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Abstract—Motivated by recent high bandwidth communica-
tion systems, Inter-Symbol Interference (ISI) channels with 1-
bit quantized output are considered under an average-power-
constrained continuous input. While the exact capacity is difficult
to characterize, an approximation that matches with the exact
channel output up to a probability of error is provided. The
approximation does not have additive noise, but constrainsthe
channel output (without noise) to be above a threshold in absolute
value. The capacity under the approximation is computed us-
ing methods involving standard Gibbs distributions. Markovian
achievable schemes approaching the approximate capacity are
provided. The methods used over the approximate ISI channel
result in ideas for practical coding schemes for ISI channels with
1-bit output quantization.

I. I NTRODUCTION

Channels with Inter-Symbol Interference (ISI) and Additive
White Gaussian Noise (AWGN) are often encountered in prac-
tice. Depending on the application, an average-input power
constraint or a finite input alphabet constraint is commonly
studied. Recently, in applications such as millimeter wave
[1][2] or optical or intra-chip [3] communications, quantization
of the output of an ISI channel has been considered because of
limitations in Analog-to-Digital conversion at high speeds. In
some cases, the output quantization may be as low as a single
bit. Since the transmitters in some of these systems can be
more complex and operate at high powers, the channel input
may not have severe quantization limits.

Motivated by the above applications, we consider a noisy
ISI channel with average-power constrained continuous input
and 1-bit quantized output. The available literature mostly
considers either continuous input/output alphabets or a finite
input alphabet with a continuous output alphabet [4][5]. The
quantized output case has been considered for the AWGN
channel with no ISI [6], and the ISI case has been briefly
addressed recently [7].

The exact capacity of an ISI channel with 1-bit quantized
output appears to be difficult to characterize explicitly. In
this work, we introduce an approximation to the ISI channel
model with 1-bit quantized output. The approximation does
not have additive noise, but constrains the channel output
(without noise) to be above a threshold in absolute value.
Because of the thresholding, the approximate channel output,
after quantization, matches the actual channel output up toa
probability of error that can be controlled by the threshold.

The main advantage of avoiding noise in the approximation
is that the exact capacity can be computed for the approximate
model. We show how such a computation can be carried out
using Gibbs distributions. In addition, we exhibit achievable
schemes with Markov input approaching the approximate
capacity in some numerical examples. Since the approximation
is valid up to a probability of error, a coding scheme used over
the approximate channel model can be coupled with a standard
error control code to derive a practical coding scheme for the
exact channel.

The rest of the paper is organized as follows. Section II
describes the ISI channel model and its approximation. In
Section III, we provide a method for computing the approxi-
mate capacity under an average power constraint on the input,
and elaborate on achievable schemes in Section IV. Numerical
results are given in Section V, and concluding remarks are
made in Section VI.

II. SYSTEM MODEL

We consider a discrete-time finite-tap ISI channel with
average-power-constrained continuous input and one-bit quan-
tized output as depicted in Fig. 1. The input to the channel is
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Fig. 1: ISI channel with quantized output.

denotedX = {Xn, 0 ≤ n ≤ N − 1}, and the channel impulse
response of lengthL is denotedh = {hn, 0 ≤ n ≤ L−1}. The
convolution of the input with the channel impulse response is
denotedY = {Yn, 0 ≤ n ≤ N − 1}, and is given by

Yn =

L−1∑

k=0

hkXn−k. (1)

The channelh is assumed to be constant, and all signals are
assumed to be zero outside the specified ranges. Independent
and identically distributed zero-mean Gaussian noise of vari-
anceσ2, denotedZn, is added to obtain an intermediate signal
Rn = Yn+Zn. The signalRn is quantized by a 1-bit quantizer
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Q(·) to obtain the channel outputQ(R) = {Q(Rn), 0 ≤ n ≤
N + L− 2}. The quantizer is defined as follows:

Q(x) =

{

+1, if x ≥ 0,

−1, if x < 0.
(2)

The average power of the input is constrained to be at most
P . That is, we require

E[‖X‖2] =

N−1∑

n=0

E[|Xn|
2] ≤ NP. (3)

In this work, the overall goal is to approximate the mutual
information rate 1

N I(X ;Q(R)) and provide computable ex-
pressions or bounds.

The approximate ISI channel model is depicted in Fig. 2.
In the approximate ISI channel, there is no noise. However,
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Fig. 2: Approximate ISI channel with quantized output.

the convolution outputYn is constrained to be greater thanδ
in absolute value, and this provides justification for ignoring
noise. We readily see that, under the constraint|Yn| ≥ δ,
the output of the actual modelQ(Rn) is approximated by
Sn = Q(Yn) up to a probability of error lesser than or
equal toQ(δ/σ), whereQ(x) =

∫∞
x

1√
2π

e−u2/2du is the
standardQ-function. Therefore, coding schemes developed
for the approximate model can be used in the actual model
with additional error control coding for the approximation
error Q(δ/σ). While the additional coding results in a loss
in information rate, we find that the approximation, because
of the removal of noise, is useful on the following two counts:

1) The capacity or maximum information rate1N I(X ;S),
where S = {Sn, 0 ≤ n ≤ N − 1}, under the
power constraint of (3) and the constraint|Yn| ≥ δ,
has computable expressions and bounds. This provides
useful estimates of the capacity of output-quantized ISI
channels.

2) The techniques used for computing the approximate
capacity provide useful intuition on coding and signaling
methods for output-quantized ISI channels.

Convolution: We will use matrix notation to denote the con-
volution in (1) asY = M̃hX , where the entries of theN ×N
matrix M̃h are either 0 or one of the channel tapshk and
X , Y are column vectors. The matrix̃Mh is not circulant.
Let Mh denote theN ×N circulant matrix with first column
equal toh. WhenN becomes large (as is in our case), withL
fixed, M̃h behaves like the circulant matrixMh in the sense
that limN→∞ ‖Mh−M̃h‖ = 0 where‖.‖ is a matrix norm. In
this paper1, for simplicity, we will always assume the circular
convolutionY = MhX in the channel model.

1For all N , the results hold with a suitable cyclic prefix, for instance.

III. A PPROXIMATE CAPACITY

The capacity of the approximate ISI channel is given by

Cδ(P ) = lim
N→∞

sup
E[‖X‖2]≤NP

|Yn|≥δ

I(X,S)

N
=

H(S)

N
,

where the last equality is because the sequenceS is a de-
terministic function of the inputX in the absence of noise
in the approximate channel. Since the output alphabet of
the quantizer is either1 or −1, it is easy to observe that
Cδ(P ) ≤ 1.

A. Power constraint

We begin by bounding the power of the input sequence
X required for a given output sequenceS. Given the output
symbol sequenceS = s ∈ {−1, 1}N , we have the constraint
that |Yn| = snYn ≥ δ. So, the minimum energy, denoted
E(s), required for a given quantized sequences is given by
the following optimization problem:

E(s) = min
diag(s)Mhx�δ1

N−1∑

n=0

|xn|
2, (4)

wherediag(s) is an N × N diagonal matrix withs on the
main diagonal and1 denotes the all-1 column. The inequalities
diag(s)Mhx � δ1 are linear and the feasible space forx is
the intersection of hyperplanes and, hence, convex. So, the
above optimization problem is a convex optimization problem
in N variables that essentially finds the closest point from the
origin to the convex set{diag(s)Mhx � δ1}. We have

E[‖X‖2] =
∑

s∈{−1,1}N

P(S = s)E[‖X‖2 | S = s],

≥
∑

s∈{−1,1}N

P(S = s)E(s)

using (4). Because of the average power constraint on the input
X , we have

∑

s∈{−1,1}N

P(S = s)E(s) ≤ NP. (5)

B. Entropy maximization and Gibbs distribution

Let Emin = mins E(s), Emax = maxs E(s), E =
1
2N

∑

s E(s). Since the constraints (5) are linear on the
probabilities, it is well-known [8] that the Gibbs distribution
maximizes the entropyH(S) for Emin ≤ NP ≤ Emax. The
optimal distribution is the Gibbs distribution given by

P(S = s) =
e−

βE(s)
N

Z
, s ∈ {−1, 1}N , (6)

whereZ is the normalizing constant, andβ is the unique value
for which (5) is met with equality. The maximum entropy is
given by

H(S) = βP + ln(Z) (7)

= βP − ln




∑

s∈{−1,1}N

e−
βE(s)

N



 . (8)



For NP < Emin, there exists no probability distribution
that satisfies (5). It is also known [8][9] thatβ = 0 when
NP = E and we observe that the corresponding Gibbs
distribution is the uniform distribution on{−1, 1}N and the
maximumH(S) = N . For P = Emin, we haveβ = ∞ and
the maximum entropy is given bylog2(|Sm|), where |Sm|
denotes the number of sequences in{−1, 1}N that achieve
the minimum energy. Hence, the maximum entropy when
P = Emin is H(S) = log2(|Sm|)

N .
In summary, we see that the capacity of the approximate ISI

channel is given by the Gibbs distribution whenever the power
constraint is aboveEmin/N . For P ≥ E/N , we can achieve
the maximum possible capacityCδ(P ) = 1. For powers lower
thanEmin/N , capacity goes to zero. So, the interesting range
of calculation if forNP ∈ (Emin, E).

C. Diagonally-dominant channels

A matrix A = (aij) is said to be row-diagonally-dominant
or simply diagonally-dominant if|aii| ≥

∑

j,j 6=i |aij |. Let
us call channelsh for which the matrix(MhM

T
h )−1 exists

and is diagonally-dominant as diagonally-dominant channels.
For such channels, the minimum energy valuesE(s) can be
characterized as follows.

Lemma 1. When the matrix(MhM
T
h )−1 is row-diagonally-

dominant,E(s) for s ∈ {−1, 1}N is achieved atx∗ that
satisfies the equality constraints

diag(s)Mhx
∗ = δ1. (9)

Proof: Since the constraint set is linear, the optimization
problem (4) is strongly dual. We now solve the optimization
problem by forming its dual. The Lagrangian is given by

L(λ, x) = ‖x‖2 + λT (δ1− diag(x)Mhx).

The gradient of the Lagrangian with respect tox is given by
2x− (diag(x)Mh)

Tλ, which gives

x∗ =
(diag(x)Mh)

Tλ

2
.

Substitutingx∗ in the Lagrangian, the dual problem is given
by

max
λ�0

−λT diag(x)MhM
T
h diag(x)λ

4
+ δλT

1

︸ ︷︷ ︸

g(λ)

. (10)

We have

∇g(λ) =
− diag(s)MhM

T
h diag(s)λ

2
+ δ1. (11)

Setting the gradient to zero in (11), we obtain the optimalx∗

as the solution to

− diag(s)Mhx
∗ + δ1 = 0,

which is exactly equivalent to (9). The only caveat is that the
λ obtained fromg(λ) = 0 should be in the positive orthant.
Solving g(λ) = 0, we obtain

λ∗ = 2δ diag(s)(MhM
T
h )−1 diag(s)1.

We wantλ∗ � 0 for everys. We can easily observe that this
is indeed true if(MhM

T
h )−1 is diagonally-dominant.

Hence, from Lemma 1, when(MhM
T
h )−1 is diagonally-

dominant,x∗ = δM−1
h s. Hence,

E(s) = ‖x∗‖2 = δ2sTGs, (12)

whereG = (MhM
T
h )−1.

In the next lemma, the mean energyE is characterized
in terms of the channel matrixMh for diagonally-dominant
channels.

Lemma 2. The mean energy for diagonally-dominant chan-
nels is given by

E = δ2 tr(M−T
h M−1

h ).

Proof: The energyE(s) in (12) can be expanded as

E(S) = δ2
N∑

i=1

Gii +
∑

i,j,i6=j

Gijsisj . (13)

Hence,

1

2N

∑

s∈{−1,1}N

E(s) =

δ2

2N

∑

s∈{−1,1}N

N∑

i=1

Gii +
∑

i6=j

Gij
1

2N

∑

s∈{−1,1}N

sisj

︸ ︷︷ ︸

=0

The second term in the above sum is zero since the summation
spans over all the sequences on{1,−1}N . Hence

E = δ2
N∑

i=1

Gii
(a)
= δ2 tr(M−T

h M−1
h ),

where(a) follows from the definition of the matrixG.
We now characterizeP h , limN→∞ E/N , which is the

minimum average power needed for capacity of 1 bit, in terms
of the Fourier transform of the channelh. Let the discrete-
Fourier transform of the channel be

f(λ) =

L−1∑

k=0

hke
jkλ. (14)

SinceMh is a circulant matrix, it is easy to see that

E = δ2 tr(M−T
h M−1

h ) = δ2
N∑

k=1

1

|f
(
2πk
N

)
|2
. (15)

Using standard arguments, it can be shown that [10]

P h →
δ2

2π

∫ 2π

0

1

|f(λ)|2
dλ. (16)

Observe thatP h is the energy of the inverse of the channel
scaled byδ2, and is related to the power needed for zero-
forcing.



In summary, for diagonally-dominant channels, the approx-
imate ISI capacity is given by

Cδ(P ) =







1 if P ≥ P h,

βP + ln(Z) if P h ≤ P ≤ P h,

0 if P < P h,

whereP h = limN→∞ Emin/N (assuming limit exists) andZ
is the normalizing constant for the Gibbs distribution.

IV. A CHIEVABLE SCHEMES

We now consider achievable schemes for the approximate
ISI channel under that assumption that the channel matrixMh

is invertible. In achievable schemes, an information sequence
B ∈ {−1, 1}N with a well-chosen distribution is encoded
into a channel inputx that satisfies|yn| ≥ δ. The rate of
transmission over the approximate ISI channel isH(B)/N .

A. Zero-forcing with Gibbs distribution

Let b = {b1, b2, . . . , bN} ∈ {−1, 1}N be an instance of the
information sequenceB. Choose the input to the channel as

x = δM−1
h b, (17)

which implies that the output of the ISI channel isy = Mhx =
δb. This is referred to as zero-forcing because it involves
channel inversion. Hence, the output of the quantizers equals
the information sequenceb. When the channel is diagonally
dominant, Lemma 1 and Section III-B imply that a Gibbs
distribution onB and the choicex = δM−1

h s as the input
to the channel results in a capacity-achieving scheme. Hence,
for diagonally-dominanth, the scheme in (17) is optimal when
b is sampled from the Gibbs distribution given in (8).

However,b is a sequence of lengthN , and it is well known
that sampling from a Gibbs distribution has exponential com-
plexity in N . For achieving capacity,N should be very large
which makes this scheme impractical. In the next subsection,
we compute the entropy rate whenb is sampled from a Markov
chain instead of a Gibbs distribution.

B. Zero-forcing with Markov input

As before we choosex = δM−1
h b, whereb is the informa-

tion sequence. The sequenceb is sampled from a two state
Markov chain shown in Fig. 3 with transition matrix

P =

(
α 1− α

1− α α

)

, (18)

where0 ≤ α ≤ 1. Observe thatsn = bn and the achievable
rate of this scheme equals the entropyH(B) = H2(α), where
H2(x) is the binary entropy function. The average transmit
power, denotedPzm(α), is given by

Pzm(α) =
1

N
E[‖X‖2] =

δ2

N
E[BTM−T

h M−1
h B]

=
δ2

N
tr(M−T

h E[BBT ]M−1
h ).

Using the eigenvalue decomposition ofP , it can be shown

1 -1α

1− α

α

1− α

Fig. 3: Markov chain with transition matrix given in (18)

that

P d =

(
1+(2α−1)d

2
1−(2α−1)d

2
1−(2α−1)d

2
1+(2α−1)d

2

)

.

Using (0.5, 0.5) as stationary distribution andP d, we get

E[bnbn+d] = βd, (19)

whereβ = 2α−1. Hence the correlation matrixR = E[BBT ]
is given byRij = β|j−i|. So for finiteN

Pzm(α) =
δ2

N
tr(RM−1

h M−T
h ).

WhenN is large, the Topelitz matrixR can be approximated
by a circulant matrix [10] and

Pzm(α) →
δ2

2π

∫ 2π

0

1

|f(λ)|2

(
2(1− β cos(λ))

1 + β2 − 2β cos(λ)
− 1

)

dλ.

(20)

The value ofα is chosen so as to maximize the entropy rate
and the rate achieved at powerP , denotedRm(P ), is obtained
as

Rm(P ) = max
α:Pzm(α)≤P

H2(α). (21)

V. NUMERICAL EXAMPLES

In this section, we evaluate the approximate ISI capacity and
the rate achieved by the Markov scheme in Section IV-B for
some sample channels. For numerical evaluation, we assume
δ = 0.3.

The channel(1, ǫ), |ǫ| < 1 is a diagonally-dominant channel
and zero forcing with Gibbs distribution is an optimal strategy.
For this channel,

f(λ) = 1 + ǫejλ.

Using (16), the minimum power required for zero-forcing is
given by

P h =
δ2

2π

∫ 2π

0

1

1 + ǫ2 + 2ǫ cos(λ)
dλ =

δ2

1− ǫ2
.

While difficult to prove theoretically, by careful simulations,
it can be observed that the minimum energyEmin is obtained
for the sequences±(1, 1, . . . , 1). Using this observation,P h =
limN→∞ Emin/N is obtained as

P h =
δ2

(1 + ǫ)2
.
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Fig. 4:Rm(P ) andC(P ) versus normalised energyP/δ2 for
{1, ǫ} channel

The transmit power required for the two state Markov scheme
(20) is

Pzm(α) =
δ2

1− ǫ2

[
1 + ǫ(1− 2α)

1− ǫ(1− 2α)

]

.

Hence the maximum entropy problem for the two state Markov
chain translates to

Rm(P ) = maxH2(α),

such that α >
1

2
+

1

2ǫ

1− Pδ−2(1 − ǫ2)

1 + Pδ−2(1 − ǫ2)
.

The solution of the above problem is given by

Rm(P ) =







1 if P ≥ P h

H2

(
1
2 + 1

2ǫ
1−Pδ−2(1−ǫ2)
1+Pδ−2(1−ǫ2)

)

if δ2

(1+ǫ)2 ≤ P < P h

0 if P < δ2

(1+ǫ)2 .

We first observe that the capacityCδ(P ) and the achievable
rate Rm(P ) match atP h and P h being equal to0 and
1, respectively. In Fig. 4, the approximate capacity and the
achievable rate of the Markov scheme are plotted as a function
of normalized powerP/δ2 for ǫ = 0.2 and 0.8. We observe
thatRm(P ) is very close to capacity forǫ = 0.2 and the gap
increases withǫ.

In Fig. 5, Rm(P ) and Cδ(P ) are plotted for a non-
diagonally dominant channelh = (−0.3, 1, 0.6). The energies
E(s) are obtained by numerically solving (4). For this channel
P h/δ

2 ≈ 0.838 and Ph/δ
2 ≈ 0.56 and Rm(P ) = 0 for

P/δ2 < 0.59. We observe that at higher powers the Markov
scheme is close to capacity even for this non-diagonally
dominant example.

VI. CONCLUDING REMARKS

The capacity of the approximate output-quanitzed ISI chan-
nel is characterized using Gibbs distribution, and Markov
schemes are shown to approach capacity. The characterization
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Fig. 5:Rm(P ) andC(P ) versus normalised energyP/δ2 for
{−ǫ, 1, 2ǫ} channel withǫ = 0.3

is complete for the case of diagonally-dominant channels.
Extensions to more general channels and better achievable
schemes are interesting problems for future study. Another
important problem is bounding the error in the information
rate because of the approximation, which is complicated by
the dependencies introduced by the Gibbs distribution.
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