) is defined in (33).

In the iterative MSE minimization, we iterate between solving

for g from (35) and then for f from (39) untill convergence. For

initialization one can set the g to all ones. In the absence of

noise, only the product of g and f counts (see (31)) and one could

renormalize g0 = 1 after each iteration.

Remark 1: Filter Banks: One may observe that the FRoI/BEM

model thus introduced corresponds to modeling a signal by retaining

only the first subband in a filterbank, see [20] and esp. [21]. One

can imagine a critically subsampled filterbank with T subbands,

each subsampled by a factor T . Since the signal to be modeled is

only expected to occupy the lowest fraction 1/T of the spectrum,

only the first subband signal is retained. From the moment only a

single subband is retained, the relation between subband bandwith

and subsampling factor becomes a little looser of course. In filterbank

terminology, f is the analysis filter and g is the synthesis filter. Since

both are different, the filterbank is biorthogonal. (Perfect reconstruc-

tion) filterbank design has been considered for reconstruction with a

variable non-negative delay. Here, the delay needs to be negative

though (prediction). Whereas the first approach for FRoI model

optimization (g only) considered would correspond to orthogonal

filterbanks in the noncausal case and in the absence of noise, we

expect that the biorthogonal FRoI models of the second approach



Fig. 3. MAT-ZF scheme.

(involving g and f ) are much better suited for the prediction needed

here. Approach 2 furthermore allows to handle not only estimation

error but also channel model approximation error.

Remark 2: Online Optimization: Here we considered the joint

design of analysis and synthesis filters f and g in order to get an idea

of the behavior of these filters and of their resulting performance.

Note that due to the assumption of an (ideal) symmetric Doppler

spectrum, channel correlations and optimal filters are real. In a

real system, the UE could perform the joint optimization above, by

assuming a certain FB noise level σ2
˜̃a
. And the BS could optimize

its synthesis filters by minimizing E
∥∥∥hn −

∑L−1
l=0 g

l
ˆ̂an−l

∥∥∥
2

or a

sample average version hereof. However, the issue is that BS and

UE need to use the same synthesis filter g. One solution is to use an

a priori design for g, and then let the UE only adapt f .

D. Multiple Basis Functions

Now consider N > 1. Compared to the N = 1 case, we can get

to the N > 1 case straightforwardly by considering the ”samples” h
and a to represent N × 1 consecutive samples, and the ”samples” g
become of size N×N in which the N rows represent N consecutive

time samples and the N columns correspond to the coefficients of

the N basis functions. T consecutive vector samples hk now span in

fact NT sampling periods. We get similar normal equations in which

the correlation matrices rm are Toeplitz, of size N ×N , and contain

neighboring correlation values.

Note that in the case N > 1 an even higher noise sensitivity

will exist due to the minimum delay estimation requirement for the

an since the channel coefficient signal hk will be heavily correlated

over N consecutive samples if T is large, which will make the

differentiation of the contributions of the N basis functions to the

channel coefficient signal on the basis of only the first N samples ill

conditioned.

In the filterbank interpretation, we are now splitting the original

subband of bandwidth 1/T into N finer subbands, each subsampled

by a factor NT .

For the case of rational T = m/n, a similar reasoning would lead

to n basis functions (BEMs) in block length m. In case of multiple

users with different T , the block length could be taken as their least

common multiple (lcm) and the number of BEMs would be different

for different users.

VII. DOF OBTAINED WITH FROI CHANNEL MODELS (CMS)

As mentioned above, DoF obtained with block fading CMs can

immediately be extended to FRoI CMs. Hence the DoF of the MAT-

ZF scheme of [11], obtained in [11] for block fading, also apply for

FRoI. This allows to reproduce the DoF of [14] for the 2-user MISO

BC, and furthermore extend these DoF results to any MIMO single-

hop multi-user network (Interfering Broadcast Channel, MAC, etc.)

by simply combining the DoF of MAT and ZF for such networks

(when known), see Fig. 3 :

DoFMAT−ZF =
Tfb

Tc
DoFMAT + (1−

Tfb

Tc
)DoFZF (47)

which for MISO BC with K = 2 users becomes sumDoF = 2( 2
3

Tfb

Tc
+

1−
Tfb

Tc
) as in [5]. Of course, the implementation of the MAT scheme

involves the MAT part of possibly many coherence periods (e.g. 3

for the K = 2 MISO BC case, apart from CSI gathering overhead

considerations).

These DoF can furthermore be improved by switching to FRoI

models with N > 1 basis functions. As the RoI in these models is

unchanged, the (average) feedback rate is unchanged. However, with

N > 1, feedback needs to occur only once every NTc, and hence

FB delay is suffered only once every NTc. Hence the weight of

the MAT portion in the DoFMAT−ZF is reduced to
Tfb

MTc
, bringing

the DoFMAT−ZF closer to DoFZF . In theory N could be made

arbitrarily large, but not in practice.

Until recently, the only scheme in which the DoF are not affected

by FB delay was the scheme of [6] for the MISO BC/IC, with a

MIMO extension in [22] where the scheme is termed Space-Time IA

(STIA). The ingredients of STIA are:

• symbol extension (time-varying channel required): space-time

ZF precoding

• due to CSIT delay, transmit fewer symbols per user

• but make up by overloading (K > Nt, number of BS antennas),

to get full sumDoF

• send Nt symbols to K = Nt + 1 users over Nt + 1 Tc’s

The scheme is presented in [6] for block fading but now, like any

scheme that is valid for block fading, also becomes applicable to

bandlimited stationary fading via the FRoI channel model introduced

here.

A. Foresighted Channel Feedback

Indeed, the main characteristic of FRoI CMs is that they closely

approximate stationary (BL) signals. This means that if a FRoI CM

is a good model, so is an arbitrary time shift of the FRoI model!

This can be exploited to overcome the FB delay as explained in

Fig. 4. Consider FRoI CM with N = 1 basis function. While the

current coherence period is running, as the Channel FB (CFB) is

going to take a delay of Tfb, instead of waiting for the end of the

current Tc, we start the next coherence period Tfb samples early.

This means jumping from the subsampling grid of the FRoI model

to the shifted subsampling grid of another instance of the same FRoI

model. This involves recalculating the (finite number of past) FRoI

parameters a↑
k for the new grid from the past channel evolution on

the old grid, plus a new channel estimate at the start of the Tc on the

new grid. In this way the FB (sampling) ”rate” increases from 1
Tc

to 1
Tc−Tfb

. But the CSIT is available at the Tx all the time, with a

channel prediction error SNR proportional to the general SNR. This

approach is applicable to any multi-user network.

By increasing N , the number of basis functions, this approach

continues to work for any Tfb < N Tc, and hence for any Tfb. Re-

lated work seems to appear in [23] where apparently the subsampling

phase of a FRoI model for a given user is considered untouchable.

To get full DoF in the presence of CSIT delay, instead of jumping

from one subsampling phase to another for a given user, in [23] the

authors propose to jump between users, for which the channels are

modeled with different subsampling phases.

The proposed FCFB increases the FB DoF consumed, hence (and

in any case) it is of interest to consider (the more relevant) NetDoF.

An analysis of the resulting NetDoF for the MISO BC is presented

in [24].

VIII. BEYOND FROI: PREDICTIVE RATE DISTORTION

The FRoI channel model is just one way to get a certain rate

(DoF) for a distortion of O(σ2
v) (noise level). More generally, the

distortion in a predicted channel at the Tx can contain a combination



Fig. 4. Foresighted Channel Feedback (FCFB).

of approximation error and noise due to estimation and feedback.

What is needed here is predictive rate-distortion (R-D) theory. Such

theory would e.g. allow to determine which estimation and FB DoF

are required to get the prediction distortion at the Tx down to the level

of the noise (with the channel distortion at the Tx being reflected in an

induced equivalent noise at the Rx). However, the proper evaluation

of such R-D theory obviously depends heavily on the channel model,

whereas all existing channel models are too approximate to allow a

solid high SNR DoF analysis. Some related work appears in [25]

where no causality is imposed and where the analysis filter f is not

optimized (fixed), and in [26] and references therein, where causal

(but not predictive) R-D is developed for the application of FB in

control systems.
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