
ar
X

iv
:2

40
6.

19
91

3v
2 

 [
cs

.D
C

] 
 1

1 
O

ct
 2

02
4

Automated Deep Neural Network Inference

Partitioning for Distributed Embedded Systems

Fabian Kreß, El Mahdi El Annabi, Tim Hotfilter, Julian Hoefer, Tanja Harbaum, Juergen Becker

Karlsruhe Institute of Technology, Karlsruhe, Germany

{fabian.kress, hotfilter, julian.hoefer, harbaum, becker}@kit.edu

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ISVLSI61997.2024.00019

Abstract—Distributed systems can be found in various appli-
cations, e.g., in robotics or autonomous driving, to achieve higher
flexibility and robustness. Thereby, data flow centric applications
such as Deep Neural Network (DNN) inference benefit from
partitioning the workload over multiple compute nodes in terms
of performance and energy-efficiency. However, mapping large
models on distributed embedded systems is a complex task, due
to low latency and high throughput requirements combined with
strict energy and memory constraints.

In this paper, we present a novel approach for hardware-
aware layer scheduling of DNN inference in distributed embedded
systems. Therefore, our proposed framework uses a graph-based
algorithm to automatically find beneficial partitioning points in a
given DNN. Each of these is evaluated based on several essential
system metrics such as accuracy and memory utilization, while
considering the respective system constraints. We demonstrate
our approach in terms of the impact of inference partitioning
on various performance metrics of six different DNNs. As
an example, we can achieve a 47.5% throughput increase for
EfficientNet-B0 inference partitioned onto two platforms while
observing high energy-efficiency.

Index Terms—Embedded Systems, Deep Neural Networks,
Inference Partitioning, Hardware/Software Co-Design

I. INTRODUCTION

The hardware requirements for Deep Neural Net-

work (DNN)-based applications such as Advanced Driver-

Assistance Systems (ADAS) or assistance robots are con-

stantly increasing with regard to various performance indi-

cators including latency, throughput and energy efficiency.

To address this, several dedicated hardware accelerator ar-

chitectures have been proposed over the last years. However,

these are either tailored to a specific workload offering high

performance but less flexibility, or designed to accelerate

various applications but suffer from low efficiency. As a result,

systems consisting of more than a single hardware accelerator

are required to offer well-fitted hardware for different applica-

tions executed on embedded platforms. Distributed systems in

those use cases consist of several hardware platforms close

to the sensors and a central compute unit. Implementing

multiple hardware accelerators for DNN inference in a single

component thereby leads to a significant increase in design

complexity to avoid severe bottlenecks introduced through

limited memory bandwidth. As a result, distributing hardware

accelerators for DNN inference is advantageous [1].

However, mapping DNNs on such systems in a performant

and energy-efficient manner is a complex task, as the architec-

ture of the hardware accelerators must be taken into account

in addition to the transmission overhead. In this paper, we

address this problem by proposing an automated inference

partitioning approach to find an optimal trade-off considering

several performance metrics and also hardware constraints.

Our proposed framework thereby uses a graph-representation

of the DNN to find a Pareto-optimal mapping, which offers

low latency, high energy-efficiency and high DNN accuracy.

It supports multiple hardware accelerators tailored to different

workloads and also considers the overhead introduced by

the link between the system platforms. In summary, our

contributions are as follows:

• We present our automated framework to evaluate several

important metrics of potential DNN partitioning points.

• We introduce our systematic approach to determine an

optimal partitioning based on given constraints and the

optimization goals.

• We evaluate our methodology for several Convolutional

Neural Networks (CNNs) and present our experimental

results regarding latency, energy consumption, through-

put, top-1 accuracy and memory consumption.

II. RELATED WORK

In recent years, partitioning of DNN inference has been

studied in different contexts. Several research has been done

on inference partitioning of multi-FPGA environments [2], [3].

They focus on efficient use of shared memory resources

between FPGAs to reduce communication overhead and to

increase performance. Others [1], [4] perform partitioning in

edge clusters and thereby try to distribute the DNN inference

in parallel over multiple devices.

These approaches are not suitable for systems that do not

consist of a computing cluster to distribute the workload.

Consequently, there has also been research on layer-wise DNN

inference partitioning as shown in Table I. Hu et al. [5] pro-

posed an automated dynamic scheduling approach which takes

network conditions into account. The graph-based algorithm

thereby either tries to optimize the inference towards minimum

latency or maximum throughput, depending on the network

load. In the evaluation, the authors can show the benefits

of partitioning DNN inference, however, their scheduling

algorithm does not take hardware performance and limitations

into account and is therefore not suited for resource con-

strained systems. Moreover, the scheduler Neurosurgeon [6]

has been proposed to optimize DNN inference partitioning

between mobile edge and cloud. It is designed to automatically

http://arxiv.org/abs/2406.19913v2
https://doi.org/10.1109/ISVLSI61997.2024.00019


Framework
DNN Search Auto. Multi HW-aware

(Re-)Training
Target

Optimization Metrics
Framework Method Part. Part. Part. Platform

Hu et al. [5] Caffe Graph-based ¤ p p p RPi 3 latency, throughput

Neurosurgeon [6] Caffe Model-based ¤ p p p CPU/GPU latency, energy

Yao et al. [7] TensorFlow Model-based ¤ p p ¤ CPU/GPU latency, bandwidth

Ko et al. [8] N/A Simulation p p ¤ ¤ ASIC energy, throughput, bandwidth, accuracy

CNNParted [9] PyTorch Simulation p p ¤ p ASIC/GPU latency, energy, bandwidth

AxoNN [10] TensorFlow Graph-based ¤ ¤ ¤ p GPU/DLA latency, energy

Our Proposal ONNX Graph-based ¤ ¤ ¤ ¤ ASIC latency, bandwidth, energy, memory, accuracy, throughput

TABLE I: State-of-the-art methodologies for evaluation of DNN inference partitioning in the edge

determine a beneficial partitioning point in terms of overall

latency and mobile edge energy consumption. Similarly to

the previously mentioned approach, their scheduling does not

provide a hardware-optimized DNN inference partitioning.

Apart from optimizing latency, energy consumption and

throughput by applying inference partitioning, reducing band-

width is also a major objective in this context. Therefore,

Yao et al. [7] proposed an offloading approach which adds

an autoencoder structure at the partitioning point to further

compress the data transmitted between computing nodes in the

system. Since this approach can impact the overall accuracy

of the DNN, training of the autoencoder has to be done with

regard to all potential partitioning points. Again, the method-

ology does not take hardware constraints into account and is

only evaluated on two mobile devices. In contrast to previous

methodologies, Ko et al. [8] proposed a simulation-based DNN

inference partitioning approach for more resource-constrained

and Application-Specific Integrated Circuit (ASIC) platforms.

The presented methodology thereby allows to determine a

partitioning point based on energy efficiency and throughput.

To further reduce the bandwidth required when distributing

inference, the authors propose to encode intermediate feature

maps using lossy encoding and fine-tuning of the partitioned

DNN. However, the methodology presented only allows to

derive design guidelines for other applications and does not

include an algorithm for automated partitioning. Similarly,

the open-source tool CNNParted [9] offers a hardware-aware

design space exploration of beneficial partitioning points but

only outputs latency, energy and bandwidth metrics of each

potential point to the designer. Nevertheless, since it is based

on open-source tools for modeling and evaluating arbitrary

DNN hardware accelerators, the exploration also allows to

compare different architectures during design time.

However, none of these approaches considers multiple par-

titioning points during inference. AxoNN [10] aims to find

near-optimal schedules for multi-accelerator based System-on-

Chips (SoCs) on Commercial Off-The-Shelf (COTS) platforms

such as Nvidia Jetson Xavier AGX containing a GPU and a

Deep Learning Accelerator (DLA). In particular, the transition

costs between the available hardware accelerators in a shared-

memory system are taken into account during evaluation by

the authors, highlighting that near-optimal schedules mostly

include only a single transition between GPU and DLA. The

evaluation of partitioning, however, only takes latency and

energy consumption into account. As a result, this approach

is not suitable for distributed embedded systems.

III. PROBLEM STATEMENT

The scheduling of DNN inference depends primarily on

the system architecture, i.e. the number of available hardware

accelerators in the system. In the simplest case, we only

have two computing platforms available for executing DNN

inference and can define a partitioning point as follows:

Definition 1 (Partitioning Point). In a system consisting of

two hardware platforms A and B, a partitioning point is a

layer lp with p ∈ {1, . . . , L} of a given DNN with L layers,

such that:

• Each layer li with i ∈ {1, . . . , L} is executed once per

inference on exactly one platform in the system.

• Each layer li with i ∈ {0, . . . , p} is executed on A.

• Each layer li with i ∈ {p+ 1, . . . , L} is executed on B.

• The intermediate feature map fp of lp is transmitted over

a link from A to B.

Determining an optimal partitioning point under given

constraints depends on the main optimization goal which is

application specific. As a result, we formulate the objective

functions as a minimization problem based on weighted sum

of cost functions:

Definition 2 (Minimization Problem). The minimization prob-

lem for a system consisting of two hardware platforms A and

B is given as

minimize
lp=0...L

N
∑

i=0

ci · θi(lp)

with L being the number of DNN layers, N the number

of optimization criteria, and ci being application dependent

coefficients of the cost functions θi.

Based on the state of the art, we find that existing frame-

works cover overall five different optimization metrics for de-

termining an optimal partitioning point: latency d(lp), through-

put th(lp), energy consumption e(lp), link bandwidth bw(lp),
and accuracy acc(lp). With the emergence of large-scale

models and the further increasing complexity of DNNs [11],

memory size is becoming a potential bottleneck in embedded



systems as well. Therefore, solving the optimization prob-

lem for real-world hardware requires to include the required

amount of memory mA(lp) and mB(lp) for storing DNN

parameters and intermediate feature maps on platform A and

B, respectively. Each of the different metrics is modeled as

a cost function θ0 . . . θN depending on the partitioning point

and can be constrained as part of the minimization problem.

IV. OUR PROPOSED FRAMEWORK

Even for a system configuration that features only two

hardware accelerators, determining an optimal partitioning

point is a non-trivial task. In this section, we therefore present

our framework for exploring the design space of potential

partitioning points that meet the previously stated objectives.

An overview of our approach is given in Figure 1. As input,

the framework takes a DNN description as Open Neural

Network Exchange (ONNX) file, problem constraints, and the

main optimization objective. Using ONNX as input allows to

combine our proposed framework with a wide range of DNN

frameworks such as TensorFlow or PyTorch.

First, the DNN is converted into a graph representation and

then analyzed to find all potential partitioning points without

considering given constraints. For reducing the number of

feasible schedules of the DNN, these partitioning points are fil-

tered based on memory and link evaluation. This step thereby

requires a link model to determine bottlenecks in the link

that would otherwise violate system constraints. Furthermore,

since hardware accelerators often use integer or fixed-point

representation instead of floating-point values for calculation,

quantization has to be applied for DNN inference in hardware.

However, accuracy of the DNN can be significantly impacted

by using such number formats. Consequently, the accuracy

drop is evaluated for each remaining partitioning point, op-

tionally including retraining.

The list of all partitioning points not violating accuracy,

bandwidth or memory constraints is then forwarded to the

Hardware (HW) Evaluation step, where latency, throughput

and energy consumption metrics are evaluated for different

schedules. Thereby, the performance of hardware accelerators

depends on the mapping for each layer and the used process

technology. We use Timeloop [12] and Accelergy [13] to

find a near-optimal mapping for each layer to the hardware

accelerator and to estimate latency and energy consumption.

In the next step, the collected metrics are used to evaluate

all potential partitioning points fulfilling the given constraints.

Since we perform multi-objective optimization, we use the

NSGA-II to determine Pareto-optimal points in the resulting

set of potential partitioning points [14]. Thereby, the partition-

ing point serves as variable of the partitioning problem. Since

the complexity of a DNN varies significantly, the population

size as well as the number of generations is set depending

on the number of layers. Finally, the framework identifies the

most favorable DNN partitioning point that fulfills the main

optimization objective.

A
n

a
ly

s
is

Graph

Analysis
Graph

InitializationD
ONNX

F
il
te

rMemory

Evaluation

A

Memory
Constraints

Link

Evaluation

A

Link
Constraints

D

Link
Model

Q
u

a
n

ti
z
a
ti

o
n

Parameter

Calibration

Quantization

Retraining

Accuracy

Evaluation

A

Accuracy
Constraint

H
W

E
v
a
l

Performance

Evaluation

A

Latency, Throughput
Energy Constraints

Problem

MappingD

HW
Models

S
c
h

e
d

u
li
n

g

Evaluating Pareto-optimal PointsD

Optimization
Goal

A
Partitioning

Point

¡
Partitioning
Statistics

Fig. 1: Overview of our proposed framework. First, a graph

is generated based on the ONNX description. After filtering

of potential partitioning points considering memory and link

constraints, quantization is performed and evaluated. Finally,

the framework estimates performance on hardware and selects

a Pareto-optimal point.

A. Graph Analysis

Finding potential partitioning points in a given DNN can be

done in different ways as shown in Table I. Simulation-based

approaches such as CNNParted [9] try to determine branches

in the network architecture based on comparing output and

input shapes of layers. However, since this approach is only

analyzing the DNN structure on basic layer level, simple

mathematical operations such as adding, concatenating and

flattening tensors have to be identified using complex logic.

In contrast, our proposed framework is able to directly extract

the graph representation from the ONNX specification.

Furthermore, skip connections are often used to address the

vanishing gradient problem. As a result, the Directed Acyclic

Graph (DAG) of a given DNN can consist of parallel branches

that can be executed independently. Our framework therefore

first performs a topological sort of the DAG to find a linear

ordering of its vertices. This step is required to determine

a schedule for executing the DNN inference sequentially on

each of the available hardware accelerators. In case there are



parallel branches, the algorithm randomly selects one of the

unscheduled layers as the next node to be added to the linear

sequence.

B. Memory Size Estimation

In many recent SoCs, memory allocates a significant part

of die area. At the same time, the complexity of DNNs is

constantly rising and, thus, the memory demand. As a result,

we also have to consider this when looking for a feasible

schedule for DNN inference. The required memory size for a

sequence of layers without branches is formalized as follows:

Definition 3 (Memory Size). The memory size required to

execute non-pipelined branch-free DNN inference from layer

ln to lm on a hardware accelerator A is given by

mA(ln, lm) =

(

m
∑

i=n

si +max(an, . . . , am)

)

· bA, n ≤ m

aj = fj,in + fj,out

with si being the number of parameters of layer li, aj the

sum of input and output feature map size fj,in and fj,out of

layer j, and bA the quantized bit width of parameters and

feature maps.

Based on this, the memory requirements of each individual

layer can be calculated. As soon as the resulting demand

exceeds the available on-chip memory of a platform, all

following potential partitioning points are removed from the

list of feasible schedulings. However, in case of branches in the

DNN topology, different schedules have to be evaluated since

parallel layers can be executed in different orders. Therefore,

the framework builds subgraphs for these parallel branches

to find the schedule with minimum memory requirements

according to Definition 3.

C. Accuracy Exploration

Hardware floating-point operations are not as energy effi-

cient as integer computations. As a result, hardware accelera-

tors in embedded systems typically use integer or fixed-point

Multiply-Accumulate (MAC) operations [15], [16]. While

DNN models generally tolerate quantization very well, radical

quantization schemes worsen the model accuracy. Hence,

quantization also has to be considered for finding a beneficial

inference schedule in multi-accelerator systems.

Before the actual exploration, our tool has to perform a

parameter calibration to determine the ranges of features maps

and weights. In the next step, the impact of quantization on the

model accuracy for each potential partitioning point has to be

evaluated. To determine the resulting accuracy, our proposed

framework uses fake quantization, which allows to obtain the

results quickly. The degree of quantization thereby depends on

the hardware specification of the implemented accelerator in

each part of the system. However, DNN accuracy can suffer

significantly from quantization, especially in cases where a

small bit width is used for inference in the hardware accel-

erator. As a result, our framework offers the possibility to

run Quantization-Aware Training (QAT) based on the trained

network parameters to restore the accuracy of the model.

D. Throughput Estimation

Applications such as autonomous driving have certain

throughput requirements to enable reliable decision making.

Running DNN inference on a single accelerator might provide

suitable latency but low throughput. Therefore, it must be

considered as well when searching for an optimal partitioning

point of a DNN. Since we assume that the hardware platforms

can work in parallel as an asynchronous pipeline, the through-

put is determined by the platform with the highest latency. As

a result, it can be formalized as follows:

Definition 4 (Throughput). The throughput for partitioned

DNN inference on a system consisting of two hardware plat-

forms A and B connected over a link is given by

th(lp) = min

(

1

dA
,

1

dLink

,
1

dB

)

with d being the latency of each involved module of the system.

V. EVALUATION

Finally, we show experimental results for inference parti-

tioning using our proposed framework. The explorations have

been conducted on a system consisting of a 64-core AMD

EPYC 9554 and an NVIDIA RTX A6000 running Rocky

Linux. To evaluate the latency and energy consumption of each

hardware accelerator, Timeloop is configured to use a linear-

pruned search algorithm and a victory condition of 100.

A. Workload

First, we performed several explorations for a system model

consisting of two hardware platforms A and B according

to the problem as described in Definition 2. Platform A is

based on a 16-bit Eyeriss-like architecture [16] running at

200 MHz (EYR), and platform B uses a Simba-like accel-

erator [15] at 200 MHz (SMB). In our simulated system

model, the platforms are connected to each other via Gigabit

Ethernet. To explore the transition costs of the link, i.e. latency

and energy consumption, we used the open-source model

provided by CNNParted [9]. We tested our framework for

six feed-forward image classification CNNs, i.e. EfficientNet-

B0, ResNet-50, RegNetX 400MF, VGG-16, GoogLeNet, and

SqueezeNet V1.1 pretrained on ImageNet dataset. In the

quantization stage, we performed two epochs of QAT with

1,281,167 images for training and validated the quantized

models with 8,192 images from the ImageNet dataset.

B. Experimental Results

The simulation time of our proposed framework is domi-

nated by the optional retraining time as expected. In particular,

for models such as EfficientNet-B0, performing retraining for

each potential partitioning point takes each about one hour

on our system using 32 parallel worker threads for the data

loader. In contrast, graph analysis and hardware evaluation

together take approx. 40 min for EfficientNet-B0. However,



(a) VGG-16

400 600 800

80

100

120

EYR

SMB

ReLu 1
ReLu 2

Latency [ms]

E
n
e
rg

y
[m

J
]

(b) ResNet-50

30 40

5

10

15

EYR

SMB

ReLu 11

Energy [mJ]

T
h
ro

u
g
h
p
u
t

[F
P

S
]

(c) ResNet-50

85.5 86 86.5 87 87.5

5

10

15

EYR

SMB

Add 3

Top-1 Accuracy [%]

T
h
ro

u
g
h
p
u
t[
F

P
S

]

(d) SqueezeNet V1.1

10 15 20
2

4

6

8

10

EYR

SMB

ReLu 2

Latency [ms]

E
n
e
rg

y
[m

J
]

(e) EfficientNet-B0

90 100 110

2

3

4

5

EYR
SMB

Conv 45

Energy [mJ]

T
h
ro

u
g
h
p
u
t

[F
P

S
]

Dominated Points Non-Dominated Points

(f) EfficientNet-B0

75.5 76 76.5

2

3

4

5

EYRSMB

Mul 23

Top-1 Accuracy [%]

T
h
ro

u
g
h
p
u
t[
F

P
S

]

Fig. 2: Selected exploration results for a system consisting of an Eyeriss-like (EYR) accelerator in platform A and a Simba-

like (SMB) accelerator in platform B linked via Gigabit Ethernet. The orange and blue squares mark the cases in which the

inference is performed either completely on platform A or B, triangles highlight beneficial solutions.

quantization to 16 or 8-bit usually only leads to a slight

loss of accuracy, which is why retraining several epochs is

often not necessary. Nevertheless, we will show below how

retraining can affect the partitioning decision for ResNet-50

and EfficientNet-B0. As shown in Figure 2(a) for VGG-16,

partitioning the inference can lead to lower overall energy

consumption of the system if the second ReLu is chosen

as the partitioning point. Furthermore, it is even possible to

achieve lower latency and lower energy consumption when

partitioning the inference at ReLu 1 compared to running the

entire CNN on SMB. Similar results can be obtained for

SqueezeNet V1.1, as shown in Figure 2(d). In this case, energy

consumption and latency are significantly reduced by choosing

ReLu 2 as the partitioning point. In terms of throughput, as

expected, the use of two accelerators allows higher values

to be achieved when pipelining is used. For ResNet-50, as

can be seen in Figure 2(b), the highest possible throughput

is achieved with ReLu 11, which requires only slightly more

energy than if the entire inference were performed on EYR.

An increase in throughput of 29% is achieved. A significantly

larger increase of 47.5% can be observed for EfficientNet-

B0 at the partitioning point Conv 45 (see Figure 2(e)). This

point also offers only marginally higher energy consumption

compared to the pure execution of the inference on SMB.

However, the results of the evaluation also show that the

throughput can drop significantly if the partitioning point is not

chosen carefully. This shows the advantages of our approach

over AxoNN [10] and CNNParted [9], which do not explicitly

include throughput in their search. The two accelerators EYR

and SMB differ in particular in the bit width, which can have

an influence on the accuracy of DNNs. For this reason, this

in
p
u
t

C
o
n
v

4
0

M
u
l

3
2

C
o
n
v

4
1

M
u
l

3
3

M
u
l

3
5

C
o
n
v

4
4

A
d
d

4

A
d
d

5

C
o
n
v

5
5

M
u
l

4
4

C
o

n
v

5
6

M
u
l

4
5

M
u
l

4
7

C
o
n
v

5
9

A
d
d

6

A
d
d

7

A
d
d

8

C
o
n
v

7
5

M
u
l

6
0

C
o
n
v

7
6

M
u
l

6
1

M
u
l

6
3

C
o

n
v

7
9

C
o
n
v

8
0

M
u
l

6
4

G
e
m

m
0

o
u
tp

u
t

0

20

40

60

80

Partitioning point

M
e
m

o
ry

[M
B

]

Platform A

Platform B

Fig. 3: EfficientNet-B0 results of the analysis of memory

resources for a system consisting of two 16-bit platform

architectures A and B.

metric must also be taken into account during evaluation of

inference partitioning. In this regard, the results for ResNet-

50 (Figure 2(c)) and EfficientNet-B0 (Figure 2(f)) show that,

as expected, partitioning leads to an improvement in top-1

accuracy compared to running the network entirely on SMB.

As a guideline, the later the partitioning of the network is

performed, i.e. the more layers are executed on EYR, the

higher the top-1 accuracy. However, especially in the case

of ResNet-50, the throughput suffers from a later partitioning

point as shown in Figure 2(b). For this reason, it is necessary

at this point to carefully balance the two metrics depending

on the use case.

Finally, Figure 3 shows the required memory size for ex-

ecuting partitioned DNN inference on two 16-bit hardware

accelerators A and B. When compared to other DNNs where

the overall memory utilization is dominated by the first layers,

the memory size required for EfficientNet-B0 increases the

later the partitioning in the DNN is performed. In this case,



Model 1 Partition 2 Partitions 3 Partitions 4 Partitions

SqueezeNet V1.1 1 5 7 1

VGG-16 2 8 8 2

GoogLeNet 2 14 8 2

ResNet-50 2 10 10 5

RegNetX-400MF 2 6 12 13

EfficientNet-B0 2 11 18 19

TABLE II: Number of Partitions for inference that near-

optimal schedules include for a system consisting of four

accelerators connected via Gigabit Ethernet

it is preferable to select a layer before Conv 56 or after

Conv 79 in order to reduce the required system memory and

thus the required die area. Consequently, the results show

the importance of evaluating memory consumption for DNN

inference partitioning in embedded systems.

C. Increasing Number of Partitioning Points

In certain areas, such as the automotive sector, the embed-

ded system may have additional computing platforms between

the sensor nodes and the central unit, such as the zonal

gateway. These can also be equipped with a DNN accelerator.

As a result, we also evaluate the impact on using more than

a single partitioning point. For our evaluation, we assume a

system consisting of two EYR-based platforms in the begin-

ning and two SMB-based platforms at the end of the chain of

platforms, connected each via Gigabit Ethernet. We configure

our framework to find pareto-optimal points regarding overall

latency, energy consumption and link bandwidth. The results

of our exploration are shown in Table II.

Especially in small DNNs, the use of all available accelera-

tors for inference does not seem to have any practical benefit.

The reason for this is the high transmission costs, which

lead to poorer latency and lower energy consumption. Larger

DNNs such as RegNetX-400MF and EfficientNet-B0, on the

other hand, benefit from a system architecture consisting of

more platforms, as a significantly higher throughput can be

achieved. These findings demonstrate again that, in contrast

to the approach and the experimental results presented by the

authors of AxoNN [10], the consideration of other metrics in

addition to latency and energy consumption is essential to find

a performant and efficient inference partitioning of DNNs in

distributed embedded systems.

VI. CONCLUSION

Efficiently mapping DNN-based applications onto dis-

tributed embedded systems is a complex task that requires

the evaluation of several important performance metrics. To

address this problem, in this work we have presented an

automated design space exploration framework for hardware-

aware inference partitioning of DNNs in distributed embedded

systems. The framework takes into account several system

constraints to automatically determine a near-optimal sched-

ule for a given DNN. Our experimental results prove the

effectiveness of the proposed framework by revealing multiple

beneficial partitioning points besides running inference on a

single accelerator for different models. Furthermore, we were

able to show that partitioning the DNN inference over more

than two accelerators can be useful, especially for large DNN

architectures. As a result, our results emphasize the importance

of holistic hardware/software code design to enable efficient

inference in systems with multiple accelerators.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry

of Education and Research (BMBF) under grant number

16ME0817 (CeCaS). The responsibility for the content of this

publication lies with the authors.

REFERENCES

[1] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 11, 2018.
[2] T. Alonso et al., “Elastic-DF: Scaling performance of dnn inference in

fpga clouds through automatic partitioning,” ACM Trans. Reconfigurable

Technol. Syst., vol. 15, no. 2, dec 2021.
[3] D. R. Agut, R. Tornero, and J. Flich, “Towards efficient neural network

model parallelism on multi-fpga platforms,” in 2023 Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2023.
[4] A. K. Kakolyris, M. Katsaragakis, D. Masouros, and D. Soudris, “RoaD-

RuNNer: Collaborative dnn partitioning and offloading on heterogeneous
edge systems,” in 2023 Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2023.
[5] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery for

inference acceleration on the edge,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019.

[6] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ser. ASPLOS ’17, 2017.

[7] S. Yao et al., “Deep compressive offloading: Speeding up neural
network inference by trading edge computation for network latency,”
in Proceedings of the 18th Conference on Embedded Networked Sensor

Systems, ser. SenSys ’20, 2020.
[8] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host

partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms,” in 2018 15th IEEE
International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), 2018.
[9] F. Kreß et al., “CNNParted: An open source framework for efficient con-

volutional neural network inference partitioning in embedded systems,”
Computer Networks, vol. 229, 2023.

[10] I. Dagli, A. Cieslewicz, J. McClurg, and M. E. Belviranli, “AxoNN:
Energy-aware execution of neural network inference on multi-accelerator
heterogeneous socs,” in Proceedings of the 59th ACM/IEEE Design

Automation Conference, ser. DAC ’22, 2022.
[11] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Trends

in AI inference energy consumption: Beyond the performance-vs-
parameter laws of deep learning,” Sustainable Computing: Informatics

and Systems, vol. 38, apr 2023.
[12] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator

evaluation,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019.

[13] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), 2019.
[14] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,”

IEEE Access, vol. 8, 2020.
[15] Y. S. Shao et al., “Simba: Scaling deep-learning inference with multi-

chip-module-based architecture,” in Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52, 2019.

[16] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
2019.


	Introduction
	Related Work
	Problem Statement
	Our Proposed Framework
	Graph Analysis
	Memory Size Estimation
	Accuracy Exploration
	Throughput Estimation

	Evaluation
	Workload
	Experimental Results
	Increasing Number of Partitioning Points

	Conclusion
	References

