
ar
X

iv
:1

81
2.

02
93

6v
3

 [
cs

.I
T

]
 1

2
Fe

b
20

20
1

Coding over Sets for DNA Storage
Andreas Lenz, Paul H. Siegel, Antonia Wachter-Zeh, and Eitan Yaakobi

Abstract—In this paper we study error-correcting codes for
the storage of data in synthetic deoxyribonucleic acid (DNA). We
investigate a storage model where a data set is represented by an
unordered set of M sequences, each of length L. Errors within
that model are a loss of whole sequences and point errors inside
the sequences, such as insertions, deletions and substitutions.
We derive Gilbert-Varshamov lower bounds and sphere packing
upper bounds on achievable cardinalities of error-correcting
codes within this storage model. We further propose explicit code
constructions than can correct errors in such a storage system
that can be encoded and decoded efficiently. Comparing the sizes
of these codes to the upper bounds, we show that many of the
constructions are close to optimal.

Index Terms—coding over sets, DNA data storage, Gilbert-
Varshamov bound, insertion and deletion errors, sphere packing
bound

I. INTRODUCTION

DNA-based storage has attracted significant attention due to

recent demonstrations of the viability of storing information in

macromolecules. This recent increased interest was paved by

substantial progress in synthesis and sequencing technologies.

The main advantages of DNA-based storage over classical

storage technologies are very high data densities and long-

term reliability without electrical supply. Given the trends in

cost decreases of DNA synthesis and sequencing, it is now

acknowledged that within the next 10–15 years DNA storage

may become a highly competitive archiving technology [2].

A DNA storage system consists of three important entities

(see Fig. 1): (1) a DNA synthesizer that produces the strands

that encode the data to be stored in DNA. In order to produce

strands with acceptable error rate the length of the strands is

typically limited to no more than 250 nucleotides (cf. [2] and

also see Table I for an overview over current experiments);

(2) a storage container with compartments that store the

DNA strands, although in an unordered manner; (3) a DNA

sequencer that reads the strands and transfers them back to

This paper was presented in part at the 2018 International Symposium on
Information Theory [1], at the 2019 Information Theory and Applications
Workshop, and the 2019 Non-Volatile Memories Workshop.

A. Lenz is with the Institute for Communications Engineering, Tech-
nische Universität München, Munich 80333, Germany (e-mail: an-
dreas.lenz@mytum.de).

P. H. Siegel is with the Electrical and Computer Engineering Department
and the Center for Memory and Recording Research, University of California,
San Diego, La Jolla, CA 92093-0407 USA (e-mail: psiegel@ucsd.edu).

A. Wachter-Zeh is with the Institute for Communications Engineer-
ing, Technische Universität München, Munich 80333, Germany (e-mail:
antonia.wachter-zeh@tum.de).

E. Yaakobi is with the Computer Science Department, Technion – Israel In-
stitute of Technology, Haifa 32000, Israel (e-mail: yaakobi@cs.technion.ac.il).

E. Yaakobi was supported by the Center for Memory and Recording
Research, University of California San Diego. This project has received
funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement
No 801434). This work was also supported by NSF Grant CCF-BSF-1619053
and by the United States-Israel BSF grant 2015816.

User Binary Data
100100011110101
101000111110100

Storage Container

DNA strands
ACTGGGTGCATGCA
CGATGCAGTGAGTG

DNA Synthesizer

DNA strands
ACTGAGTGCATGCA
CGATGCTGTGAGCG
CAATGCAGTGAGG

DNA Sequencer

EncodingDecoding

Fig. 1: Illustration of a DNA-based storage system.

digital data. The encoding and decoding stages are external

processes to the storage system which convert the binary user

data into strands of DNA in a way that even in the presence

of errors, it is possible to reconstruct the original data.

DNA as a storage system has several attributes which dis-

tinguish it from any other storage system. The most prominent

one is that the strands are not ordered in the memory and thus

it is not possible to know the order in which they were stored.

One way to address this problem is using block addresses,

also called indices, that are stored as part of the strand. Errors

in DNA are typically substitutions, insertions, and deletions,

where most published studies report that either substitutions

or deletions are the most prominent ones, depending upon

the specific technology for synthesis and sequencing [3], [4],

[5], [6], [7], [8]. For example, in column-based DNA oligo

synthesis the dominant errors are deletions that result from ei-

ther failure to remove the dimethoxytrityl (DMT) or combined

inefficiencies in the coupling and capping steps [5]. While

codes correcting substitution errors were widely studied, much

less is known for codes correcting deletions and insertions. The

task of error correction becomes even more challenging taking

into account the lack of ordering of the strands.

Related work: For a general survey about DNA-based data

storage, the reader is referred to [9]. The first large scale

experiments that demonstrated the potential of in vitro DNA

storage were reported by Church et al. who recovered 643

KB of data [10] and Goldman et al. who accomplished the

same task for a 739 KB message [11]. However both of these

groups did not recover the entire message successfully due to

the lack of using the appropriate coding solutions to correct

errors. Church et al. had 10 bit errors and Goldman et al.

lost two strands of 25 nucleotides. Later, in [12], Grass et al.

reported the first system with usage of error-correcting codes

in DNA-based storage and managed to perfectly recover an

http://arxiv.org/abs/1812.02936v3

2

81 KB message. Bornholt et al. similarly retrieved a 42 KB

message [13]. Since then, several groups have built similar

systems, storing ever larger amounts of data. Among these,

Erlich and Zielinski [4] stored 2.11MB of data with high

storage rate, Blawat et al. [3] successfully stored 22MB, and

more recently Organick et al. [6] stored 200MB. Yazdi et

al. [14], [15] developed a method that offers both random

access and rewritable storage. On the other hand, coding theo-

retic aspects of DNA storage systems have received significant

attention recently. The work of [16] discusses error-correcting

codes for the DNA sequencing channel, where a possibly

erroneous collection of substrings of the original sequence is

obtained. In [17], unordered multisets with errors that affect

the whole sequence have been discussed. Furthermore, the

model proposed in this work has already been adopted in [18],

[19]. Namely, codes and bounds for an arbitrary number of

substitutions in sets of DNA strands have been derived in [18]

and it has been shown that it is possible to construct codes,

which have logarithmic redundancy on both, the number of

sequences and the length of the sequences. In [19], a distance

measure for the DNA storage channel has been discussed and

Singleton-like and Plotkin-like code size upper bounds have

been derived. In contrast, the goal of this work is to study and

to design error-correcting codes which are specifically targeted

towards the special structure of DNA storage systems. This

goal is accomplished by deriving upper and lower bounds on

the achievable size of error-correcting codes and designing

constructions over sets that are suitable for data storage in

DNA. Errors within this model are a loss of sequences and

point errors inside the sequences, such as insertions, deletions,

and substitutions. Parts of this work have been published in [1],

at the 2019 Information Theory and Applications Workshop,

and at the 2019 Non-Volatile Memories Workshop.

The paper is organized as follows. We start by introducing

the DNA storage channel model and associated notation. In

Sections III and IV we derive generalized Gilbert-Varshamov

bounds and sphere packing bounds for the DNA storage chan-

nel, which bound the cardinality of optimal error-correcting

codes, i.e., codes of largest possible cardinality from below

and above. Then, in Section V, we propose code constructions

that can correct errors from the DNA storage channel. Lastly,

Section VI concludes the paper.

II. CHANNEL MODEL

A. Notation

We start by introducing the notation that will be used

throughout the paper. For any sets A,B we write |A| as the

cardinality of A and A \ B = {x : x ∈ A∧ x /∈ B} as the set

difference. We denote by N and N0 the sets of natural numbers,

where the former consists of the numbers {1, 2, 3, . . .} and the

latter additionally contains 0. The set [n] = {1, 2, . . . , n} con-

tains all natural numbers up to n ∈ N. Σq is a finite alphabet

with q elements. In particular, we will write Σ2 = {0, 1} for

binary sequences and Σ4 = {A,C,G,T} for DNA sequences.

A vector of n elements xi ∈ Σq over an alphabet Σq is denoted

by x = (x1, x2, . . . , xn) ∈ Σn
q . Its first, respectively last m

elements are denoted by prefm(x) and suffm(x). The number

of runs in x ∈ Σn
q , is denoted as ||x|| , |{i : xi 6= xi+1}|+1.

For two vectors x ∈ Σn
q ,y ∈ Σm

q we write (x,y) as the

concatenation of x and y which has length n+m. Throughout

the paper, we denote the binary logarithm of a real number

a ∈ R+ by log(a) and the natural logarithm by ln(a). For any

integers n,m ∈ N, m ≤ n we write n! = n · (n−1) . . . 2 ·1 as

the factorial and nm = n(n− 1) . . . (n−m+1) as the falling

factorial. The binomial coefficient is denoted by
(

n
m

)

. For

the asymptotic behavior of functions, we use the Bachmann-

Landau notation, i.e., for f(n), g(n) : N 7→ R, we write

• f(n) = o(g(n)), if lim
n→∞

f(n)
g(n) = 0,

• f(n) = ω(g(n)), if lim
n→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
= ∞,

• f(n) = O(g(n)), if lim sup
n→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
< ∞,

• f(n) ∼ g(n), if lim
n→∞

f(n)
g(n) = 1, and

• f(n) & g(n), if lim
n→∞

f(n)
g(n) ≥ 1.

B. DNA Channel Model

We consider the DNA storage channel, which is depicted in

Fig. 2. In a DNA-based data storage system, data is stored in

an unordered set

S = {x1,x2, . . . ,xM} ⊆ ΣL
q ,

with M distinct sequences xi ∈ ΣL
q , i.e. xi 6= xj for i 6= j.

Each sequence xi has length L. Here and in the rest of the

paper whenever we write the set S we assume it is a set of M
sequences as defined above. Throughout the paper, we will

refer to the xi by sequences or strands and to S by data

sets or words. Representing data words as unordered sets is

inherently natural, due to the following two reasons. First,

any information about ordering of the data sequences is lost

during the storage and second, in the reading process it is not

possible to distinguish exactly how many times each sequence

was stored, since the sequences are multiplied in the storage

medium and not necessarily all of them are read. For more

details on the channel model, see [20], [21].

Any such stored data set S of M sequences is a possible

input of the DNA storage channel. Hence, the input space,

which comprises all possible data sets is denoted by

XL
M = {S ⊆ ΣL

q : |S| = M}.
The DNA storage channel can be split into the three following

stages, as visualized in Fig. 2.

I. Random sequences are drawn with replacement from

the storage medium S and sequenced, possibly with

substitution, insertion or deletion errors.

II. The sequenced strands are clustered according to their

Levenshtein distance. 1

III. The clustered sequences are reconstructed by performing

an estimate x′ for each cluster, resulting in the received

estimates S ′. If two or more reconstructions result in the

1This technique was introduced in [6], exploiting the fact that sequences
are drawn several times. Other works have either clustered the sequences
according to their indices (as in [12]), directly used a code on each sequence
to correct insertions and deletions (as in [15]), or simply discarded sequences
of incorrect length.

3

TGAACTACG

ATTGCTGAA

GGCATAGCT

S

ATTGCTGGTA

GGCATAGCT

AGCATAGCTA

ATTGCTG

Sequenced strands

{

GGCATAGCT

AGCATAGCTA

}

{

ATTGCTGGTA

ATTGCTG

}

Clustered sequences

GGCATAGCT

ATTGCTGGT

S ′

I. Draw &

Perturb

II. Cluster III. Reconstruct

Fig. 2: DNA storage channel model. Sequences with the same text decoration stem from the same original sequence.

same estimate x′, we only output a single sequence x′

to avoid possible duplicates of a single stored sequence.

Therefore, S ′ is a set with distinct elements.

In this work we consider the combination of the above three

stages, from the stored sequences S to the reconstructed

sequences S ′, as the DNA storage channel. Each sequence

x ∈ S is therefore either

• reconstructed correctly, without errors (x ∈ C),

• never drawn or its cluster is not identified and thus lost

in the storage medium (x ∈ L), or

• reconstructed with errors (x ∈ E),

where (C,L, E) is a partition of S.

According to the above three cases, we thus associate the

following three parameters (s, t, ǫ)T that characterize the DNA

storage channel. We denote by s the maximum number of

sequences that are never drawn (or whose clusters are not

identified), by t the maximum number of sequences that have

been reconstructed with errors, and by ǫ the maximum number

of errors of type T in each of the latter. Typical error types

T after the reconstruction step are various combinations of

insertions, deletions and substitutions, where the latter two

are the most prominent ones in DNA storage systems [6].

To be more precise, we define the error balls associated with

the channel model. We start with the characterization of point

errors inside the sequences.

Definition 1. The error ball BT
ǫ (x) of radius ǫ around a

sequence x ∈ ΣL
q is defined to be the set of all possible

outcomes x′ ∈ BT
ǫ (x), after ǫ (or fewer) errors of type T

in x. Possible types of errors are

• Insertions (I),

• Deletions (D),

• Substitutions (S),

or combinations of the above, denoted by, e.g., ID for the

case of insertions and deletions. We use the abbreviation L ,
IDS for insertions, deletions, and substitutions. Similarly, we

define the error sphere ST
ǫ (x) as the set of possible results

x′ ∈ ST
ǫ (x) after exactly ǫ errors of type T. For uniform

error balls and spheres, where the size does not depend on

the center x ∈ ΣL
q we use the abbreviation BT

ǫ (L) , |BT
ǫ (x)|,

respectively ST
ǫ (L) , |ST

ǫ (x)|. In particular we have

• SI
ǫ(L) =

∑ǫ
i=0

(

L+ǫ
i

)

(q − 1)i (c.f. [22]),

• BI
ǫ(L) =

∑ǫ
i=0 S

I
i(L),

• SS
ǫ (L) =

(

L
ǫ

)

(q − 1)ǫ,

• BS
ǫ (L) =

∑ǫ
i=0

(

L
i

)

(q − 1)i.

Note that for the case of deletions, such an abbreviation

is not possible, since the size of the deletion ball and sphere

depends on the center x. The following example illustrates the

definitions of error balls for different error types.

Example 1. Consider the sequence x = (AC) ∈ Σ2
4

of length L = 2 and a single error, ǫ = 1.

The substitution error ball is given by BS
1(x) =

{(AC), (CC), (GC), (TC), (AA), (AG), (AT)}. Similarly, the

deletion ball around x is given by BD
1 (x) = {(AC), (C), (A)}.

The insertion sphere around the center x is SI
1(x) =

{(AAC), (CAC), (GAC), (TAC), (ACC), (AGC), (ATC),
(ACA), (ACG), (ACT)}.

In a similar fashion it is possible to define the error ball of

a data set, as the set of possible received sets after the DNA

storage channel.

Definition 2. For S ∈ XL
M , the error ball BT

s,t,ǫ(S) is defined

to be the set of all possible received sets S ′ after s (or fewer)

sequences have been lost and t (or fewer) sequences of the

remaining sequences have been distorted by ǫ (or fewer) errors

of type T ∈ {S, I,D, ID, IS,DS,L} each.

More precisely, let Parts,t(S) be the set of all partitions

(C,L, E) of S with |L| ≤ s, |E| ≤ t and denote by

E = {xe1 ,xe2 , . . . , } the set of stored sequences, which are

received in error. We then define BT
s,t,ǫ(S) to be

BT

s,t,ǫ(S)=







S ′ = C ∪ E ′

∣

∣

∣

∣

∣

∣

(C,L, E) ∈ Parts,t(S),
E ′ = {x′

1} ∪ · · · ∪ {x′
|E|},

x′
i ∈ BT

ǫ (xei)\{xei} ∀ i ∈ [|E|]







.

Hereby E ′ satisfies |E ′| ≤ |E| and denotes the set of all distinct

erroneous received sequences x′
i, after removing duplicates.

The erroneous sequences x′
i are not necessarily distinct from

each other or from the correct sequences in C and therefore it

is possible that two erroneous sequences or one error-free and

one erroneous sequence agree with one another, resulting in a

loss of a sequence. The number of distinct received sequences

|S ′| therefore satisfies M − t− s ≤ |S ′| ≤ M .

Example 2. Consider the example in Fig. 2 for the

DNA storage channel with M = 3 stored sequences,

x1 = (TGAACTACG), x2 = (ATTGCTGAA), and

x3 = (GGCATAGCT), each of length L = 9, i.e.,

S = {x1,x2,x3} ∈ X 9
3 . The sequenced strands are clus-

tered and reconstructed, resulting in two estimates y1 =
(GGCATAGCT) and y2 = (ATTGCTGGT). The received

set is therefore S ′ = {y1,y2}. Hereby x3 was received

4

S

C

L

E E ′

⋃

S ′
Partition ≤ s

≤ t Add ≤ ǫ

errors each

Fig. 3: Illustration of the (s, t, ǫ)T channel model

correctly as y1, x1 was lost and x2 was received in error

as y2. It follows that the set of correct, lost and erroneous

sequences is given by

C = {x3} = {(GGCATAGCT)},
L = {x1} = {(TGAACTACG)},
E = {x2} = {(ATTGCTGAA)}.

It follows that s = |L| = 1 and t = |E| = 1, where there were

ǫ = 2 substitution errors in x2. Therefore, S ′ ∈ BS
1,1,2(S).

The channel from a stored set S to a received set S ′ is

visualized in Fig. 3. Throughout the paper, we will refer to

the following definition of an error-correcting code in DNA

storage systems.

Definition 3. A code C ⊆ XL
M is called an (s, t, ǫ)T-

correcting code, if it can correct a loss of s (or fewer)

sequences and ǫ (or fewer) errors of type T in each of t (or

fewer) sequences, i.e., for any pair S1,S2 ∈ C with S1 6= S2,

it holds that

BT

s,t,ǫ(S1) ∩BT

s,t,ǫ(S2) = ∅.

We say C ⊆ XL
M is an (s, t, •)T-correcting code if the number

of errors ǫ per erroneous sequences can be arbitrarily large.

Note that by this definition, a code is a set of codewords,

where each codeword is again a set of M sequences of length

L. One of the main challenges associated with errors in such

codewords is the loss of ordering information about the code

sequences. The redundancy of a code is defined as follows.

Definition 4. The redundancy of a code C ⊆ XL
M is

r(C) = log |XL
M | − log |C | = log

(

qL

M

)

− log |C |.

We present the results in this work for binary sequences

(q = 2), however most or all of them can be extended to the

non-binary case (and, in particular, the quaternary case). Our

results about the redundancy of the proposed constructions and

lower bounds on the redundancy are summarized in Table II.

C. Discussion of the Channel Model

Designing and analyzing codes over sets allows to effi-

ciently combat several important aspects of DNA-based data

storage. These include the loss of the ordering information

of the sequences and the loss or erroneous reception of some

of the stored sequences as described in our channel model.

Especially when not all sequences are received with errors

(i.e. some sequences are received correctly), it is not obvious

at all, whether, e.g., prepending an index to each sequence is

optimal and how the stored sequences should be protected

from errors. Therefore, discussing the channel model from

stored sets to received sets is of relevance when aiming for

efficient and error-free data storage in DNA. Such a discussion

is not possible when only the channel from a single stored

sequence to a single received sequence is analyzed.

The following remarks summarize two further observations

about the channel model.

Remark 1. While in practical DNA-based storage systems,

the length of the sequences L is moderate, e.g., in the order

of a few hundreds, M is significantly larger. In general, we

say that M = qβL for some 0 < β < 1. Typical values for

the parameters M,L and β can be found in Table I.

Remark 2. In view of the underlying DNA storage system,

which is visualized in Fig. 2, the parameters s, t, ǫ of the

channel model depend on the number of sequences that are

drawn from the storage medium and also the reconstruction

algorithm. Using an efficient reconstruction algorithm, it can

be assumed that s, t, ǫ decrease as the number of draws

increases, since the reconstruction can be performed more ac-

curately. In particular, when many more than M sequences are

drawn from the storage medium, it can be assumed that there

are enough draws per sequence that the sequencing errors

are corrected by the reconstruction algorithm. Consequently

there only remain errors which have been introduced when

synthesizing the sequences.

D. Relationship of Insertion- and Deletion-Correcting Codes

In this section, we investigate the relationship between

(s, t, ǫ)I-insertion-correcting and (s, t, ǫ)D-deletion-correcting

codes. It is known [23] that for the case of standard

blockcodes, any code can correct ǫ insertions if and only if it

can correct any ǫ insertions and deletions. Surprisingly such

an equivalence does not hold for our channel model. Here we

show a counterexample that an (s, t, ǫ)D-correcting code is not

necessarily an (s, t, ǫ)I-correcting code.

Example 3. Consider the code C = {S1,S2}, with

S1 = {(AACCA), (AACAA), (GGTTG)} and S2 =
{(ACCAA), (GGTGG), (GTTGG)}. We can verify that

C is (0, 3, 1)D-correcting. It is however not (0, 3, 1)I-
correcting, since {(AACCAA), (GGTTGG)} ∈ BI

0,3,1(S1)
by editing both (AACCA) and (AACAA) to become

(AACCAA) and (GGTTG) to become (GGTTGG). Sim-

ilarly, {(AACCAA), (GGTTGG)} ∈ BI
0,3,1(S2), since

we can edit (ACCAA) to become (AACCAA) and both

(GGTGG) and (GTTGG) to become (GGTTGG).

A counterexample for the other direction, i.e., an (s, t, ǫ)I-
correcting code is not necessarily an (s, t, ǫ)D-correcting code,

can be found analogously.

III. GILBERT-VARSHAMOV BOUNDS

We start by deriving Gilbert-Varshamov lower bounds on

the size (equivalently, upper bounds on the redundancy) of

5

TABLE I: Summary of the parameters used in recent DNA

storage experiments. The strand length is depicted as code

length which matches the length L in our channel model.

Work Data Size Strand Length L Strands M β = (log4 M)/L

[10] 0.65MB 115 54, 898 0.0685

[11] 0.63MB 117 153, 335 0.0736

[12] 0.08MB 117 4, 991 0.0525

[14] 0.017MB 1000 32 0.0025

[13] 0.15MB 120 45, 652 0.0645

[3] 22MB 190 900, 000 0.0521

[4] 2.11MB 152 72, 000 0.0531

[15] 0.003MB 1000 17 0.0020

[6] 200.2MB 150− 154 13, 448, 372 0.0769− 0.0789

optimal (s, t, ǫ)S and (s, t, ǫ)D-correcting codes. An important

entity for the derivation of the Gilbert-Varshamov bounds is

the set of words S̃ ∈ XL
M , which have intersecting error balls

with some S ∈ XL
M . It is defined as follows.

Definition 5. For a set S ∈ XL
M , we denote by V T

s,t,ǫ(S) the

set of all sets S̃ ∈ XL
M , which have intersecting error balls

BT
s,t,ǫ(·) with S, that is,

V T

s,t,ǫ(S) = {S̃ ∈ XL
M : BT

s,t,ǫ(S) ∩BT

s,t,ǫ(S̃) 6= ∅}.

Hereby, |V T
s,t,ǫ(S)| is called the degree of S. The average

degree of all sets is denoted by

E[V T

s,t,ǫ] =
1
(

2L

M

)

∑

S∈XL
M

|V T

s,t,ǫ(S)|.

The generalized Gilbert-Varshamov bound (cf. [24], [25])

is based on a graph-theoretic representation of an error-

correcting code. We will use this representation to find the

generalized Gilbert-Varshamov bound for the DNA storage

channel. Consider the simple graph G with the set of vertices

XL
M . Two vertices S1,S2 ∈ XL

M are connected, if and only

if BT
s,t,ǫ(S1) ∩ BT

s,t,ǫ(S2) = ∅. Note that this definition is

slightly different from [24], [25] due to the lack of a distance

measure in our case. By construction, a clique in G (collection

of vertices, where each pair of vertices is connected) is an

(s, t, ǫ)T-correcting code. Now, it can directly be shown that

the total number of edges G coincides with [25, eq. (2)].

Analogously to [25], it is therefore possible to establish a

lower bound on the size of a clique in G (and therefore an

(s, t, ǫ)T-correcting code).

Theorem 1 (cf. [24], [25]). There exists an (s, t, ǫ)T-

correcting code C ⊆ XL
M of size at least

|C | ≥
(

2L

M

)

E[V T
s,t,ǫ]

.

SS̃

S ′

, S̃ ∩ S̃ ∩ S ′

, S ∩ S ′

, S̃ ∩ S ′

Fig. 4: Illustration for the proof of Theorem 2

Such a code can be constructed by successively selecting

words S(i) with minimum degree from XL
M as codewords and

removing all words V T
s,t,ǫ(S(i)) as possible candidates for the

succeeding codewords. Bounding the denominator in Theorem

1 from above will be the main challenge in this section. We

start by stating the bound for the case of an arbitrary number

of errors per sequence.

Theorem 2. There exists an (s, t, •)L-correcting code C ⊆
XL

M of cardinality at least

|C | ≥
(

2L

M

)

(

M
s+2t

)(

2L

s+2t

)
.

Hence, for fixed s, t ∈ N0 and fixed 0 < β < 1, there exists

an (s, t, •)L-correcting code C ⊆ XL
M with redundancy

r(C) ≤ (s+ 2t)L+ (s+ 2t) logM − log((s+ 2t)!2) + o(1),

when M → ∞ with M = 2βL.

Proof. We will find an upper bound on E[V L
s,t,•] by bounding

|V L
s,t,•(S)| from above for all S ∈ XL

M . In the following, let

S̃ ∈ V L
s,t,•(S) ⊆ XL

M be a set which has an intersecting error

ball with S. Start by observing that for any such S̃, there exists

S ′ ∈ BL
s,t,•(S)∩BL

s,t,•(S̃) with |S ′| ≤ M−s, since BL
s,t,•(S)∩

BL
s,t,•(S̃) 6= ∅ and for all S ′′ ∈ BL

s,t,•(S) ∩ BL
s,t,•(S̃) with

|S ′′| > M − s it is possible to construct S ′ ∈ BL
s,t,•(S) ∩

BL
s,t,•(S̃) with |S ′| = M − s by removing any |S ′′| −M + s

sequences from S ′′. By Definition 2, |S ∩ S ′| ≥ M − s − t
and also |S̃ ∩ S ′| ≥ M − s− t. Further, for any such S ′,

|S ∩ S̃| ≥ |S ∩ S̃ ∩ S ′|
(a)

≥ |S ∩ S ′|+ |S̃ ∩ S ′| − |S ′|
≥ 2(M − s− t)− (M − s) = M − s− 2t,

where we used in (a) that |S ∩ S̃ ∩S ′| = |S ∩S ′|+ |S̃ ∩S ′|−
|(S ∪ S̃)∩S ′| ≥ |S ∩S ′|+ |S̃ ∩ S ′| − |S ′| (for an illustration,

refer to Fig. 4). Therefore, any S̃ has an intersection of size

at least M − s − 2t with S. Note that for 2L ≥ M + s + 2t
this bound is tight, i.e., it is possible to find sets S, S̃ ∈ XL

M

with BL
s,t,•(S)∩BL

s,t,•(S̃) 6= ∅ and S ∩S̃ = M −s−2t. Each

S̃ can thus be constructed by removing s+2t sequences from

S and adding s + 2t arbitrary sequences. The total number

of such choices is at most
(

M
s+2t

)(

2L

s+2t

)

. The bound on the

redundancy follows from Definition 4 and the fact that for

any fixed a ∈ N0, log
(

M
a

)

= a logM − log a! + o(1).

6

TABLE II: Lower and upper bounds on the redundancy of optimal (s, t, ǫ)T-correcting codes. Low order terms are omitted.

Error correction Gilbert-Varshamov bound [Sect. III] Construction [Sect. V] Sphere packing bound [Sect. IV]

(s, t, •)L (s+ 2t)L + (s+ 2t) logM [Thm. 2]

M log e + (s+ 2t)(L − ⌈logM⌉) [Const. 1]

(s+ t)L+ t logM [Cor. 1]
(s+ 2t)L [Const. 2]

(1−c)
2

Mc logM
[Const. 3]

+(s+ 2t)M1−c (L− logM)

(σM, τM, •)L (σ + 2τ)(L − logM) [Thm. 2] (σ + 2τ)M(L− logM) [Const. 2] (σ + τ)M(L− logM) [Cor. 1]

(s, t, ǫ)S sL+ (s+ 2t) logM + 2tǫ logL [Thm. 3] sL+ t logM + tǫ logL [Thm. 7]

(s, t, ǫ)D sL+ (s+ t) logM + 2tǫ log(L/2) [Thm. 4] (s+ t)L [Const. 2] sL+ tǫ logL [Thm. 9]

(0, 1, 1)S 2 logL [Thm. 3] 2L [Const. 2] log(ML) [Thm. 7]

(0, 1, 1)D 2 logL [Thm. 4] logL [Const. 5] logL [Thm. 9]

(0,M, ǫ)S 2Mǫ logL [Thm. 3] Mǫ logL [Const. 7] Mǫ logL [Thm. 8]

(0,M, 1)D 2M logL [Thm. 4] M logL [Const. 6] M logL [Thm. 10]

In a similar fashion, we will now establish the existence

of a code for the case of a loss of s sequences and a fixed

number of ǫ substitution errors in t sequences.

Theorem 3. There exists an (s, t, ǫ)S-correcting code C ⊆
XL

M with cardinality at least

|C | ≥
(

2L

M

)

(

M
s,t

)(

M+t−1
t

)(

2L

s

)

BS
ǫ (L)

2t
.

Hence, for fixed s, t, ǫ ∈ N0 and fixed 0 < β < 1, there exists

an (s, t, ǫ)S-correcting code C ⊆ XL
M with redundancy

r(C) ≤ sL+(s+2t) logM+2tǫ logL− log(s!2t!ǫ!2t)+o(1),

when M → ∞ with M = 2βL.

Proof. We will find an upper bound on |V S
s,t,ǫ(S)| for all

S ∈ XL
M . Let S ′ ∈ BS

s,t,ǫ(S) with |S ′| ≤ M − s. The number

of such elements S ′ is at most
(

M
s,t

)

BS
ǫ (L)

t, as we can choose

s sequences to be lost, t sequences to be erroneous and there

are BS
ǫ (L) error patterns for each erroneous sequence. Given

S ′ ∈ BS
s,t,ǫ(S), we construct possible S̃ with S ′ ∈ BS

s,t,ǫ(S̃) as

follows. For each of the t erroneous sequences it is possible to

either add ǫ errors to a sequence x ∈ S ′ or to create a new se-

quence inside the error ball BS
ǫ (x). There are

(

M+t−1
t

)

BS
ǫ (L)

t

possible error patterns for this procedure. Finally, the s lost

sequences can be arbitrary sequences x ∈ ΣL
2 , and there are

at most
(

2L

s

)

choices for these sequences. Thus,

|V S

s,t,ǫ(S)| ≤
(

M

s, t

)

BS

ǫ (L)
t

(

M + t− 1

t

)

BS

ǫ (L)
t

(

2L

s

)

.

Applying Theorem 1 and using the definition of the redun-

dancy directly yields the bounds of the theorem.

For the case of deletion errors, we slightly adapt our

arguments since the size of the deletion sphere is non-uniform

[26]. As stated in Theorem 1, it is sufficient to find an upper

bound on the average degree E[V D
s,t,ǫ].

Definition 6. The average of the t-th power of the deletion

sphere size |SD
ǫ (x)| over all x ∈ ΣL

2 is defined to be

E[SD,t
ǫ] =

1

2L

∑

x∈ΣL
2

|SD

ǫ (x)|t.

Based on this definition we formulate the following theorem

about the existence of (s, t, ǫ)D-correcting codes.

Theorem 4. There exists an (s, t, ǫ)D-correcting code C ⊆
XL

M with cardinality at least

|C | ≥
(

2L

M

)

(

M
s,t

)(

2L

s

)

BS
ǫ (L)

tE[SD,t
ǫ]

.

Hence, for fixed s, t, ǫ ∈ N0 and fixed 0 < β < 1, there exists

an (s, t, ǫ)D-correcting code C ⊆ XL
M with redundancy

r(C) ≤ sL+(s+t) logM+2tǫ logL−tǫ−log(s!2t!2ǫ!2t)+o(1),

when M → ∞ with M = 2βL.

Proof. We will derive an upper bound on E[V D
s,t,ǫ]. The

number of elements in S ′ ∈ BD
s,t,ǫ(S) after a loss of exactly

s sequences and ǫ deletions in t sequences is at most

|BD

s,t,ǫ(S)| ≤
∑

E⊆S,|E|=t

∏

x∈E

|SD

ǫ (x)|
(

M − t

s

)

.

This can be illustrated by the following consideration. First,

fix E ⊆ S with |E| = t. There are |SD
ǫ (x)| possible error

patterns for each x ∈ E and
(

M−t
s

)

choices of s lost sequences

among the remaining M − t error-free sequences. Summing

over all possible choices E ⊆ S of erroneous sequences yields

the bound. Then, for each such set S ′, there are at most
(

2L

s

)

SI
ǫ(L − ǫ)t sets S̃ with S ′ ∈ BD

s,t,ǫ(S̃) 6= ∅. This is

because each erroneous sequence x′ ∈ S ′ has length L − ǫ

7

and requires ǫ insertions to become a sequence of length L.

The s lost sequences can be arbitrary words in S̃ and therefore

|V D

s,t,ǫ(S)| ≤ |BD

s,t,ǫ(S)|
(

2L

s

)

SI

ǫ(L− ǫ)t.

Taking the average of |BD
s,t,ǫ(S)| over all sets S ∈ XL

M yields

∑

S∈XL
M

|BD
s,t,ǫ(S)|
(

2L

M

)
≤
(

M−t
s

)

(

2L

M

)

∑

S∈XL
M

∑

E⊆S,|E|=t

∏

x∈E

|SD

ǫ (x)|

(a)
=

(

M
s,t

)

(

2L

t

)

∑

E∈XL
t

∏

x∈E

|SD

ǫ (x)|
(b)

≤
(

M
s,t

)

(

2L

t

)

∑

E∈XL
t

∑

x∈E

|SD
ǫ (x)|t
t

(c)
=

(

M

s, t

)

E[SD,t
ǫ].

Here, for equality (a) we used that each set E with |E| = t is

contained in exactly
(

2L−t
M−t

)

sets S ∈ XL
M . It follows from the

combination of the arithmetic-geometric mean inequality and

Jensen inequality that for any non-negative a1, . . . , at ≥ 0 it

holds that a1 · . . . ·at ≤ 1
t (a

t
1+ . . .+att), which has been used

in inequality (b). Equality (c) follows from the fact that each

x ∈ ΣL
2 is contained in

(

2L−1
t−1

)

sets E ∈ XL
t . It is known [26]

that |SD
ǫ (x)| ≤

(

||x||+ǫ−1
ǫ

)

≤ (||x||+ǫ−1)ǫ

ǫ! , which results in

E[SD,t
ǫ] ≤ 1

2L

∑

x∈ΣL
2

(||x||+ ǫ− 1)tǫ

ǫ!t

(a)
=

1

ǫ!t

L−1
∑

i=0

(

L−1
i

)

(i + ǫ)tǫ

2L−1

(b)

.
1

ǫ!t

(

L

2

)ǫt

.

In equality (a) it has been used that the number of words x ∈
ΣL

2 with ||x|| = i is 2
(

L−1
i−1

)

. For inequality (b), we identify

the sum as the decentralized moment of a binomial distribution

with L − 1 trials and success probability 1
2 and use [27, eq.

(4.10)] for the asymptotic behavior, when L → ∞.

IV. SPHERE-PACKING BOUNDS

A well-known method to find upper bounds on the cardi-

nality of error-correcting codes is the sphere-packing bound.

In this section we derive sphere-packing bounds for (s, t, ǫ)T-

correcting codes. These bounds directly imply lower bounds

on the redundancy of such codes. One particular observation

of the considered DNA storage channel is that it is non-

uniform, i.e. the sizes of the error balls BT
s,t,ǫ(S) depend on

the channel input S for all types of errors T, which hinders the

computation of sphere packing bounds. A practical method to

find sphere packing bounds for non-uniform error balls is the

generalized sphere packing bound [28], [29]. However, due to

the complex expressions of the error ball sizes, this method

does not yield tractable expressions for the considered channel.

Another possibility is to derive the sphere packing bound by

finding an upper bound on the error ball size, which we will do

in Section IV-A. We will also show that for large M most of

the error balls have a similar size, which allows to formulate

tighter asymptotic sphere packing bounds in Sections IV-B

and IV-C. Note that together with the lower bounds on the

achievable size of (s, t, ǫ)T-correcting codes from the previous

section and concrete code constructions in Section V, it can be

shown that the sphere packing bounds are asymptotically tight

for many channel parameters and provide important insights

into the nature of the DNA channel.

A. Non-Asymptotic Bounds

We start by finding an upper bound for (s, t, •)L-correcting

codes, which depicts the case of a loss of s sequences and

an arbitrary number of edit errors in each of t erroneous

sequences.

Theorem 5. The cardinality of any (s, t, •)L-correcting code

C ⊆ XL
M satisfies

|C | ≤
(

2L

M−s

)

(

M
t+s

)(

2L−M
t

)
.

In particular, the redundancy of any (s, t, •)L-correcting code

C ⊆ XL
M is therefore at least

r(C) ≥ (s+t) log(2L−M−t)+t log(M−s−t)−log(t!(s+t)!).

Proof. We prove the theorem by finding a subset of BL
s,t,•(S),

which gives a lower bound on the sphere size |BL
s,t,•(S)| for

all S ∈ XL
M . Let S ′ ∈ BL

s,t,•(S)∩ΣL
2 denote an element from

the error ball of S, which contains only sequences of length L
and let C, E ′ denote the corresponding error-free, respectively

erroneous outcomes of the sequences, i.e. S ′ = C ∪ E ′,

according to Definition 2. We construct such distinct S ′ in

the following way. Choose M − s − t error-free sequences

C ⊆ S and choose the t erroneous sequences in E ′ to be

distinct elements out of the 2L−M sequences in ΣL
2 \S and let

S ′ = C∪E ′. For any such C ⊆ S and E ′ ⊆ ΣL
2 \S one obtains a

unique element from the error ball BL
s,t,•(S), since S ′ = C∪E ′

and C, E ′ are both subsets of two distinct sets. There are in total
(

M
s+t

)

ways to choose the set C and
(

2L−M
t

)

ways to choose

E ′ and thus |BL
s,t,•(S)| ≥

(

M
s+t

)(

2L−M
t

)

. All such constructed

received sets have |S ′| = |C| + |E ′| = M − s sequences

of length L and therefore, we obtain by a sphere packing

argument, that any (s, t, •)L-correcting code C satisfies

|C | ≤
(

2L

M−s

)

(

M
t+s

)(

2L−M
t

)
.

Therefore, the redundancy is at least

r(C) = log

(

2L

M

)

− log |C |

≥ log
(2L −M + s)!(M − s)!

(2L −M − t)!(M − s− t)!(s+ t)!t!

≥(s+ t) log(2L −M − t) + t log(M − t− s)

− log(t!(s+ t)!).

This non-asymptotic bound directly implies an asymptotic

bound, when M → ∞ and M = 2βL for fixed 0 < β < 1.

8

Corollary 1. For fixed s, t ∈ N0 and fixed 0 < β < 1,

the redundancy of any (s, t, •)L-correcting code C ⊆ XL
M

is asymptotically at least

r(C) ≥ (s+ t)L+ t logM − log(t!(s+ t)!) + o(1),

when M → ∞ and M = 2βL. Further, for any fixed σ, τ
with σ > 0, τ > 0 and σ + τ < 1, the redundancy of any

(σM, τM, •)L-correcting code C ⊆ XL
M satisfies

r(C) ≥ (σ+ τ)M(L− logM +log e)+MH(σ+ τ)+o(M),

where H(p) = −p log p − (1 − p) log(1 − p) is the binary

entropy function.

This result is particularly interesting, due to the following

consideration. Both lost sequences and erroneous sequences

do not carry any useful information, since the erroneous

sequences can be distorted by an arbitrary number of errors.

However, unlike the lost sequence, the erroneous sequence

cannot directly be detected by the decoder and therefore,

compared to a loss of sequence, requires additional redundancy

of roughly logM bits to be corrected. This result is analogous

to the case of standard binary substitution-correcting block-

codes of length n, where erasures require a redundancy of only

a single symbol, and errors require roughly logn symbols of

redundancy to be corrected. This analogy becomes particularly

visible when sequences are indexed and protected by a stan-

dard substitution-correcting code, similarly to Construction

1 (see Section V-B), but also holds for the general case of

any (s, t, •)L-correcting code. However, this seems to be not

the case, when the number of lost sequences and erroneous

sequences scales with M , since the redundancy only depends

on σ + τ .

In the following, we find code size upper bounds for the

case of having a combination of a loss of s sequences and

only ǫ insertion errors inside t sequences. We start by defining

a quantity that will be useful for the formulation of the bound.

Definition 7. The largest intersection of two ǫ-insertion

spheres of any two distinct words x,y ∈ ΣL
2 is denoted by

N I

ǫ(L) = max
x,y∈ΣL

2

|SI

ǫ(x) ∩ SI

ǫ(y)|.

Note that from [30] it is known that N I
ǫ(L) =

∑ǫ−1
i=0

(

L+ǫ
i

)

(1 − (−1)ǫ−i). The sphere packing bound is

derived in the following theorem.

Theorem 6. The cardinality of any (s, t, ǫ)I-correcting code

C ⊆ XL
M satisfies

|C | ≤
(

2L

M−s−t

)(

2L+ǫ

t

)

(

M
s,t

)
∏t−1

i=0(S
I
ǫ(L)− (s+ i)N I

ǫ(L)
.

Proof. We prove the theorem by bounding the error ball size

|BI
s,t,ǫ(S)| from below for all S, which yields an upper bound

on the cardinality of (s, t, ǫ)I-correcting codes by a sphere

packing argument. Distinct elements S′ ∈ BI
s,t,ǫ(S) of the

error ball can be found in the following way. First, choose

two distinct sets L, E = {xe1 , . . . ,xet} ⊆ S with |L| = s

and |E| = t. Further choose the set of erroneous sequences

E ′ = {x′
1, . . . ,x

′
t} such that

x′
i ∈ SI

ǫ(xei)

∖

(

⋃

y∈Pi

SI

ǫ(y)

)

as illustrated in Fig. 5, where Pi = L ∪ {xe1 , . . . ,xei−1
}.

The received set S ′ is then constructed by S ′ = C ∪ E ′,

where C = S \ (L ∪ E) are the error-free sequences, as in

Definition 2. We will show that each choice L, E , E ′ leads to

a unique element in BI
s,t,ǫ(S). Denote by L, E , E ′ and L̃, Ẽ , Ẽ ′

two different choices and let S ′ and S̃ ′ be the corresponding

received sets. If L ∪ E 6= L̃ ∪ F̃ , it directly follows that

S ′ 6= S̃ ′, since the error-free sequences are different. However,

if L∪E = L̃ ∪ F̃ , it follows that E ′ 6= Ẽ ′ due to the choice of

the sequences in the set E ′. Therefore, two different choices

of the sets L, E , E ′ yield different elements in BI
s,t,ǫ(S). The

number of possible sets L, E is
(

M
s,t

)

. For each xei ∈ E , we

have at least SI
ǫ(L) − (s + i)N I

ǫ(L) possibilities to choose

the erroneous outcome x′
i, since there are SI

ǫ(L) sequences in

SI
ǫ(xei) and at most (s+i)N I

ǫ(L) of them are in common with

elements of the insertion spheres of Pi. Hence, in total, there

are
(

M
s,t

)
∏t−1

i=0(S
I
ǫ(L)−(s+ i)N I

ǫ(L)) ways to choose L, E , E ′

and therefore |BI
s,t,ǫ(S)| ≥

(

M
s,t

)
∏t−1

i=0(S
I
ǫ(L)− (s+ i)N I

ǫ(L))

for all S ∈ XL
M . Each such created received set S ′ consists of

M − s − t sequences of length L and t sequences of length

L+ǫ. There are in total
(

2L

M−s−t

)(

2L+ǫ

t

)

such sets, which yields

the theorem by a sphere packing argument.

Note that, Theorem 6 provides a valid upper bound for

any parameter M,L, s, t, ǫ. For the case of deletion errors

or combinations of insertions and deletions, formulating a

sphere packing bound based on the minimum error ball size

yields a weak bound, since the minimum deletion ball size is

|BD
ǫ (0)| = ǫ + 1. Therefore, a conservative analysis similar

to Theorem 6 would yield unsatisfactory results. However,

an asymptotic analysis, which yields asymptotically tighter

bounds is possible, as we will see in Theorem 9.

B. Asymptotic Bounds for Substitution Errors

We now derive asymptotic sphere packing bounds for large

numbers of sequences M on the code size for (s, t, ǫ)S-

correcting codes, which depicts the case of only substitution

errors inside the sequences. As discussed before, the error

ball sizes depend on the center S. However, as it turns out,

asymptotically the error balls have similar sizes. We will start

by finding a lower bound on the error ball size for a set S.

Lemma 1. Let Y ⊆ S ∈ XL
M be an ǫ-substitution-correcting

code, i.e. BS
ǫ (y1) ∩BS

ǫ (y2) = ∅ for all y1,y2 ∈ Y and y1 6=
y2. Further, let s+ t ≤ |Y|. Then,

|BS

s,t,ǫ(S)| ≥
(|Y|
s, t

)

(

BS

ǫ (L)− 1
)t
.

Proof. A lower bound for |BS
s,t,ǫ(S)| will be proven by

identifying and counting specific patterns of a loss of se-

quences and errors in sequences that lead to distinct channel

outputs S ′ ∈ BS
s,t,ǫ(S). Throughout this proof, we impose a

9

SI
ǫ(x1)

SI
ǫ(x2)

SI
ǫ(x3)

SI
ǫ(x4)

x′
1

x′
2

x′
4

(a) Exemplary case: x1,x2,x4 ∈ E , and x3 ∈ L

SI
ǫ(x1)

SI
ǫ(x2)

SI
ǫ(x3)

SI
ǫ(x4)

x′
1

x′
3

x′
4

(b) Exemplary case: x1,x3,x4 ∈ E , and x2 ∈ L

Fig. 5: Illustration for the choice of E ′ in the proof of

Theorem 6. The erroneous outcomes are chosen out of the

corresponding error spheres, which are highlighted in gray.

lexicographic ordering onto the sequences in ΣL
2 , which means

that, writing A = {a1, . . . , a|A|} for any set A ⊆ ΣL
2 uniquely

determines each element ai. The sets of stored sequences

in the error balls around the elements in Y are denoted by

Yi = S ∩ BS
ǫ (yi). Similarly, the sets of received sequences

in these error balls are Y ′
i = S ′ ∩ BS

ǫ (yi). Note that the sets

BS
ǫ (yi) and thus also the sets Yi are distinct, since Y is an

ǫ-substitution-correcting code. We further define the selector

function for sequences a,b,x ∈ ΣL
2 as

I
S
x
(a,b) =

{

a, if x /∈ S
b, otherwise

.

The distinct channel outputs S ′ ∈ BS
s,t,ǫ(S) are obtained in

the following manner. First, choose two distinct sets L ⊆ Y
with |L| = s and E = {ye1 , . . . ,yet} ⊆ Y with |E| = t
and a collection of error vectors E = (e1, e2, . . . , et), where

ej ∈ ΣL
2 are non-zero error vectors of weight at most ǫ. We

will show that for each choice of L, E , and E we obtain a

unique point S ′ ∈ BS
s,t,ǫ(S) in the following manner. First,

all sequences in L are lost. Let y′
i , yei + ei. The set E of

erroneous sequences is chosen as

E =

t
⋃

i=1

{

I
S
y
′
i
(yei ,y

′
i)
}

.

In other words, if y′
i /∈ S we choose the sequence, which will

be distorted by errors to be yei and otherwise we choose it to

be exactly y′
i. The erroneous outcomes of the sequences in E

are now constructed by

E ′ =

t
⋃

i=1

{

I
S
y
′
i
(y′

i,yei)
}

.

That is if y′
i /∈ S, we have yei ∈ E and we add ei to that

sequence to obtain y′
i ∈ E ′. If y′

i ∈ S, y′
i ∈ E is the sequence

which is distorted and we add −ei, resulting in yei ∈ E ′. It

is very important to note that by this choice of error patterns,

the erroneous sequence y′
i ∈ BS

ǫ (yei) and therefore will never

be present in another error ball BS
ǫ (y),y ∈ Y \{yei}, since Y

is an ǫ-substitution-correcting code. The received set is now

S ′ = C∪E ′, where C = S\(L∪E) are the error-free sequences,

as in Definition 2. We will show now that two choices L, E ,E
and L̃, Ẽ , Ẽ yield different received sets S ′ and S̃ ′, if (and only

if) they differ in at least one of the components, i.e., L 6= L̃,

E 6= Ẽ , or E 6= Ẽ. We distinguish between the following three

different cases (visualized in Fig. 6) and the resulting received

parts Y ′
i

• yi ∈ Y \ (L ∪ E) : Y ′
i = Yi,

• yi ∈ L : Y ′
i = Yi \ {yi},

• yi ∈ E : Y ′
i = (Yi \ {yi}) ∪ {y′

i} or

Y ′
i = Yi \ {x},

where y′
i ∈ BS

ǫ (yi) \ S and x ∈ Yi \ {yi}. By comparing

the outputs Y ′
i for these three cases, it is verified that for any

two different cases, Y ′
i can never be the same. Now, if L 6= L̃

there is at least one i such that yi ∈ L and yi /∈ L̃ and if

E 6= Ẽ there is at least one i such that yi ∈ E and yi /∈ Ẽ
and therefore it follows that Y ′

i 6= Ỹ ′
i and S ′ 6= S̃ ′. Further,

if L = L̃ and E = Ẽ , but E 6= Ẽ, there is at least one i with

ei 6= ẽi and thus Y ′
i 6= Ỹ ′

i . This proves that each L, E ,E yields

a unique point in BS
s,t,ǫ(S). Finally, there are

(

|Y|
s,t

)

possible

solutions to choose the sets L and E and (BS
ǫ (L)− 1)t error

patterns E.

This means, that if a set S ∈ XL
M contains an ǫ-substitution-

correcting code Y with cardinality |Y|, the error ball has

size at least |BS
s,t,ǫ(S)| ≥

(

|Y|
s,t

)

BS
ǫ (L)

t. Interestingly, for an

appropriate choice of parameters, most of the sets S ∈ XL
M

have the property of containing a large ǫ-error-correcting code.

To establish the fact, we need the following lemma.

Lemma 2. Let Y ⊆ S be the largest ǫ-error-correcting code

(error type T) with BT
ǫ (y1) ∩BT

ǫ (y2) = ∅ for all y1,y2 ∈ Y
and y1 6= y2. The number of sets S ⊆ XL

M with |Y| ≤ K ,

denoted as D(K), is at most

D(K) ≤
(

2L

K

)(

KV T
ǫ

M −K

)

,

where

V T

ǫ = max
x∈ΣL

2

|{y ∈ ΣL
2 : BT

ǫ (x) ∩BT

ǫ (y) 6= ∅}|

is the maximum number of sequences y ∈ ΣL
2 that have

intersecting error balls BT
ǫ (·) with any x ∈ ΣL

2 .

Proof. Consider the following procedure on a set S ∈ XL
M

whose largest ǫ-error-correcting subset Y ⊆ S has size at

most K . Write S(1) , S. Take an arbitrary word x(1) ∈ S(1)

10

yi

x1x2

Yi

(a) No errors

x1x2

Y ′
i

(b) yi is lost

y′
i

x1x2

Y ′
i

(c) yi is erroneous, y′

i 6= xj

yi

x2

Y ′
i

(d) x 6= yi is erroneous, x′
= yi

Fig. 6: Cases for error patterns in Lemma 1

and remove all words y ∈ ΣL
2 with intersecting error balls,

i.e. BT
ǫ (x) ∩ BT

ǫ (y) 6= ∅ from S(1). Then select an arbitrary

sequence from the resulting set S(2), and, again, remove all

elements with intersecting error balls. Continue this procedure

until S(j+1) = ∅. This procedure will stop after at most j ≤ K
steps, since otherwise x1, . . . ,xK+1 would form an ǫ-error-

correcting code. Hence, each such set S can be constructed by

first selecting K arbitrary, distinct words x1, . . . ,xK and then

choosing the remaining M − K words to have intersecting

error balls with at least one of the x1, . . . ,xK .

While the bound from Lemma 2 may not seem particularly

strong, it can be used to show that the number of sets that

do not contain an ǫ-substitution-correcting code of large size

is negligible with respect to the sets that do contain an ǫ-
substitution-correcting code. We will elaborate this result and

use it in the following to prove an upper bound on the size of

(s, t, ǫ)S-correcting codes.

Theorem 7. For fixed s, t, ǫ ∈ N0 and 0 < β < 1, any

(s, t, ǫ)S-correcting code C ⊆ XL
M satisfies

|C | .
(

2L

M−s

)

(

M
s,t

)(

L
ǫ

)t ,

when M → ∞ with M = 2βL. The redundancy is at least

r(C) ≥ sL+ t logM + tǫ logL− log
(

s!t!ǫ!t
)

+ o(1),

Proof. Denote by D ⊆ XL
M , the set of all S ∈ XL

M , which

contain an ǫ-substitution-correcting code Y ⊆ S of size larger

than |Y| > M − y(M), where we define y(M) = M/ logM .

The remaining sets are comprised in DC = XL
M \D. With the

partition D∪DC = XL
M , it follows that the cardinality of any

(s, t, ǫ)S-correcting code C ⊆ XL
M is at most

|C | = |C ∩ D|+ |C ∩ DC| ≤

∣

∣

∣

⋃

S∈D
BS

s,t,ǫ(S)
∣

∣

∣

min
S∈D

|BS
s,t,ǫ(S)|

+ |DC|.

The first term follows from a sphere packing bound on all sets

S ∈ D. The numerator counts the total number of possible

channel outputs and the denominator is a lower bound on the

error ball size for all sets S ∈ D. Since each channel output

is a set of sequences of size M − s− t up to M − s, we have

∣

∣

∣

⋃

S∈D

BS

s,t,ǫ(S)
∣

∣

∣
≤

t
∑

i=0

(

2L

M − s− i

)

.

From Lemma 1 it is known that

min
S∈D

|BS

s,t,ǫ(S)| ≥
(

M − y(M)

s, t

)

(BS

ǫ (L)− 1)t,

and applying Lemma 2, we find that |DC| ≤ D(M − y(M)).
It follows that

|C | ≤
∑t

i=0

(

2L

M−s−i

)

(

M−y(M)
s,t

)

(BS
ǫ (L)− 1)t

+D(M − y(M))

=

∑t
i=0

(

2L

M−s−i

)

(

M−y(M)
s,t

)

(BS
ǫ (L)− 1)t

(1 + ∆),

where ∆ accounts for D(M−y(M)) and is defined implicitly

as in the following equation. We will show that for our choice

of y(M), the first summand dominates the bound, i.e. ∆ → 0
for M → ∞. We obtain

log∆ = log
D(M − y(M))

(

M−y(M)
s,t

)

(BS
ǫ (L)− 1)t

∑t
i=0

(

2L

M−s−i

)

(a)

≤ log

(

2L

M−y(M)

)((M−y(M))BS

2e(L)
y(M)

)

(

2L

M−s

)
+O(L)

(b)

≤ − 1− β

β
M + o(M),

where for inequality (a) we used |V S
ǫ (x)| = BS

2ǫ(L) for

all x ∈ ΣL
2 , log

(

M−y(M)
s,t

)

= O(L) and t log(BS
ǫ (L) −

1) = O(logL). Inequality (b) follows from an application of

Lemma 14 with z(L) = 2L/((M−y(M))BS
2ǫ(L)). Therefore,

∆ → 0, as M → ∞ and D(M−y(M)) is asymptotically neg-

ligible. We obtain for any (s, t, ǫ)S-correcting code C ⊆ XL
M

|C | .
∑t

i=0

(

2L

M−s−i

)

(

M−y(M)
s,t

)

(BS
ǫ (L)− 1)t

∼
(

2L

M−s

)

(

M
s,t

)(

L
ǫ

)t .

The redundancy is asymptotically at least

r(C) = log

(

2L

M

)

|C | ≥ log

(

2L

M

)(

M
s

)(

M−s
t

)(

L
ǫ

)t

(

2L

M−s

)
+ o(1)

≥ s log(2L −M) + t log (MLǫ)− log(s!t!ǫ!t) + o(1)

= sL+ t logM + tǫ logL− log
(

s!t!ǫ!t
)

+ o(1),

where we used that log
(

M
s

)

= s logM − log s! + o(1),

log
(

M−s
t

)

= t logM−log t!+o(1) and t log
(

L
ǫ

)

= t(ǫ logL−
log ǫ!) + o(1).

In particular, for s = 0 and ǫ = 1, the redundancy of any

(0, t, 1)S-correcting code C ⊆ XL
M is at least t log(ML) −

11

log t! bits. Note that this coincides with the results from [18]

for t = 1. Comparing the bound on the redundancy stated

in Theorem 7 with the well known sphere packing bound for

conventional ǫ-substitution-correcting block codes, logBS
ǫ (L),

yields an interesting interpretation of the (0, t, 1)S channel.

While it seems intuitive that the redundancy required is at

least t log(ML) − log t! bits, since there are t errors inside

a total of ML symbols, it is interesting that from a sphere

packing point of view, the fact the sequences are not ordered

does appear to require as much redundancy as not knowing the

distribution of the errors in an ordered array. While Theorem

7 is formulated for a fixed number of errors s, t, we will find

a bound for the case, when number of erroneous sequences t
is scaling with M in the following.

Theorem 8. For fixed s, ǫ ∈ N0 and fixed 0 < β < 1, any

(s,M − s, ǫ)S-correcting code C ⊆ XL
M satisfies

r(C) ≥ Mǫ logL+O(M),

when M → ∞ with M = 2βL.

Proof. We follow a similar outline as in the proof for Theorem

7. Denote by D ⊆ XL
M , the set of all S ∈ XL

M , which

contain an ǫ-substitution-correcting code Y ⊆ S of size

|Y| > M − y(M), where we define y(M) = M/ log logM
and DC = XL

M\D. Allowing only t = M−s−y(M) erroneous

sequences, we can apply Lemma 1 and obtain

|BS

s,t,ǫ(S)| ≥
(

M − y(M)

s

)

(BS

ǫ (L)− 1)M−y(M)−s,

for all S ∈ D. It follows that

|C | ≤
∑M−y(M)−s

i=0

(

2L

M−s−i

)

(

M−y(M)
s

)

(BS
ǫ (L)− 1)M−y(M)−s

(1 + ∆).

We will show that ∆ → 0 for M → ∞. We obtain

log∆ = log

(

M−y(M)
s

)

(BS
ǫ (L)− 1)M−y(M)−sD(M − y(M))
∑M−y(M)−s

i=0

(

2L

M−s−i

)

(a)

≤ log

(

2L

M−y(M)

)((M−y(M))BS

2ǫ(L)
y(M)

)

(

2L

M−s

)
+Mǫ logL+O(L)

(b)

≤ − ML

log logM
+Mǫ logL+ o

(

M

log logM

)

=− ML

log(βL)
+O(M logL)

where in inequality (a) we used log
(

M−y(M)
s

)

= O(L). For

inequality (b) we applied Lemma 14 with z(L) = 2L/((M −
y(M))BS

2ǫ(L)). Therefore, ∆ → 0, as M → ∞. We obtain

for any (s,M − s, ǫ)S-correcting code C ⊆ XL
M

|C | .
∑M−y(M)−s

i=0

(

2L

M−s−i

)

(

M−y(M)
s

)

(BS
ǫ (L)− 1)M−y(M)−s

.

(

2L

M−s

)

(

M
s

)(

L
ǫ

)M−y(M)−s
.

Therefore, the redundancy satisfies

r(C) = log

(

2L

M

)

|C | ≥ log

(

2L

M

)(

M
s

)(

L
ǫ

)M−y(M)−s

(

2L

M−s

)
+ o(1)

≥ sL+ (M − y(M)− s)ǫ log(L/ǫ)− log s! + o(1).

C. Asymptotic Bounds for Deletion Errors

We will now turn to derive an asymptotic bound on the car-

dinality of (s, t, ǫ)D-correcting codes. Note that it is possible to

use the technique that we present here also for insertion errors,

however this is deferred to future work. Since the deletion ball

is non-uniform, it is not directly possible to use an analogue

of Lemma 1 as in Theorem 7. We will therefore slightly adapt

our arguments and use the fact that, although the deletion ball

size is non-uniform, most of the deletion balls have a similar

size. It has been shown in [26] that

|SD

ǫ (x)| ≥
(||x|| − ǫ + 1

ǫ

)

and most words x ∈ Σn
2 have roughly L/2 runs. We will

elaborate this result in the following.

Lemma 3. Let ρ ∈ N. The number of words with less than

L/2− ρ runs satisfies
∣

∣

∣

∣

{

x ∈ ΣL
2 : ||x|| < L

2
− ρ

}∣

∣

∣

∣

≤ 2L

e
2ρ2

L

.

Proof. The number of words x ∈ ΣL
2 with exactly i runs, i.e.,

||x|| = i is given by 2
(

L−1
i−1

)

. Therefore, the number of words

with less than L/2− ρ runs is given by

|{x ∈ ΣL
2 : ||x|| < L/2− ρ}| = 2

L/2−ρ−1
∑

i=1

(

L− 1

i− 1

)

(a)

≤
L/2−ρ
∑

i=1

(

L

i

)

(b)

≤ 2L

e
2ρ2

L

,

where we used
(

L−1
i−1

)

≤ 1
2

(

L
i

)

for i ≤ L
2 in inequality (a) and

Hoeffding’s inequality [31] on the binomial sum in (b).

Next, we find a lower bound on the ball size BD
s,t,ǫ(S), for

sets, which contain a deletion-correcting code.

Lemma 4. Let Y ⊆ S ∈ XL
M be an ǫ-deletion-correcting code,

i.e. BD
ǫ (y1) ∩ BD

ǫ (y2) = ∅ for all y1,y2 ∈ Y and y1 6= y2.

Further, let s+ t ≤ |Y|. Then,

|BS

s,t,ǫ(S)| ≥
∑

E,L⊆Y,E∩L=∅,
|L|=s,|E|=t

∏

y∈E

|SD

ǫ (y)|,

Proof. We will find a lower bound on the number of words

inside the error ball |BD
s,t,ǫ(S)| by counting distinct elements

S′ ∈ BD
s,t,ǫ(S) in the following way. Choose two arbitrary dis-

tinct sets L, E = {ye1 , . . . ,yet} ⊆ Y with |L| = s and |E| = t
and choose a set of erroneous outcomes E ′ = {y′

1, . . . ,y
′
t},

where y′
i ∈ SD

ǫ (yei). Note that we delete exactly ǫ symbols

from each yei and thus y′
i ∈ ΣL−ǫ

2 . Denote by L, E , E ′ and

L̃, Ẽ , Ẽ ′ two different choices of error realizations and let S ′

and S̃ ′ be the corresponding received sets. If L ∪ E 6= L̃ ∪ Ẽ ,

then S ′ 6= S̃ ′, as the resulting error-free sequences in S ′ and

S̃ of length L are different. In the case L ∪ E = L̃ ∪ Ẽ and

E 6= Ẽ , it follows that E ′ 6= Ẽ ′, as the erroneous outcomes

are chosen out of the ǫ deletion spheres from an ǫ-deletion-

correcting code. Finally, if L ∪ E = L̃ ∪ Ẽ and E = Ẽ it

follows that L = L̃ and thus E ′ 6= Ẽ ′ as we chose L, E , E ′

and L̃, Ẽ , Ẽ ′ to be different. Hence, for each choice of error

12

realizations L, E , E ′, we obtain a unique element in BD
s,t,ǫ(S).

Counting the number of choices yields the lemma.

This allows to formulate the following theorem.

Theorem 9. For fixed s, t, ǫ ∈ N0 and 0 < β < 1, any

(s, t, ǫ)D-correcting code C ⊆ XL
M satisfies

|C | .
(

2L

M−s−t

)(

2L−ǫ

t

)

(

M
s,t

)(

L/2
ǫ

)t

when M → ∞ with M = 2βL. The redundancy is at least

r(C) ≥ sL+ tǫ logL− log(s!ǫ!t) + o(1).

Proof. Denote by Dr ⊆ XL
M , the set of all S ∈ XL

M ,

which contain more than M − y(M) sequences with ||x|| ≥
L/2 − ρ(L), where we choose y(M) = M/ logM and

ρ(L) =
√
L lnL. Further, let De ⊆ XL

M be all sets S ∈ XL
M

that contain an ǫ-deletion-correcting code Y ⊆ S of size

|Y| > M − y(M) and let D = Dr ∩ De. The remaining

sets are comprised in DC = XL
M \ D. Since D and DC are

a partition of XL
M , every (s, t, ǫ)D-correcting code C ⊆ XL

M

satisfies

|C | = |C ∩ D|+ |C ∩ DC| ≤

∣

∣

∣

⋃

S∈D
BD

s,t,ǫ(S)
∣

∣

∣

min
S∈D

|BD
s,t,ǫ(S)|

+ |DC|.

The number of received sets after a loss of exactly s sequences

and t sequences with exactly ǫ deletions each is at most

∣

∣

∣

⋃

S∈D

BD

s,t,ǫ(S)
∣

∣

∣
≤
(

2L

M − s− t

)(

2L−ǫ

t

)

,

as each received set consists of M−s− t error-free sequences

and t sequences of length L − ǫ. Each S ∈ D contains

less than y(M) sequences, which do not belong to the ǫ-
deletion-correcting code Y and less than y(M) (possibly

different) sequences with ||x|| < L/2 − ρ(L). Thus, at least

M−2y(M) sequences form an ǫ-deletion-correcting code and

satisfy ||x|| ≥ L/2− ρ(L) and by Lemma 4, we have

|BD

s,t,ǫ(S)| ≥
(

M − 2y(M)

s, t

)(

L/2− ρ(L)− ǫ

ǫ

)t

for each S ∈ D. The number of remaining sets S /∈ D satisfies

|DC| = |XL
M \ D| ≤ |XL

M \ Dr| + |XL
M \ De|. Each such set

contains at least y(M) sequences with ||x|| < L/2− ρ(L) or

does not contain an ǫ-deletion-correcting code of size more

than M − y(M). By Lemma 3, we have that

|XL
M \ Dr| ≤

(

2L

M − y(M)

)(

2L/L2

y(M)

)

,

for large enough L, as each S ∈ XL
M\Dr can be constructed by

choosing y(M) sequences to have less than L/2− ρ(L) runs

and the remaining sequences are chosen arbitrarily. Further,

using Lemma 2, it follows that

|XL
M \ De| ≤

(

2L

M − y(M)

)(

KV D
ǫ

y(M)

)

,

where V D
ǫ = max

x∈ΣL
2
|{y ∈ ΣL

2 : BD
ǫ (x) ∩ BD

ǫ (y) 6= ∅}|.
This number can be bounded from above by the following

consideration. Given x ∈ ΣL
2 , each y ∈ ΣL

2 can be constructed

by first deleting ǫ symbols from x and then inserting ǫ arbitrary

symbols to the result. Using |SD
ǫ (x)| ≤

(

L
ǫ

)

for all x ∈ ΣL
2 and

|SI
ǫ(x

′)| = ∑ǫ
i=0

(

L
i

)

= BS
ǫ for all x′ ∈ ΣL−ǫ

2 yields V D
ǫ ≤

(

L
ǫ

)

BS
ǫ . It follows that the size of any (s, t, ǫ)D-correcting code

C ⊆ XL
M is at most

|C | ≤
(

2L

M−s−t

)(

2L−ǫ

t

)

(

M−2y(M)
s,t

)(

L/2−ρ(L)−ǫ
ǫ

)t

+

(

2L

M − y(M)

)

(

(

2L/L2

y(M)

)

+

(

K
(

L
ǫ

)

BS
ǫ

y(M)

)

)

=

(

2L

M−s−t

)(

2L−ǫ

t

)

(

M−2y(M)
s,t

)(

L/2−ρ(L)−ǫ
ǫ

)t (1 + ∆r +∆e).

We will show now that ∆r → 0 and ∆e → 0 for M → ∞.

log∆r = log

(

M
s,t

)(L
2
ǫ

)t(2L/L2

y(M)

)(

2L

M−y(M)

)

(

2L

M−s−t

)(

2L−ǫ

t

)
+ o(1)

= log

(2L/L2

y(M)

)(

2L

M−y(M)

)

(

2L

M−s−t

)
+O(L)

(a)

≤ − M

logM
log logM +O

(

M

logM

)

,

where we applied Lemma 14 in inequality (a). Hence, ∆r → 0
for M → ∞. Analogous to the proof of Theorem 7, it can be

shown that ∆e → 0 for M → ∞. We obtain for the maximum

size of a (s, t, ǫ)D-correcting code

|C | .
(

2L

M−s−t

)(

2L−ǫ

t

)

(

M
s,t

)(

L/2
ǫ

)t .

The redundancy is consequently at least

r(C) = log

(

2L

M

)

− log |C | ≥ log

(

2L

M

)(

M
s,t

)(

L/2
ǫ

)t

(

2L

M−s−t

)(

2L−ǫ

t

)
+ o(1)

= sL+ tǫ logL− log(s!ǫ!t) + o(1).

The result of Theorem 9 is particularly interesting, when

comparing with Theorem 7, which depicts the case of sub-

stitution errors inside the sequences. It can be seen that

correcting substitutions requires t logM − log t! more bits

of redundancy as compared to insertion or deletion errors

only. While this seems surprising, there is a practical reason

for this phenomena. For the case of insertion or deletion

errors, it is directly possible to identify erroneous sequences,

by checking their length to be different from L. This is

not possible for substitution errors, and erroneous sequences

can be confused with correct sequences, which means that

additional redundancy is required for detecting the erroneous

sequences. In fact, we will show in Construction 5, how to

constructively exploit the identification of erroneous sequences

for the case of (0, 1, 1)D deletion errors and obtain a code

that asymptotically achieves the bound from Theorem 9. In

13

the following we derive a sphere packing bound for the case

when the number of erroneous sequences scales with M .

Theorem 10. For fixed s, ǫ ∈ N0 and fixed 0 < β < 1, any

(s,M − s, ǫ)D-correcting code C ⊆ XL
M satisfies

r(C) ≥ Mǫ logL+O(M),

when M → ∞ with M = 2βL.

Proof. The proof is similar to that of Theorem 9 and we

use the same notation for D = Dr ∩ De for sets that

contain an ǫ-deletion-correcting code of size |Y| > M −
y(M) and more than M − y(M) sequences with at least

||x|| ≥ L/2 − ρ(L) runs, where y(M) = M/ log logM and

ρ(L) =
√

L/2 lnL log2 L. With Lemma 4, it follows

|BD

s,t,ǫ(S)| ≥
(

M − 2y(M)

s

)(

L/2− ρ(L)− ǫ

ǫ

)M−2y(M)−s

for all S ∈ D. It follows that the size of any (s, t, ǫ)D-

correcting code C ⊆ XL
M is at most

|C | ≤
(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)

(

M−2y(M)
s

)(

L/2−ρ(L)−ǫ
ǫ

)M−y(M)−s
(1 + ∆r +∆e).

We will show now that ∆r → 0 and ∆e → 0 for M → ∞.

log∆r ≤
(

L/2−ρ(L)−ǫ
ǫ

)M(2L/Llog2 L

y(M)

)(

2L

M−y(M)

)

(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)
+O(L)

≤ log

(2L/Llog2 L

y(M)

)(

2L

M−y(M)

)

(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)
+Mǫ logL+O(L)

(a)

≤ log

(2L/Llog2 L

y(M)

)(

2L

M−y(M)

)

(

2L

M−s

)
+Mǫ logL+O(M)

(b)

≤ − M log3 L

log(βL)
+O(M logL)

where for inequality (a) we used that

log

(

2L

M−s

)

(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)
≤ O(M)

and applied Lemma 14 in inequality (b). Hence, ∆r → 0
for M → ∞. Analogous to the proof of Theorem 8, it can be

shown that ∆e → 0 for M → ∞. We obtain for the maximum

size of a (s,M − s, ǫ)D-correcting code

|C | .
(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)

(

M
s

)(

L/2−ρ(L)−ǫ
ǫ

)M−y(M)−s
.

The redundancy is consequently at least

r(C) ≥ log

(

2L

M

)(

M
s

)(

L/2−ρ(L)−ǫ
ǫ

)M−y(M)−s

(

2L

2y(M)

)(

2L−ǫ

M−2y(M)−s

)
+ o(1)

≥ Mǫ logL+O(M).

V. CODE CONSTRUCTIONS

Having available suitable bounds on the redundancy of

(s, t, ǫ)T-correcting codes, we now present several code con-

structions for DNA storage systems that are suitable for

different types of errors T and choices of parameters s, t and

ǫ. Note that constructing codes for the considered channel

model is surprisingly challenging. This can be explained as

follows. In order to find efficient codes, one has to deal with

both, the fact that sequences are received in an unordered

fashion and also that sequences are distorted by random errors.

Especially for the case when only few sequences contain

errors, concatenated schemes, where each strand is protected

by an inner code and an outer code is used over all strands,

are suboptimal. This is because the inner code is ”wasted” for

the correct sequences, as they do not contain any errors and

no inner code would be needed to obtain the correct strand.

Therefore, it is important to design codes over the whole set

of strands that use redundancy over different sequences and

allow to correct errors in a subset of strands. We start with

constructions that are suitable for an arbitrary number of errors

per sequence and will elaborate more specialized constructions

towards the end of this section.

A. Indexing Sequences

A common efficient way to combat the loss of ordering

of sequences is to prepend an index to each sequence, which

contains the position i of the sequence. This approach has

been discussed in different settings, e.g. [17], [20]. The set of

all possible sets of sequences with indexing is given by

CI(M,L) = {S ∈ XL
M : xi = (I(i),ui), i ∈ {1, 2, . . . ,M},

where I(i) ∈ Σ
⌈logM⌉
2 denotes the binary representation of

i − 1 and ui ∈ Σ
L−⌈logM⌉
2 are arbitrary information vectors.

Note that by this definition the prefix of an indexed sequence

contains the index of a sequence pref⌈logM⌉(xi) = I(i).
This requires an index I(i) of ⌈logM⌉ bits in each sequence

so the maximum number of information bits that can be stored

this way is M(L − ⌈logM⌉) without any error correction.

While this solution is attractive for its simplicity, it introduces

already a redundancy, which increases linearly in M , which

is stated in the following theorem.

Theorem 11. For fixed 0 < β < 1, the redundancy required

for indexing sequences is given by

r(CI(M,L)) = M(⌈logM⌉ − logM + log e) + o(M),

when M → ∞ with M = 2βL.

Proof. From M = 2βL with 0 < β < 1, we have that M =
o(2L) and M = ω(1), when M → ∞. Therefore,

r(CI(M,L)) = log

(

2L

M

)

−M(L− ⌈logM⌉)

=M(⌈logM⌉ − logM + log e) + o(M),

where we used Lemma 13, which is derived in Appendix A,

to characterize the binomial coefficient.

14

This means that every construction which uses indexing

already incurs a redundancy of at best roughly M log e bits.

Note that this amount can be significant, as the number of

sequences M is significantly larger than their length L, as

explained in Remark 1. However, in terms of code rate, it has

been shown in [20] that for the case of no errors inside the

sequences, the indexing approach is capacity achieving.

The following function, which collects all indices of a set of

sequences will be useful for our constructions that are based

on indexing.

Definition 8. For any set A ⊆ XL
M we define

I(A) =
⋃

x∈A

{pref⌈logM⌉(x)}

to be the set of indices of the sequences in A.

Note that it is possible that |I(A)| < |A|, if one (or more)

of the indices appear multiple times because of errors.

B. An Index-Based Construction using MDS Codes

The following construction is based on adding an index in

front of all sequences xi and using an MDS code over the M
sequences for error correction. For all n and k, where k ≤ n
we denote by MDS[n, k] an MDS code over any field of size

at least n− 1.

In Construction 1, the sequences xi = (I(i),ui) of each

codeword set are constructed by writing a binary represen-

tation of the index, I(i), of length ⌈logM⌉ in the first part

of each sequence. Then, the remaining part ui is viewed as a

symbol over the extension field F2L−⌈logM⌉ , and (u1, . . . ,uM)
will form a codeword in some MDS code2. A similar construc-

tion has been used in [20], where index-based constructions

are analyzed for the correction of only a loss of sequences.

Construction 1. For all M,L, and a positive integer δ, let

C1(M,L, δ) be the code defined by

C1(M,L, δ) = {S ∈ XL
M :xi = (I(i),ui),

(u1, . . . ,uM) ∈ MDS[M,M − δ]}.
This code provides a direct construction to correct a loss of

sequences and erroneous sequences with an arbitrary amount

of errors each. The error correction capability for several types

of errors is summarized in the following lemma.

Lemma 5. For all M,L, δ, the code C1(M,L, δ) is

• (s, t, •)L-correcting for all s+ 2t ≤ δ,

• (s, t, •)I-correcting for all s+ t ≤ δ,

• (s, t, •)D-correcting for all s+ t ≤ δ.

Proof. Denote by S ′ the received set after a loss of sequences

and errors. We start with proving the lemma for the case

of arbitrary edit errors. According to Definition 2, we write

C,L, E as the sets of error-free, lost, and erroneous sequences,

and E ′ are the erroneous outcomes of the sequences in E .

First, we observe that if we can recover the MDS codeword

2Note that we assume M ≤
√
2L in this section to guarantee the existence

of the MDS code [32, ch. 11]. However, the case M >
√
2L can always be

used by employing non-MDS codes.

U = (u1,u2, . . . ,uM), we can also recover S by prepending

the index I(i) in front of each ui. Given S ′, we then create the

received estimate word U′ by declaring all positions i with

|{x′ ∈ S ′ : pref⌈logM⌉(x
′) = I(i)}| 6= 1,

i.e., for which there is not exactly one index in S ′, as

erasures. The remaining positions in U′ are filled with the

corresponding symbols u′
i. We will show that the number

of erasures s′ and the number of errors t′ in U′ satisfy

s′+2t′ ≤ δ by the following consideration. Consider a genie,

which first only adds the error-free sequences C to U′. Since

|C| ≥ M − s − t at least M − s − t positions in U′ have

been filled with correct symbols, and thus there remain at most

s′ ≤ s+t erasures and t′ = 0 errors inside U′ up to this point.

Now, the genie successively adds the t erroneous sequences

E ′ to U′. Each of the t erroneous sequences x′ ∈ E ′ can

have an arbitrary index pref⌈logM⌉(x
′) from 0 to M − 1. If

the erroneous sequence x′ has an index of a position which

is not occupied yet, t′ increases by one and s′ decreases by

one, as this position is not declared as an erasure anymore and

contains now an erroneous symbol. If the erroneous sequence

x′ has an index, which is already present, this position is

declared as an erasure as explained above. Consequently, s′

increases by one for this case. Hence, the number of erasures

in U′ is bounded from above by s′ ≤ s+t−t′+|I(E ′)∩I(C)|
where |I(E ′) ∩ I(C)| accounts for the situation when an

erroneous sequence has the same index as an error-free one.

The number of errors is at most t′ ≤ |I(E ′)∩ (I(E)∪I(L))|.
Hence, s′ + 2t′ ≤ s + t + t′ + |I(E ′) ∩ I(C)| ≤ s + 2t ≤ δ,

which proves the error correcting capability.

For the case of only insertion (I) and only deletion (D)

errors, it is possible to identify the erroneous sequences by

checking their length to be larger (respectively smaller) than

L. If these sequences are discarded, there are in total s + t
erasures inside the MDS codeword, which can be corrected,

if s+ t ≤ δ.

Note that for the practically important case of a loss of se-

quences and combinations of substitution and deletion errors,

C1(M,L, δ) can correct all errors, if s+2tS+tD ≤ δ, where tS
is the number of sequences suffering from substitution errors

only and tD is the number of sequences with deletion errors.

The same also holds for combinations of substitution and

insertion errors. However, this is not true for combinations

of substitutions, insertions and deletions as a sequence that

contains insertions and deletions might have length exactly L
and therefore cannot be erased. In this case, as elaborated in

the proof, s+ 2t ≤ δ has to hold. More generally, erroneous

sequences which have length exactly L require 2 redundancy

symbols inside the MDS codeword to be correctable, while

sequences which have a different length only require a single

symbol, as they can be detected as erroneous.

The redundancy of Construction 1 is stated in the following

theorem.

Theorem 12. For all M,L, δ, the redundancy of the code

C1(M,L, δ) is

r(C1(M,L, δ)) = r(CI(M,L)) + δ(L− ⌈logM⌉).

15

Proof. First, indexing the sequences requires a redundancy of

r(CI(M,L)), which is derived in Theorem 11. Second, the

MDS code has δ redundant symbols and thus there are δ(L−
⌈logM⌉) additional redundancy bits.

While the redundancy of Construction 1 can be very large,

especially for the case M ≫ L, it provides some very useful

features. First, it is possible to efficiently encode and decode

this code using standard encoders and decoders for MDS

codes. Second, it is not necessary to design the code for a

specific number of errors s and t, but rather their sum s+2t,
which allows for a flexible decoding procedure.

C. A Construction Based On Constant Weight Codes

Imposing an ordering (e.g., lexicographic) onto the se-

quences in ΣL
2 , every data set S ∈ XL

M can be represented

by a binary vector v(S) of length 2L, where each non-zero

entry in v(S) indicates that a specific sequence is contained

in the set S.

The set of possible data sets can therefore be represented3

by constant-weight binary vectors of length 2L

VL
M = {v ∈ {0, 1}2L : wt(v) = M},

where wt(v) denotes the Hamming weight of v, i.e., the

number of non-zero entries inside the vector v. That is, the

mapping v defines an isomorphism between XL
M and VL

M and

thus v−1 is well-defined. Using this representation, a loss of

a sequence x ∈ S corresponds to an asymmetric 1 → 0 error

inside v(S) at the position corresponding to x. Substitution

errors inside a sequence x ∈ S translate to single errors

in the Johnson graph in v(S), i.e. a single 1 → 0 at the

corresponding position of the original sequence x, and a single

0 → 1 error at the position of its erroneous outcome x′. In

case, the erroneous outcome x′ is already present in S ′, the

0 → 1 error is omitted and there is only a single asymmetric

1 → 0 error at the position of the original sequence x, similar

to a loss of a sequence. For codes in the Johnson graph, the

reader is referred to, e.g., [33]

Example 4. Consider the following M = 3 stored sequences

S = {(001), (010), (110)}, each of length L = 3. We choose

v(S) to map each sequence x ∈ S to its decimal equivalent by

standard base conversion and let v(S) be non-zero at exactly

these indices. Hence, e.g., the sequence (110) is mapped to

1 · 22 + 1 · 21 + 0 · 20 + 1 = 7 and thus v(S) will be non-

zero at index 7. Note that we additionally add 1, since we

index vectors starting by 1. Therefore, v(S) = (01100010).
Assume now, the set S is transmitted over a (1, 1, 2)S channel,

resulting in S ′ = {(001), (111)}, where the sequence (110)
was lost and the sequence (010) has been perturbed by two

substitution errors. The corresponding binary representation

is v(S ′) = (01000001), where there was a single 1 → 0 at

position 7 due to the loss of the sequence (110) and 1 → 0 and

0 → 1 errors at positions 3, respectively 8, since the sequence

(010) was distorted to the sequence (111).

3This representation has been used as a proof technique in [20].

With this principle in mind, we define a code that can correct

asymmetric errors and errors in the Johnson graph.

Definition 9. For all M,L and positive integers s, t, we define

C L
M (s, t) ⊆ VL

M to be a code of length 2L that consists of

codewords with constant Hamming weight M , which corrects

s asymmetric 1 → 0 errors and t errors in the Johnson graph.

With such a code C L
M (s, t) ⊆ VL

M in hand that can correct

asymmetric errors and errors in the Johnson graph, we can

construct a code for the DNA storage channel.

Construction 2. For all M,L, we define the following code

C2(M,L, s, t) = {S ∈ XL
M : v(S) ∈ C

L
M (s, t)}.

By this construction, given a constant-weight code C L
M (s, t),

we construct the DNA storage code C2(M,L, s, t) by mapping

each c ∈ C L
M (s, t) to its corresponding set S = v−1(c). Note

that this mapping can be efficiently implemented, by, e.g., a

decimal to binary mapping of the non-zero positions in c, as

illustrated in Example 4. The correctness of the construction

is established in the following lemma.

Lemma 6. For all M,L and positive integers s, t, the code

C2(M,L, s, t) is an (s, t, •)L-correcting code.

Proof. Denote by S ′ the received set after a loss of at most

s sequences and errors in at most t sequences. Let s′ be the

number of asymmetric errors and t′ be the number of errors

in v(S) with s′ + t′ ≤ s + t and t′ ≤ t. Note that s′ =
M − wt(v(S ′)) is detectable by the decoder. If s′ ≤ s, then

the decoder can directly decode the loss of s′ ≤ s sequences

and t′ ≤ t errors in the Johnson graph. If s′ > s, the decoder

adds s′ − s (arbitrarily placed) ones to v(S ′), resulting in a

loss of exactly s sequences and at most t′ + s′ − s ≤ t errors

in the Johnson graph.

To obtain a code based on Construction 2, we use the

fact that an asymmetric error can be represented by a single

substitution error and an error in the Johnson graph can be

represented by two substitution errors. With an appropriate

minimum distance, it is therefore possible to employ standard

codes, which will be done in the following theorem.

Theorem 13. There exists a construction of the code

C2(M,L, s, t) with redundancy at most

r(C2(M,L, s, t)) ≤ (s+ 2t)L.

Proof. By Lemma 6, it is sufficient to find a sufficiently large

M -constant-weight code which can correct s+2t substitution

errors. This is since each loss in S causes an 1 → 0
asymmetric error in v(S) and can be represented as a single

substitution error and every error in a sequence in S will cause

at most one 1 → 0 and one 0 → 1 error in v(S) and thus can

be represented by two substitution errors. Next, it is known,

that there exists a τ -substitution-correcting binary alternant

code of length 2L and dimension 2L − τL, cf. [32]. Due to

the pigeonhole principle and since the alternant code has at

most 2τL cosets, there is one coset of the alternant code that

contains at least
(

2L

M

)/

2τL words with constant weight M ,

and therefore there exists a code C2(M,L, s, t) of cardinality

16

at least
(

2L

M

)/

2τL. With this alternant code, the redundancy of

Construction 2 is therefore at most

r(C2(M,L, s, t)) ≤ log

(

2L

M

)

− log

(

2L

M

)

2τL
= τL.

Using τ = s+ 2t yields the theorem.

The redundancy of Construction 2 is lower than that of

Construction 1, especially for the considered case M = 2βL.

However, for Construction 1 there exist efficient encoders and

decoders while this is unclear for Construction 2, also since the

code length of the constant-weight code is exponential in L.

D. An Improved Indexed-Based Construction

Construction 1, which uses indexing, is beneficial for its

simplicity in the encoding and decoding procedures, however

its redundancy is significantly larger than the one achieved by

Construction 2. On the other hand, Construction 2 does not

provide an efficient encoder and decoder due to the lack of

ordering in the set S. In this section, we present a construction

which introduces ideas from both of these methods.

The main idea of this construction is to reduce the number

of bits allocated for indexing each sequence. This allows a

trade-off in redundancy with respect to L and M . To simplify

notation, we assume here that M = 2z for some z ∈ N.

Construction 3. Denote by Ic(i) ∈ Σc logM
2 the c logM most

significant bits of the binary representation I(i) of i, where

0 ≤ c < 1 and c logM ∈ N0. Further, for 1 ≤ i ≤ M c, let

Ui = {u(i−1)M1−c+1, . . . ,uiM1−c} denote a set of distinct

sequences with the same index Ic(i), which are ordered lexi-

cographically and form a symbol over a field of size
(

2LM−c

M1−c

)

,

where uj ∈ ΣL−c logM
2 .

For δ ≥ 0, let C3(M,L, c, δ) be the code defined by

C3(M,L, c, δ) = {S ∈ XL
M : xi = (Ic(i),ui),

(U1, . . . ,UMc) ∈ MDS[M c,M c − δ]}.
To guarantee existence of the MDS code, we require M c ≤
(

2LM−c

M1−c

)

[32]. For M = 2βL, c ≤ 1 +
log 1−β

β

βL is sufficient.

Note that there are M c groups of sequences which use the

same index and each group contains M1−c sequences.

Lemma 7. For all M,L, δ, the code C3(M,L, c, δ) is

• (s, t, •)L-correcting for all s+ 2t ≤ δ,

• (s, t, •)I-correcting for all s+ t ≤ δ,

• (s, t, •)D-correcting for all s+ t ≤ δ,

Proof. The proof follows the same idea as that for

Lemma 5. We will show that the MDS codeword

U = (U1,U2, . . . ,UMc) can be recovered from U′ =
(U′

1,U
′
2, . . . ,U

′
Mc), where U′

i collects all sequences in S ′

which have the same index i, i.e. U′
i = {suffL−c logM (x′) :

x′ ∈ S ′, prefc logM (x) = Ic(i)}. Given S ′, we create the

received estimate word U′ by declaring all positions i with

|U′
i| 6= M1−c,

as erasures. The remaining positions in U′ are filled with the

corresponding symbols U′
i. We will show that the number of

erasures s′ and the number of errors t′ in U′ satisfy s′+2t′ ≤
δ by the following consideration. First, insert all error-free

sequences x ∈ C into U′. Up to this point s′ ≤ s + t and

t′ = 0, since there are s+ t sequences missing and all inserted

sequences are error-free. Therefore, the s+ t affected groups,

which contain less than M1−c sequences can be detected and

declared erasures. Now, each of the t erroneous sequences

x′ ∈ E ′ is inserted to U′ and can have an arbitrary index i
due to errors. If the erroneous sequence x′ has an index i of an

index group with |U′
i| = M1−c−1 elements, this group cannot

be detected as erroneous anymore, as it contains now exactly

M1−c sequences. Consequently t′ increases by one and s′

decreases by one, as the group is erroneous but is not declared

as an erasure in U′ anymore. If the erroneous sequence x′ has

an index of an index group with |U′
i| = M1−c, this group will

contain M1−c+1 sequences afterwards and can be detected as

erroneous and thus declared as erasure. In this case the number

of erasures s′ increases by one. In all other cases neither s′

nor t′ change. Since t sequences of S are erroneous the sum

s′ + 2t′ can increase at most by t with respect to the starting

point s+ t and thus s′ + 2t′ ≤ s+ 2t ≤ δ, which proves the

error correcting capability.

For the case of only insertion (I) and only deletion (D)

errors, it is possible to identify the erroneous groups by

checking the length of the respective sequences to be larger

(respectively smaller) than L. If these sequences are discarded

and the corresponding groups declared as erasures, there are in

total at most s+ t erasures inside the MDS codeword, which

can be corrected, if s+ t ≤ δ.

The redundancy of Construction 3 is stated in the following

theorem.

Theorem 14. The redundancy of Construction 3 is given by

r(C3(M,L, c, δ)) = log

(

2L

M

)

− (M c − δ) log

(

2LM−c

M1−c

)

.

For fixed 0 < c < 1, δ ∈ N0 and 0 < β < 1, the redundancy

of C3(M,L, c, δ) is asymptotically

r(C3(M,L, c, δ)) =
(1 − c)

2
M c logM +

log 2π

2
M c

+ δM1−c (L− logM + log e) + o(M c +M1−c),

when M → ∞ with M = 2βL.

The proof is given in Appendix B. Note that the last sum-

mand in the asymptotic expression for C3(M,L, c, δ) in Theo-

rem 14 quantifies the redundancy from the MDS construction,

since it is multiplied by δ, the redundancy of the MDS code.

The two remaining terms therefore quantify the redundancy

required for indexing. This shows that, asymptotically, for

c > 0.5 the redundancy needed for indexing dominates, as

the terms for indexing scale as M c and the term for the MDS

construction scales as M1−c and for c < 0.5 the redundancy

from the MDS construction dominates the redundancy of the

overall construction.

E. Concatenated Constructions

Since the input of the DNA storage channel, S ∈ XL
M is a

set of M sequences, each of which has length L, it is possible

17

to use a concatenated coding scheme to correct both a loss of

sequences and errors inside the sequences. The concatenation

can be constructed by choosing a set So as a codeword from

an outer code Co ⊆ XLo

M , where Lo < L. Then, each sequence

xo ∈ So is encoded with some inner block-code Ci ⊆ ΣL
2 of

dimension Lo and length L. This procedure is formalized in

the following construction.

Construction 4. For all M,L, Lo < L and positive integers

s, t, let Co ⊆ XLo

M be an outer code and Ci ⊆ ΣL
2 be a

standard block-code of dimension Lo and length L. Further,

en(·) : ΣLo

2 7→ ΣL
2 is an encoder of the code Ci. We define

the concatenated construction as

C4(M,L,Ci,Co) =

{

S ∈ XL
M : S =

⋃

xo∈So

en(xo),So ∈ Co

}

.

As outer code Co it is in principle possible to use any code

over XL
M . However, using the proposed Constructions 1, 2,

or 3 it is possible to enhance the inner code to additionally

correct a loss of sequences. This is done as follows.

Lemma 8. Let Co ⊆ XLo

M be an (s, 0, 0)T-correcting code

and Ci ⊆ ΣL
2 be a block-code that can correct ǫ errors of

type T. Then, C4(M,L,Ci,Co) is (s,M − s, ǫ)T-correcting.

Proof. The proof is immediate, since the inner code can cor-

rect all errors of type T inside the sequences. After correcting

these errors, it is possible to correct the lost sequences using

the outer code.

Note that such concatenated constructions are highly rele-

vant in practice, as in the case that there are some sequences,

which experienced more than ǫ errors can be corrected by

the outer code, since Constructions 1, 2, or 3 can correct

both a loss of sequences and errors in sequences, as long as

s+ 2t ≤ δ. Such a construction has been used in [12], where

a Reed-Solomon code has been used as inner code and an

indexed Reed-Solomon code has been used as outer code.

F. Special Constructions

In this section, we suggest constructions that can correct

errors for some special cases of errors in the DNA storage

channel. These constructions are interesting, since they provide

insights about the channel and can likely be generalized to

more general error types.

The following (0, 1, 1)D-correcting construction is based on

Varshamov-Tenengolts (VT) codes [34], [26] that can correct

a single insertion/deletion in one of the M sequences. The

VT code is defined to be all sequences which have the same

checksum, that is defined as follows.

Definition 10. The Varshamov-Tenegolts checksum sL(x) of

x ∈ ΣL
2 is defined by

sL(x) =

L
∑

i=1

ixi mod (L+ 1).

Our construction now employs the idea of using a single-

erasure-correcting code over the checksums of all sequences.

The insertion/deletion can then be corrected by first recovering

the checksum of the distorted sequence and then using this

checksum to correct the insertion/deletion. Note that this idea

is similar to the concept of tensor product codes [35].

Construction 5. For an integer a, with 0 ≤ a ≤ L, the code

construction C5(M,L, a) is given by

C5(M,L, a) =

{

S ∈ XL
M :

M
∑

i=1

sL(xi) ≡ a mod (L+ 1)

}

.

Note that the code can be extended to an arbitrary alphabet

size q by applying non-binary VT codes [36].

Lemma 9. For all M,L, a, the code C5(M,L, a) is an

(0, 1, 1)ID-correcting code.

Proof. Assume there has been a single insertion or deletion in

the k-th sequence, for 1 ≤ k ≤ M . After the reading process,

the M − 1 error-free sequences can be identified as they have

length exactly L. The checksum deficiency is given by

a−
∑

i∈C

sL(xi) mod (L+ 1) = sL(xk).

The error in xk is corrected by decoding in the VT code with

checksum sL(xk).

The redundancy of Construction 5 is established in the

following theorem.

Theorem 15. There exists 0 ≤ a ≤ L such that the

redundancy of Construction 5 is at most

r(C5(M,L, a)) ≤ log(L+ 1).

Proof. The codes r(C5(M,L, a)) form a partition over XL
M

for all 0 ≤ a ≤ L. Since, there are L + 1 distinct values for

a, based on the pigeonhole principle there exists 0 ≤ a ≤
L such that the cardinality of the code C5(M,L, a) satisfies

|C5(M,L, a)| ≥
(

2L

M

)/

(L + 1) and thus its redundancy is at

most log(L+ 1).

As we show in Theorem 9, the redundancy of any (0, 1, 1)D-

correcting code is at least log(L)+o(1), and thus Construction

5 is asymptotically optimal.

Using VT codes, we propose another construction of

(0,M, 1)ID-correcting codes. That is, the code can correct a

single deletion or insertion in every sequence.

Construction 6. Let a ∈ N0, with 0 ≤ a ≤ L. Then,

C6(M,L, a)= {S ∈XL
M : sL(xi)≡ a mod (L+1), ∀ 1≤ i≤M}.

Lemma 10. The code C6(M,L, a) is an (0,M, 1)ID-

correcting code.

Proof. All erroneous sequences can be detected by checking

their length. If a sequence is erroneous, it can be corrected

by decoding in the VT code with checksum a. Note that two

distinct sequences cannot have the same erroneous outcome

since they are different and belong to a single-deletion-

correcting code.

By Construction 6, all sequences xi have the same check-

sum a, which allows to correct a single insertion or a single

18

deletion in each sequence. The redundancy of Construction 6

is computed in the following lemma.

Theorem 16. For fixed 0 < β < 1, the redundancy of the

code C6(M,L, 0) satisfies asymptotically

r(C6(M,L, 0)) ≤ M log(L + 1) + o(M),

when M → ∞ with M = 2βL.

Proof. It is known [26] that the number of words satisfying

sL(x) = 0 mod (L+1) is at least 2L/(L+1). Each codeword

of C6(M,L, a) is a subset of a VT code with cardinality M .

Therefore the redundancy of Construction 6 is at most

r(C6(M,L, 0)) ≤ log

(

2L

M

)

− log

(2L

L+1

M

)

≤ M log(L+ 1) +
M2 log e

2L/(L+ 1)−M
.

For M = 2βL, 0 < β < 1 the second term is o(M), which

concludes the proof.

Interestingly, as has been shown in Theorem 10, the redun-

dancy of this construction is asymptotically optimal in terms

of scaling with the parameters M and L. Note that there is a

non-asymptotic expression for the redundancy in the proof.

The next construction can be used to correct ǫ substitution

errors in each sequence.

Construction 7. Let C [L, ǫ] ⊆ ΣL
2 denote a binary ǫ-

substitution-correcting code of length L. For all M ≤
|C [L, ǫ]|, L, and ǫ we define the code

C7(M,L, ǫ) = {S ∈ XL
M : S ⊆ C [L, ǫ]}.

Lemma 11. The code C7(M,L, ǫ) is an (0,M, ǫ)S-correcting

code.

The proof is immediate, since every sequence is a codeword

of a code that can correct ǫ substitutions. Using binary

alternant codes, it is possible to find a lower bound on the

redundancy of Construction 7.

Theorem 17. There exists a construction for which the code

C7(M,L, ǫ) with fixed ǫ ∈ N0 and 0 < β < 1 has an

asymptotic redundancy of at most

r(C7(M,L, ǫ)) ≤ Mǫ⌈logL⌉+ o(M),

when M → ∞ with M = 2βL.

Proof. For C [L, ǫ] in Construction 7 we use a binary ǫ-
substitution-correcting alternant code of length L, which has

redundancy at most ǫ⌈logL⌉, cf. [32, Ch. 5.5] and thus obtain

a code C7(M,L, ǫ) with redundancy at most

r(C7(M,L, ǫ)) ≤ log

(

2L

M

)

− log

(

2L−ǫ⌈logL⌉

M

)

≤ Mǫ⌈log(L+ 1)⌉+ M2 log e

2L−ǫ⌈logL⌉ −M
.

For M = 2βL, 0 < β < 1 the second term is o(M), which

concludes the proof.

Note that Theorem 8 implies that for fixed ǫ this construc-

tion is close to optimality.

VI. CONCLUSION

In this paper, we set the foundations for codes over sets

for DNA storage applications. After presenting the channel

model and a new family of error-correcting codes over sets,

we derived several bounds and constructions. Our bounds

consist of extensions of the Gilbert-Varshamov and sphere

packing bounds for the studied codes in the paper. We also

proposed several constructions which can be either with or

without indices or a reduced version of the indices. Lastly, we

derived several more special constructions for a specific set of

parameters. It has been illustrated that many of the proposed

constructions are close to optimal, such as for the case of

substitution, respectively single insertion or deletion errors

inside all of the strands. We further have proposed several

constructions that can cope with combinations of a loss of

sequences and errors inside the sequences. By analyzing the

sphere packing bounds and comparing them to our construc-

tions, we have found important insights about the nature of the

DNA storage channel. These include the surprising fact that

correcting insertions or deletions requires less redundancy than

correcting substitution errors inside the sequences.

APPENDIX A

AUXILIARY LEMMAS

Lemma 12. Let f(n), g(n) : N 7→ R be two arbitrary

functions with f(n) = o(1) for n → ∞. Then,

g(n) ln (1 + f(n)) = g(n)f(n) +O
(

g(n)f2(n)
)

.

Proof. We use the standard bound on the natural logarithm

x

x+ 1
≤ ln(1 + x) ≤ x,

for all x > −1. Since f(n) = o(1), there exists n0 ∈ N, such

that |f(n)| < 1 for all n ≥ n0 and therefore

g(n)
f(n)

f(n) + 1
≤ g(n) ln (1 + f(n)) ≤ g(n)f(n),

for all n ≥ n0. This allows to find an upper bound to the

following limit of the first order approximation

lim
n→∞

∣

∣

∣

∣

g(n) ln (1 + f(n))− g(n)f(n)

g(n)f2(n)

∣

∣

∣

∣

≤ 1,

by plugging in the lower and upper bound on g(n) ln(1 +
f(n)), which proves the statement.

Lemma 13. Let f(n), g(n) : N 7→ N be two arbitrary

functions with g(n) = o(f(n)) and g(n) = ω(1), when

n → ∞. The binomial coefficient satisfies

log

(

f(n)

g(n)

)

= g(n) log
ef(n)

g(n)
+ o(g(n)),

when n → ∞.

19

Proof. Note that g(n) = o(f(n)) and g(n) = ω(1) automati-

cally implies f(n) = ω(1). The binomial coefficient satisfies

log

(

f(n)

g(n)

)

= log
f(n)!

(f(n)− g(n))!g(n)!

= g(n) log
f(n)

g(n)
− 1

2
log g(n)

−
(

f(n)− g(n) +
1

2

)

log

(

1− g(n)

f(n)

)

+ γ,

where γ = − log
√
2π +O(1

g(n)). Here we used a refinement

[37] of Stirling’s approximation, which states that

√
2πn

(n

e

)n

e
1

12n+1 ≤ n! ≤
√
2πn

(n

e

)n

e
1

12n ,

for any n ∈ N. Using Lemma 12, we obtain

−
(

f(n)− g(n) +
1

2

)

log

(

1− g(n)

f(n)

)

= log e

(

g(n)− g2(n)

f(n)
+

g(n)

2f(n)

)

+O

(

g2(n)

f(n)

)

= g(n) log e + o(g(n)),

where we used that
g(n)
f(n) = o(1). Plugging this result into

the expression of the binomial coefficient and using further

log g(n) = o(g(n)) and γ = o(g(n)) proves the lemma.

Lemma 14. For any fixed integer δ ∈ N0 and any integer

functions y(M) ≤ M and z(L) with z(L) ≤ 2L/y(M) for

large enough M , the following asymptotic property holds

log

(

2L

M−y(M)

)(2L/z(L)
y(M)

)

(

2L

M−δ

)
≤− y(M) log

z(L)y(M)

eM

+O

(

My(M)

2L

)

+O(L),

when M → ∞ and M = 2βL with 0 < β < 1.

Proof. The lemma can be shown directly by calculating the

expression for the binomial coefficient

log

(

2L

M−y(M)

)(2L/z(L)
y(M)

)

(

2L

M−δ

)

= log
(2L/z(L))y(M)(2L −M + δ)δ

(2L −M + y(M))y(M)M δ
+ log

(

M

y(M)

)

≤y(M) log
2L/z(L)

2L −M
+ log

(

M

y(M)

)

+O(L)

(a)

≤y(M) log
eM

z(L)y(M)
+O

(

My(M)

2L

)

+O(L),

where, nm = n ·(n−1) . . . (n−m+1) for n,m ∈ N0 denotes

the falling factorial. In inequality (a), we used Lemma 12 for

the approximation of the logarithm and
(

n
k

)

≤
(

en
k

)k
as an

upper bound for the binomial coefficient.

APPENDIX B

PROOF OF THEOREM 14

The cardinality of Construction 3 can be computed as

follows. Each group Ui consists of M1−c unordered, distinct

sequences, which share the same index Ic(i). In total, there

are M c−δ information groups, since δ groups are redundancy

symbols of the MDS codeword. Therefore, the redundancy is

r(C3(M,L, c, δ)) = log

(

2L

M

)

− log

(

2LM−c

M1−c

)Mc−δ

.

Applying Stirling’s approximation [37] onto the binomial

coefficients yields

r(C3(M,L, c, δ)) = log

(

2L

M

)

− (M c − δ) log

(

2LM−c

M1−c

)

=
1− c

2
M c logM +

M c − 1

2
log

(

1− M

2L

)

− γ2M
c + γ1

+ δ

(

M1−cL−M1−c logM − 1− c

2
logM

−
(

2LM−c −M1−c +
1

2

)

log

(

1− M

2L

)

+ γ2

)

,

where γ1 = − log
√
2π + o(1) and γ2 = − log

√
2π + o(1),

when c < 1. Note that it can be verified that for c = 1,

γ2 has a different asymptotic behavior, i.e., γ2 = − log e +
o(1). Therefore, for c = 1, the expression for r(C3(M,L, c, δ))
yields the same redundancy as in Theorem 12. Employing

Lemma 12 onto the two logarithmic terms yields

r(C3(M,L, c, δ)) =
1− c

2
M c logM +

log 2π

2
M c

+ δM1−c (L− logM + log e) + o(M c +M1−c).

REFERENCES

[1] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” in IEEE Int. Symp. Inform. Theory, Vail, CO,
Jun. 2018, pp. 2411–2415.

[2] D. Carmean, L. Ceze, G. Seelig, K. Stewart, K. Strauss, and M. Willsey,
“DNA data storage and hybrid molecular-electronic computing,” Pro-

ceedings of the IEEE, vol. 107, no. 1, pp. 63–72, 2019.

[3] M. Blawat, K. Gaedke, I. Hütter, X. M. Chen, B. Turczyk, S. Inverso,
B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data
storage,” in Int. Conf. Computational Science, San Diego, Jun. 2016, pp.
1011–1022.

[4] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, no. 6328, pp. 950–954, Mar. 2017.

[5] S. Kosuri and G. Church, “Large-scale de novo DNA synthesis: tech-
nologies and applications,” Nature Methods, no. 5, pp. 499–507, May
2014.

[6] L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen,
C. Takahashi, S. Newman, H. Y. Parker, C. Rashtchian, G. G. K. Stewart,
R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, , and
K. Strauss, “Random access in large-scale DNA data storage,” Nature
Biotechnology, vol. 36, pp. 242–248, Feb. 2018.

[7] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. Lennon, R. Hegarty,
N. Nusbaum, and D. Jaffe, “Characterizing and measuring bias in
sequence data,” Genome Biol., no. 5, May 2013.

[8] A. K. Yim, A. C. S. Yu, J. W. Li, A. I. C. Wong, J. F. C. Loo, K. Chan,
S. K. Kong, and T. F. Chan, “The essential component in DNA-based
information storage system: Robust error-tolerating module,” Frontiers

in Bioengineering and Biotechnology, no. 49, pp. 1–5, Nov. 2014.

20

[9] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-ruiz, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: trends and methods,” vol. 1, no. 3,
pp. 230–248, Sep. 2015.

[10] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, no. 6102, pp. 1628–1628, Sep. 2012.

[11] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, no. 7435,
pp. 77–80, Jan. 2013.

[12] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie Int. Edition, no. 8, pp. 2552–
2555, Feb. 2015.

[13] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and
K. Strauss, “A DNA-based archival storage system,” in Proc. 21st Int.

Conf. Architectural Support for Programming Languages and Operating

Systems, Atlanta, Apr. 2016, pp. 637–649.
[14] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A

rewritable, random-access DNA-based storage system,” Nature Scientific

Reports, no. 14138, Aug. 2015.
[15] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-

free DNA-based data storage,” Nature Scientific Reports, no. 5011, Jul.
2017.

[16] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146, Jun.
2016.

[17] M. Kovačević and V. Y. F. Tan, “Codes in the space of multisets – coding
for permutation channels with impairments,” IEEE Trans. Inf. Theory,
no. 7, pp. 5156–5169, Jul. 2018.

[18] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced information,”
2018. [Online]. Available: http://arxiv.org/abs/1809.02716

[19] W. Song and K. Cai, “Sequence-subset distance and coding for
error control in DNA-based data storage,” 2018. [Online]. Available:
http://arxiv.org/abs/1809.05821

[20] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fun-
damental limits of DNA storage systems,” in IEEE Int. Symp. Inform.

Theory, Aachen, Germany, Jun. 2017, pp. 3130–3134.
[21] R. Heckel, G. Mikutis, and R. Grass, “A characterization

of the DNA data storage channel,” 2018. [Online]. Available:
http://arxiv.org/abs/1803.03322

[22] V. I. Levenshtein, “Elements of coding theory,” Diskretnaya matematika
i matematicheskie voprosy kibernetiki, pp. 207–305, 1974.

[23] ——, “Binary codes capable of correcting spurious insertions and
deletions of ones,” Prob. Inf. Trans., vol. 1, no. 1, pp. 8–17, Jan. 1965.

[24] J. Gu and T. Fuja, “A generalized Gilbert-Varshamov bound derived via
analysis of a code-search algorithm,” IEEE Trans. Inf. Theory, vol. 39,
no. 3, pp. 1089–1093, May 1993.

[25] L. Tolhuizen, “The generalized Gilbert-Varshamov bound is implied by
Turán’s theorem,” IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1605–
1606, Sep. 1997.

[26] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
Feb. 1966.

[27] A. Knoblauch, “Closed-form expressions for the moments of the bino-
mial distribution,” Siam J. Appl. Math., vol. 69, no. 1, pp. 197–204, Jan.
2008.

[28] A. Fazeli, A. Vardy, and E. Yaakobi, “Generalized sphere packing
bound,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2313–2334, May
2015.

[29] A. A. Kulkarni and N. Kiyavash, “Nonasymptotic upper bounds for
deletion correcting codes,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp.
5115–5130, Aug. 2013.

[30] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.

Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.
[31] W. Hoeffding, “Probability inequalities for sums of bounded random

variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[32] R. M. Roth, Introduction to Coding Theory. New York: Cambridge
University Press, 2006.

[33] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new
table of constant weight codes,” IEEE Trans. Inf. Theory, vol. 36, no. 6,
pp. 1334–1380, Nov. 1990.

[34] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automation Remote Control, vol. 26, no. 2, pp. 286–
290, 1965.

[35] J. K. Wolf, “An introduction to tensor product codes and applications to
digital storage systems,” in IEEE Inform. Theory Workshop, Chengdu,
China, Oct. 2006, pp. 6–10.

[36] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion,” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 766–769, 1984.

[37] H. Robbins, “A remark on stirling’s formula,” The American Mathemat-

ical Monthly, vol. 62, no. 1, pp. 26–29, 1955.

http://arxiv.org/abs/1809.02716
http://arxiv.org/abs/1809.05821
http://arxiv.org/abs/1803.03322

	I Introduction
	II Channel Model
	II-A Notation
	II-B DNA Channel Model
	II-C Discussion of the Channel Model
	II-D Relationship of Insertion- and Deletion-Correcting Codes

	III Gilbert-Varshamov Bounds
	IV Sphere-Packing Bounds
	IV-A Non-Asymptotic Bounds
	IV-B Asymptotic Bounds for Substitution Errors
	IV-C Asymptotic Bounds for Deletion Errors

	V Code Constructions
	V-A Indexing Sequences
	V-B An Index-Based Construction using MDS Codes
	V-C A Construction Based On Constant Weight Codes
	V-D An Improved Indexed-Based Construction
	V-E Concatenated Constructions
	V-F Special Constructions

	VI Conclusion
	Appendix A: Auxiliary Lemmas
	Appendix B: Proof of Theorem ??
	References

