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~ Abstract—Motivated by recent high bandwidth communica- The main advantage of avoiding noise in the approximation
tion systems, Inter-Symbol Interference (ISI) channels wth 1- s that the exact capacity can be computed for the approgimat
bit quantized output are considered under an average-power .~dal \We show how such a computation can be carried out

constrained continuous input. While the exact capacity is dficult . . . - . .
to characterize, an approximation that matches with the exat using Gibbs distributions. In addition, we exhibit achielea

channel output up to a probability of error is provided. The Schemes with Markov input approaching the approximate
approximation does not have additive noise, but constrainghe capacity in some numerical examples. Since the approxamati

channel output (without noise) to be above a threshold in alidute  js valid up to a probability of error, a coding scheme used ove
value. The capacity under the approximation is computed Us- e annroximate channel model can be coupled with a standard

ing methods involving standard Gibbs distributions. Markovian . . )
achievable schemes approaching the approximate capacityrea €'O" control code to derive a practical coding scheme fer th

provided. The methods used over the approximate ISI channel €xact channel.

result in ideas for practical coding schemes for ISI channed with The rest of the paper is organized as follows. Section I

1-bit output quantization. describes the ISI channel model and its approximation. In

Section Ill, we provide a method for computing the approxi-

mate capacity under an average power constraint on the, input
Channels with Inter-Symbol Interference (1SI) and Additivand elaborate on achievable schemes in Section V. Nunherica

White Gaussian Noise (AWGN) are often encountered in pra@sults are given in Section V, and concluding remarks are

tice. Depending on the application, an average-input poweade in Section VI.

constraint or a finite input alphabet constraint is commonly

studied. Recently, in applications such as millimeter wave Il. SYSTEM MODEL

[1][2] or optical or intra-chip [3] communications, quardtion We consider a discrete-time finite-tap 1Sl channel with

of the output of an ISI channel has been considered becauS%\(}’grage-power-constrained continuous input and oneuit4

limitations in Analog—to-D|g|taI_ conversion at high speedn . tizled output as depicted in Fig. 1. The input to the channel is
some cases, the output quantization may be as low as a single

bit. Since the transmitters in some of these systems can be
more complex and operate at high powers, the channel input

I. INTRODUCTION

Zn

may not have severe quantization limits. X, Y, l R, Q(R,)
Motivated by the above applications, we consider a noisy Cha;nne @ Q(-)

ISI channel with average-power constrained continuoustinp

and 1-bit quantized output. The available literature nyostl Fig. 1: ISI channel with quantized output.

considers either continuous input/output alphabets oritefin

input alphabet with a continuous output alphabet [4][5]e ThdenotedX = {X,,,0 < n < N —1}, and the channel impulse
quantized output case has been considered for the AWGdsponse of length is denoted: = {h,,,0 < n < L—1}. The
channel with no ISI [6], and the ISI case has been briefibnyolution of the input with the channel impulse resporsse i

addressed recently [7]. denotedY = {Y,,,0 <n < N — 1}, and is given by
The exact capacity of an ISI channel with 1-bit quantized

output appears to be difficult to characterize explicitly. |
this work, we introduce an approximation to the ISI channel Yo = Z hie X 1)

model with 1-bit quantized output. The approximation does k=0

not have additive noise, but constrains the channel outpithie channeh is assumed to be constant, and all signals are
(without noise) to be above a threshold in absolute valugssumed to be zero outside the specified ranges. Independent
Because of the thresholding, the approximate channel gutpand identically distributed zero-mean Gaussian noise df va
after quantization, matches the actual channel output up t@nces?, denoted?,,, is added to obtain an intermediate signal
probability of error that can be controlled by the threshold R, = Y,,+Z,. The signalR,, is quantized by a 1-bit quantizer

L-1
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Q(-) to obtain the channel outp@(R) = {Q(R,),0 <n < I1l. A PPROXIMATE CAPACITY

N + L —2}. The quantizer is defined as follows: The capacity of the approximate ISI channel is given by
if 2> : I(X,5) H(S)
-1, if x <0. o Bl XN
The average power of the input is constrained to be at maghere the last equality is because the sequefids a de-
P. That is, we require terministic function of the inputX in the absence of noise
No1 in the approximate channel. Since the output alphabet of
E[||X 2] = Z E[|X,|] < NP. 3) the quantizer is eithei or —1, it is easy to observe that
n=0 - Cs(P) < 1.

In this work, the overall goal is to approximate the mutug. Power constraint
information rate—-1(X;Q(R)) and provide computable ex- \We begin by bounding the power of the input sequence
pressions or bounds. X required for a given output sequen6e Given the output
The approximate ISI channel model is depicted in Fig. 8ymbol sequencé = s € {—1,1}", we have the constraint
In the approximate ISI channel, there is no noise. Howeveiiat |Y,,| = s,Y, > J. So, the minimum energy, denoted
&(s), required for a given quantized sequence given by

Xn | Channe Yo o S the following optimization problem:
h 190 _
Vo] >0 N-1
s) = min Z 2|2, (4)
Fig. 2: Approximate ISI channel with quantized output. diag(s) Mnzz 01 "0

wherediag(s) is an N x N diagonal matrix withs on the
the convolution output;, is constrained to be greater than main diagonal and denotes the all-1 column. The inequalities
in absolute value, and this provides justification for igngr diag(s)Mpxz = 61 are linear and the feasible space fioiis
noise. We readily see that, under the constraijtf > 0, the intersection of hyperplanes and, hence, convex. So, the
the output of the actual mode)(R,) is approximated by above optimization problem is a convex optimization prable
S, = Q(Y,) up to a probability of error lesser than orin NV variables that essentially finds the closest point from the
equal t0 Q(d/0), where Q(z) = [ —Le=*"/2du is the origin to the convex sefdiag(s)Myz = 61}. We have

T 27

standard@-function. Therefore, coding schemes developed

for the approximate model can be used in the actual model E[lX]* = Z P(S = s)E[||X[* | § =],
with additional error control coding for the approximation s€{-1,1}%

error Q(6/0). While the additional coding results in a loss > Z P(S = s)&E(s)

in information rate, we find that the approximation, because se{—1,1}V

of the removal of noise, is useful on the following two Count%sing (4). Because of the average power constraint on thz inp
1) The capacity or maximum information ra%:](X;S), X, we have
where S = {5,,0 < n < N — 1}, under the

power constraint of (3) and the constraifif,| > 4, Y. P(S=5)(s) <NP. ®)
has computable expressions and bounds. This provides sE{-L1}Y

useful estimates of the capacity of output-quantized I18. Entropy maximization and Gibbs distribution
channels. Let Emin = ming&(s), Emax = maxsE(s), & =

2) The techniques used for computing the approximaie S~ £(s). Since the constraints (5) are linear on the
capacity provide useful intuition on coding and signalingrobabilities, it is well-known [8] that the Gibbs distrition

methods for output-quantized ISI channels. maximizes the entrop¥ (S) for Enin < NP < &nax. The
Convolution We will use matrix notation to denote the con-optimal distribution is the Gibbs distribution given by
volution in (1) asY = M;, X, where the entries of th& x N _BE()
matrix M, are either O or one of the channel taps and P(S =s)= e r ,s€ {1, 1}N7 (6)

X, Y are column vectors. The matrix/,, is not circulant. Z

Let M, denote theV x N circulant matrix with first column WhereZ is the normalizing constant, antlis the unique value
equal toh. When N becomes large (as is in our case), with fqr which (5) is met with equality. The maximum entropy is
fixed, M, behaves like the circulant matrik/,, in the sense 9iven by

thatlimNﬁoo ||Mh —M_hﬂ =0 vv_here||.|\ is a matrix norm. In H(S) = BP +In(2) @)
this papet, for simplicity, we will always assume the circular
convolutionY = M X in the channel model.

=pP-| Y . 8)

IFor all N, the results hold with a suitable cyclic prefix, for instance se{-1,1}V



For NP < &unm, there exists no probability distributionWe want\* = 0 for everys. We can easily observe that this
that satisfies (5). It is also known [8][9] that = 0 when is indeed true if(M;M;")~! is diagonally-dominant. [ ]
NP = & and we observe that the corresponding Gibbs Hence, from Lemma 1, whetM;, M;")~" is diagonally-
distribution is the uniform distribution of—1,1}" and the dominantz* = M, 's. Hence,
maximumH(S) = N. For P = &, We have = oo and
the maximum entropy is given blog,(|S.|), where |S,,| E(s) = [|«*||* = %57 Gs, (12)
; % .

?heenor;(?; irtnhfmn Zr:rzry OLSeen%Zentflis{r:]H;iﬁumth:rgtflgr?)lle\\:\?hevﬁhereG = (MM )~ —

) ' In the next lemma, the mean energyis characterized

P = Emin is H(S) = 2(5ml) _ : { :
min N o . . in, terms of the channel matriX/;, for diagonally-dominant
In summary, we see that the capacity of the approximate I§%annels

channel is given by the Gibbs distribution whenever the poweé

constraint is above,,;,/N. For P > £/N, we can achieve Lemma 2. The mean energy for diagonally-dominant chan-
the maximum possible capacifys(P) = 1. For powers lower nels is given by

than&.in /N, capacity goes to zero. So, the interesting range

of calculation if for NP € (Epin, &). &= tr(M, "M,

C. Diagonally-dominant channels Proof: The energy€(s) in (12) can be expanded as
A matrix A = (a;;) is said to be row-diagonally-dominant N

or simply diagonally-dominant il 2 > il I__et £(S) = 5226;“, + Z Gi;8i;. (13)

us call channels: for which the matrix(M;, M)~ exists i1 irgits

and is diagonally-dominant as diagonally-dominant chémne

For such channels, the minimum energy valdés) can be HENCe:

characterized as follows. 1 £(s) =

Lemma 1. When the matrix M, M;')~! is row-diagonally- 2N ST}V

dominant,£(s) for s € {—1,1}" is achieved atz* that 52 N .

satisfies the equality constraints o Z ) Z; Gii + Z Giiz_N Z ) 5i8;

diag(s)Mpx* = §1. 9) se{-L1}N = 73 s€{—1,1}

Proof: Since the constraint set is linear, the optimization =0

problem (4) is strongly dual. We now solve the optimizatiomhe second term in the above sum is zero since the summation
problem by forming its dual. The Lagrangian is given by ~spans over all the sequences fon —1}". Hence
L\ z) = ||z||* + AT (61 — diag(x) Myx).

The gradient of the Lagrangian with respectitds given by
22 — (diag(x)M3)T A, which gives

N
=53 G @& (M, "M,
i=1

where(a) follows from the definition of the matrixz. [ |

3 T — —
* M, We now characterizé®;, 2 limn_ oo E/N, which is the
o _ _2 ~ minimum average power needed for capacity of 1 bit, in terms
Substitutingz* in the Lagrangian, the dual problem is giverof the Fourier transform of the channkl Let the discrete-
by Fourier transform of the channel be
=T diag(x) M M diag(z)\ T L-1
gt 1 oyt (o) FO) = 3 et (14)
9N h=0
We have Since M, is a circulant matrix, it is easy to see that
B — diag(s) M, M diag(s)A _ N 1
Vg()\) = 9 +61 (11) g = 52 tI‘(Mh_TMh_l) — 522 (15)

2mkYy 27
Setting the gradient to zero in (11), we obtain the optinial =1 (%)
as the solution to Using standard arguments, it can be shown that [10]

—diag(s)Mpz* + 01 =0,

2 27
o _ , Py — 5—/ L (16)
which is exactly equivalent to (9). The only caveat is that th 2r Jo  [f(N)]
A obtained fromg(\) = 0 should be in the positive orthant.

Solving g(\) = 0, we obtain Observe thatP;, is the energy of the inverse of the channel

scaled byé?, and is related to the power needed for zero-
M\ = 26 diag(s) (M, M;F) ™! diag(s)1. forcing.



In summary, for diagonally-dominant channels, the approx- l—a
imate ISI capacity is given by

1 if P>Py,
Cs(P) =< BP+1In(Z) if P, <P <Py, el o
0 if P <Py,
where P, = limpy_,c0 Emin/N (@ssuming limit exists) and
is the normalizing constant for the Gibbs distribution. 1—«a
IV. ACHIEVABLE SCHEMES Fig. 3: Markov chain with transition matrix given in (18)

We now consider achievable schemes for the approximate
ISI channel under that assumption that the channel mafyjx that
is invertible. In achievable schemes, an information seqee ., ( 14+2a—1)¢  1-(2a—1)1 )
P =

B € {-1,1}"V with a well-chosen distribution is encoded
into a channel input: that satisfiesly,| > §. The rate of
transmission over the approximate ISI channeli§B)/N.  Using (0.5,0.5) as stationary distribution an&¢, we get

2 2
1—(2a—1)¢  14(2a—1)¢
2 2

A. Zero-forcing with Gibbs distribution Elbnbnta] = %, (19)
Letb = {b1,ba,...,bx} € {—1,1}" be an instance of the where = 2a— 1. Hence the correlation matrik = E[BB7]
information sequenc&. Choose the input to the channel asis given by R;; = 57~7I. So for finite N
x=0M,; b, (17) 52

Pom() = v tr(RM, M, T).

which implies that the output of the ISI channeljis= Myx = . . . .
0b. This is referred to as zero-forcing because it involve\élhenN Is large, the Topelitz matrit can be approximated
y a circulant matrix [10] and

channel inversion. Hence, the output of the quantizequals

the information sequencke When the channel is diagonally 62 o 2(1 — Bcos(N)) 1) da
dominant, Lemma 1 and Section IlI-B imply that a Gibbspzm(o‘) - o o IfOVR \1+ B2 —2Bcos(N) - :
distribution on B and the choicer = §M, 's as the input (20)

to the channel results in a capacity-achieving scheme. dﬂeni:

for diagonally-dominankt, the scheme in (17) is optimal when

b is sampled from the Gibbs distribution given in (8).
However,b is a sequence of lengtN, and it is well known

he value ofa is chosen so as to maximize the entropy rate
and the rate achieved at power denotedR,,,(P), is obtained

that sampling from a Gibbs distribution has exponential com Rm(P)= max Hs(a). (22)

plexity in N. For achieving capacityy should be very large o:Pem(@)SP

which makes this scheme impractical. In the next subsection V. NUMERICAL EXAMPLES

we compute the entropy rate whers sampled from a Markov  |n this section, we evaluate the approximate IS| capacity an

chain instead of a Gibbs distribution. the rate achieved by the Markov scheme in Section IV-B for
some sample channels. For numerical evaluation, we assume

B. Zero-forcing with Markov input 5=03

As before we choose = §M;, 'b, whereb is the informa-  The channe(l, ), |¢| < 1 is a diagonally-dominant channel
tion sequence. The sequentés sampled from a two state and zero forcing with Gibbs distribution is an optimal stGy.
Markov chain shown in Fig. 3 with transition matrix For this channel,

P( o 1—‘1) (18) F) =1+ e
\l-a «a ’ Using (16), the minimum power required for zero-forcing is

where0 < o < 1. Observe thas,, — b, and the achievable V€N bY

rate of this scheme equals the entrdpyB) = H2(«), where _ 52 27 1 52
. ) ) . P, =— A= ——.
H(z) is the binary entropy function. The average transmit o1 Jo 1+ €2+ 2ecos(N) 1 _ ¢2

power, denoted®...,(a), is given by While difficult to prove theoretically, by careful simulatis,
1 D it can be observed that the minimum enefyy;, is obtained
Pem(a) = NE[”X” I= NE[B M, M, B] for the sequences(1, 1, ..., 1). Using this observatior?, =
2 li 0 Emin/N IS obtained as
_ %tr(Mh_TE[BBT]Mh_l). N / -

Using the eigenvalue decomposition Bf it can be shown Py = (I+e2
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The transmit power required for the two state Markov schenie complete for the case of diagonally-dominant channels.

(20) is ) Extensions to more general channels and better achievable
Po(a) = g [1 +e(1 - 204)} ' schemes are interesting problems for future study. Another
I1—€ |1—-€(1-2a) important problem is bounding the error in the information

Hence the maximum entropy problem for the two state Markd@te because of the approximation, which is complicated by

chain translates to the dependencies introduced by the Gibbs distribution.
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