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ABSTRACT

The increasing number of Photovoltaic (PV) systems connected to the power grid are vulnerable to the
projection of shadows from moving clouds. Global Solar Irradiance (GSI) forecasting allows smart
grids to optimize the energy dispatch, preventing energy shortages caused by occlusion of the sun.
This investigation compares the performances of machine learning algorithms (not requiring labelled
images for training) for real-time segmentation of clouds in images acquired using a ground-based
infrared sky imager. Real-time segmentation is utilized to extract cloud features using only the pixels
in which clouds are detected.
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1 Introduction

Moving clouds produce reductions in the generation of energy from PV systems which are out of the grid operators
acceptable range [1]. Considering these circumstances, the implementation of intra-hour solar forecasting is necessary
to attenuate the effects of energy reductions caused by clouds.

Intra-hour solar forecasting (i.e. 15 minutes in advance) is used by grid operators for scheduling transmission services,
so it is possible to control voltage fluctuations due to passing clouds [2]]. In this context, forecasting algorithms that do
not include information extracted from sky images are not effective for intra-hour solar forecasting [3]]. The inclusion
of cloudiness information from satellite images in a forecasting algorithm is useful when the horizon is between 15
minutes to an hour [4]. For these reasons, ground-based sky imagers are the most suitable method for intra-hour solar
forecasting [3].

When using visible light sky imagers, the pixels in the circumsolar area of the image are saturated. This is particularly
problematic for intra-hour solar forecasting algorithms, because relevant forecasting information is suppressed in the
pixels that are saturated. Blocking the Sun in the sky-images is a solution, but information is removed in the part of the
image that is blocked by the shade structure. The same problem occurs when a total sky imager is used. The saturated
area in the images is reduced when using a thermal sky imager [6]]. Thermal imaging systems allow the derivation of the
temperature and altitude of clouds [7]. In previous investigations, ground-based radiometric infrared sky imagers [8]]
have been utilized to analyze the dynamics of clouds [9] and to establish visual links for Earth-space communications
[10].

Cloud segmentation algorithms are necessary to reduce the noise in a solar forecasting algorithm [11]. Previous research
regarding cloud segmentation has shown that the accuracy of the segmentation models increases when information
extracted from neighboring pixels is included [12]]. Operations using the dense Gram matrix in kernel learning methods
[[L3]] are a problem for real-time cloud segmentation [[14]]. While the super-pixel approach reduces the computation
time, it produces a coarse segmentation [15]]. Convolutional neural networks may be used in cloud segmentation, but
require a large amount of training samples to avoid overfitting [[16]. Clustering methods such as DBSCAN [17] and
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HDBSCAN [18] are the state of the art for identifying classes in large datasets. However, we have prior knowledge of
the number of clusters in this application, and thus the additional computation burden is unnecessary [19].

Deep learning is prone to overfitting when the number of samples is small [20]. In contrast, learning methods based
on Bayes’ theorem (i.e. Bayesian inference) regularize the parameters in the learning process. For this reason, the
machine learning algorithms proposed in this investigation are the Gaussian Mixture Model (GMM), k-means and
Markov Random Fields (MRF).

GMM is a clustering algorithm that infers the distribution of the clusters using a dense covariance matrix. The training
and testing time of a GMM may be improved by reducing the number of parameters in the covariance matrix that
need to be inferred. In the case of k-means clustering, the covariance matrix is defined as an identify matrix [21]].
MRF models are computationally expensive but suitable for segmentation problems, because information from the
classification of neighboring pixels is included in the prior. The Iterated Conditional Modes (ICM) algorithm allows for
training of MRF models in an unsupervised manner. With the aim of reducing the classification time, the Simulated
Annealing (SA) algorithm is implemented to perform an efficient optimization of the ICM-MRF.

2 Dataset

This data was acquired by a sky imager mounted on a solar tracker which maintains the Sun in the center of the images.
The sky imager is equipped with a Lepton 2.5 radiometric infrared camera that measures temperature in centi-kelvin
units. The resolution of the camera is 80 x 60 pixels and the diagonal FOV is 60°. The thermal sky imager is located at
the ECE department in the UNM Central Campus. The weather features are measured by a weather station located at
the UNM Hospital.

2.1 Infrared Images

A pixel of the camera frame is defined by its pair of Euclidean coordinates ¢, j. The temperatures in an image are
definedas T = {T; ; e R* | Vi =1,...,M, Vj = 1,..., N}. The height of the pixels H = {H, ; € RT | Vi =
1,...,M,Vj=1,...,N}is computed using the Moist Adiabatic Lapse Rate (MALR) [22]. The MALR approximates
the decrease of the temperature in the troposphere as a function of the air temperature, dew point and relative humidity
in the ground. The images are preprocessed to remove stationary artifacts such as water stains [23]]. The temperature
of the pixels after applying the preprocessing algorithm are T' = {7} ; € R* | Vi =1,..., M, Vj = 1,..., N},
and the heights are H' = {H ; € RT |Vi=1,...,M, Vj=1,..., N}. After preprocessing the images to remove
stationary artifacts, they are preprocessed again to remove the effect of the Sun and the atmospheric background
radiation. The obtained values of the pixels are the difference of temperature with respect to the Tropopause, defined
as AT = {AT,; e R|Vi=1,...,M, Vj=1,..., N} The temperature differences are multiplied by the average
atmospheric background temperature to compute the heights: H” = {H; e R* [Vi=1,...,M, Vj =1,...,N}.
After applying both preprocessing algorithms, the temperature differences are normalized to an 8 bit image T =

{T” e N2 |Vi=1,...,M, Vj=1,..., N}, calculating the maximum feasible temperature of a cloud within the
Tropopause [23]], and assuming a temperature decrease of 9.8° /km [24]. The velocity vectors were computed applying
the Lucas-Kanade algorithm to two consecutive normalized images [25]].

2.2 Feature Vectors

The four different combinations of features extracted from the images are used as input vectors in the segmentation
models. The first, second, third and fourth vectors are: x;; =ATi;, Hi;}.x2; ={T};, H] ;}.x}; = {AT;;, H}';}
and xﬁ ; = {mag(v;;), Ti j, AT; ;} respectively. Other combinations of feature vectors were explored and were
found to under-perform in cloud classification. Other combinations of feature vectors were explored and were found to

under-perform in cloud classification.
Features extracted from neighboring pixels are included in the feature vectors of pixel ¢, j:

* Single pixel: {x;;}, Vi,5=11,j1,...,9Mm,IN

b ].St order: {Xifl,jv Xij—1y Xij+1, Xi+1,j}-

® 2nd order: {Xi—l,ja Xij—1y Xij4+1, Xit1,5) Xi—1,5—15--+ -« s Xi—1,5415 Xi41,5+41, X,‘+17j_1}.
lth

When single pixels are used, the vectors do not contain features from other pixels. The 1°" order neighborhood contains
features of the 4 closest pixels. The 2" order neighborhood contains features of the 8 closest pixels.
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3 Methods

The methods described below can be classified as generative when they have the capacity of generating new samples
from a likelihood model, this is, when the model implements a density approximation of the form p(x|Cy) where Cy, is
the segmentation label of the pixel. The dataset is defined as D = {X, y}, where x; € R? and y; € {—1, 1} which
are labels for a clear or cloudy pixel, respectively.

3.1 Gaussian Mixture Model

Feature distributions can be approximate by a mixture of multivariate normal distributions x; ~ A (g, Xx). Under the
hypothesis that a sample x; belongs to class Cy, its class conditional likelihood is

F 06 by B) = — el ) B ), ©
(2m)"

where X, is regularized to avoid an ill-conditioned covariance matrix such as Xy, £ 3%, + el v, € is the regularization
hyperparameter. The number of distributions & (i.e. clusters) is equivalent to the number of classes Cj, henceforth
k = 2 in our application (i.e. clear or cloudy pixel).

The expected complete data log-likelihood is defined as [21],

N K N K
Q6,6 ) =" yiklogmi+ Y vixrlogp(x; | 6) )

i=1 i=k i=1i=k
where ; 2 p(y; = k| xi, 9’571) is the responsibility of the cluster & in the sample .

The parameters in the clustering of multivariate normal distributions can be directly computed applying the Expectation
Maximization (EM) algorithm. In the E stage of the algorithm a prior is established and then, by using the likelihood
function (), a posterior 7; , = p(Ck|x;) can be assigned to each sample. In the M stage, the mean and variance of each
cluster that maximize the log likelihood are computed as

= Zi\;1 Vi, kX
Yk ’ 3)
S e
By = ==L 7: S gy,

The priors are updated as well using the posterior probabilities that are

LN
7 =p(Cr) = N Z%’,k, 4
=1

where N is the number of available samples. A class is assigned to each sample by Maximum A Posteriori (MAP)
criteria g; = argmax p (Ck | X4, by, 2ik)
k

The theory behind mixture models, as well as the EM algorithm, is fully developed in [21]].

3.2 k-means

The k-means algorithm can be seen as a particularization of the algorithm above, where the posteriors ~; ; are
approximated by 1 if distance ||x; — ;|| < ||x; — pi||. k& # &', and zero otherwise. The mean is computed as in Eq.
(3), and the covariance is approximated by an identity matrix.

3.3 Markov Random Fields

The energy function of a MRF is composed of two functions [26]. The function ¢ that is the joint distribution of a class,
and the function % that is the potential energy of the system’s configuration (a term from statistical mechanics),

E(inxi) =Y 0 (Xiy) + % Winyy)., 5)
i i,
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where x; is the feature vector of sample ¢ and y; is its class. In the graph G, a sample 7 has a set of neighboring pixels,
and each neighboring sample j has class y;.

Sample x; is classified using the Bayes’ theorem as

(Y =Cr | X4,0k) < p(xi | yi =Ch,0r)p (yi =Ci) . (6)

where the corresponding likelihood is approximated by a normal distribution x; ~ A (p,,, Xg) of class Ci, and
0. = {p,, X1} are the parameter set of the feature distribution in class Cj.The log-likelihood of class Cy, is defined as

© (xi,9i) = logp (x;|y; = Ck, 0}) in the energy function (). The prior can be expressed as,

p () = 7 e (~6 (), )

where Z is the partition function for normalization. By applying the Hammersley—Clifford theorem [27], the potential
function v (y;) in the exponential form can be factorized in cliques of a graph G. A clique is defined as a set of nodes
that are all neighbors of each other [21]. In this way, the potential function can be independently evaluated for each
clique in the factorized graph,

L
D= Y viBy;, ®)
£=11,j€Q,

where the set of maximal cliques in the graph is defined as 2 = Q1 U Qs U ... U Qp, £ represents the order of the
neighboring pixels to sample 7 in the graph network G, and €27, is the maximal clique as it cannot be made any larger
without losing the clique property [21]]. The cliques considered in our problem are £2; and €25, which represent the 1%¢
and 2"? order neighborhood cliques respectively. Hyperparameter /3 needs to be cross-validated.

By applying expression (7)) in the logarithm of (6], the energy function for a pixel 4 of class y; and features x; is

1
E(yi = Cr | % g, ) = 510g|2k|
©)
1 -
= xi =) B O ) + ().

plus constant terms. Similarly to Eq. (T)), the covariance matrix 3, in a MRF is also regularized as Xy 2%, + elgua.
Finally, probability (6) can be written as

exp &€ (y; = Cy | x4,6%)
S exp & (yi = C | x:05)

A class Cy, is assigned to the sample x; by the MAP criterion.

Py =Cr | x4,0k) = (10)

3.3.1 Iterated Conditional Modes

Parameters 8y, in a MRF can be inferred with the ICM algorithm [28]]. The algorithm initially assigns a class to each

pixel from a uniform distribution. The samples with label Cy, are defined within the set S,io). At iteration ¢ + 1 the mean
and covariance of a class are computed as

t—l—l E
X; ,J,20

x“zes (11)
1
il = |St|7—1 Z (i .z Hzﬂ) (xij,2 u§€+1).
xi,; €S}

A class is reassigned to each pixel according to the parameters computed at iteration ¢ 4+ 1 with the MAP criterion

it = argmax £ (wij | %z, pptt S0 (12)

When the total energy stops increasing, so that 3, ; €(y; ”1 | x;,5,00") < >0 S | xi g, 0!, the algorithm has

converged to a stable conﬁguration and the optimal set of parameters 01 have been found. The distribution of class Cj,
is defined as NV'(pl, 27.).
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3.3.2 Simulated Annealing

The standard optimization goes through all the pixels calculating their potential and classifying them in each iteration of
the algorithm. The computational cost of this method is high, but we can assume that it is not necessary to evaluate the
pixels whose state has high energy, because their classification will not change. The computation cost can be reduced
by sampling the pixels that are likely to be misclassified, and applying the optimization procedure only to them.

We propose to optimize the configuration of the pixels in an IR image applying the Simulated Annealing algorithm
(SA) [29] to the MRF models [30]. SA algorithm is applied on the implementation, after the inference of the class
distributions.

The class distributions N (p,, Xx) were previously inferred applying a supervised or unsupervised learn-
ing algorithm. The optimization is initialized to maximum likelihood classification of the pixels y( ) =

aranaXp (yi,j =Cy | Xi,gs Gk)

The likelihood a pixel to belong a class Cy, is only evaluated at the initialization of the algorithm.

The objective is to evaluate the potential function of the samples that have low energy. For that, a sample x; ; with label
yi,; = Ci is randomly selected and its classification is changed in each iteration ¢, so that gjf i= —yf, ;- The probability
of selecting a sample x; ; is weighted by their energy. The weights of the samples in an image are defined as,

& (ﬂfﬂ- \ xij,ek) — maxy & (gfj | ”,Bk)
Zi,j [5 (gj;j \ xﬁyj,Ok) maxy € (y” | X”,Okﬂ ’

13)

Wij =

and the cumulative distribution of the weights is computed such as wy, ,, = {{> 1, > =1 Wi N YM_ | Then, a
sample is drawn from a uniform distribution @ ~ U(0, 1). The sample whose weight has the minimum distance to the
drawn sample, is selected ¢, j = argmin |w; ; — .

The algorithm follows with Metropolis step which is computed with the energy of the changed sample ¥; ; and the
energy of the original label y; j, AE = E(y} ; | xi j,0k) — E(TF ; | Xij,0k).

The new label is directly accepted y - iff AE < 0. Otherwise, it will be accepted with probability p = exp(—AE/T*)
in an analogous way to thermodynamlcs with the Gibbs distribution,

yl it AE <0
Yi; = yu if AE >0and p > u (14)
yt j  Otherwise

the acceptance probability is drawn from a uniform distribution u ~ U (0, 1).

We propose to linearly cool down the acceptance rate through the temperature hyperparameter, so that T¢+! = oT'.
The optimal hyperparameter « is a trade off between accuracy and speed.

4 J-Statistic

Younde’s j-statistic [31], is a test that evaluates the performances of a binary classification, it is defined as J =
sensitivity + speci ficity — 1.

To compensate possible class imbalance, we define a prior of the classification function A that is validated in each
model,

p(Ce| D)p(C)
p(D)

The classification probabilities are defined as p (D |C1) = p(C1 | D)A, and p(D |C3) = 1 — p(D|C1). The
j-statistic score is maximized finding the optimal A threshold for binary classification. For that, the j-statistic is
applied to the conventional Receiver Operating Characteristic (ROC) analysis [32]], and it is computed at each point
of the ROC. We propose to use the maximum value of j-statistic in the ROC curve as the optimal point, so that
7. = argmax p (Cy, | x4, D) \.

k

p(D[Cr) = p(Ck [ D) A (15)
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5 Results and Discussion

The dataset used in this investigation was constructed using images in a publicly accessible database. The database of
infrared sky images is available in a Dryad repository and described in [33]]. The software developed to performed the
experiments is also available in a GitHub repositoryﬁ

Table 1: This table shows the j-statistics and average testing time archived by the different models. The j-statistics and
average testing time are organized by neighborhood. ICM-MRF and SA-ICM-MRF models have two groups of vectors:
those with a potential function of 1°¢ order 2;(-) or 2" order cliques 5 (-).

J-statistic [%] Time [ms]
Feature Vector Single 1% Order 2" Order Single 1% Order 2" Order
k-means
X; 47.91 43.49 43.05 0.88 1.01 1.05
X; 48.32 46.67 42.87 0.85 1.00 1.03
xij 73.68 80.73 79.21 0.87 0.92 1.04
X} 78.52 78.19 78.10 0.83 1.04 1.15
GMM
x}; 46.89 47.75 44.19 1.78 3.84 2.93
X} 48.46 53.70 53.30 1.77 2.24 4.25
x}; 75.58 86.58 83.38 1.72 2.38 3.06
X 89.39 88.55 83.93 4.33 275 3.88
ICM-MRF
Qi (x) ;) 20.00 31.67 20.00 141.44 135.23 422.62
Q1(x37) 23.36 32.47 20.00 143.62 242.50 374.71
Q1(x3 ) 71.80 92.55 90.61 268.60 640.81 291.18
fh(xﬁj) 57.02 72.25 71.71 271.48 661.79 218.39
Qa(x] ;) 22.14 31.54 20.00 250.78 242.01 743.55
Qa(x7 ) 20.00 32.04 19.05 397.42 258.82 634.30
fb(xij) 46.15 74.37 70.12 638.44 2857.08 1262.52
Qa2(x7 ;) 61.37 70.04 90.94 336.07 2094.09 1007.52
SA-ICM-MRF

Q1(x; ;) 20.00 20.66 20.81 128.26 129.98 131.74
951 (xfj) 20.00 20.66 20.73 127.25 129.72 132.93
Qi (x} ) 67.70 90.01 68.83 129.52 130.63 131.93
Q1(x7 ) 82.98 70.17 68.05 132.04 131.88 133.45
Qa(x1 ) 20.07 20.66 20.53 136.63 138.73 138.74
Qa2(x ;) 20.10 20.67 20.73 135.30 144.00 139.47
Qa(x3 ) 52.67 90.06 68.80 135.63 136.53 139.32
Qa2(x7 ) 68.92 73.70 72.57 136.86 137.78 139.72

The dataset is formed by 12 samples of infrared sky images and their respective labels. The evolution of clouds in the
atmosphere is a continuous process. Therefore, the images in the dataset are ordered chronologically to avoid including
future information about the state of the system (which will be not available during the implementation of the algorithm).
In addition, the samples belong to different days in each of the four seasons to develop a global segmentation method
valid for all the seasons in a year. The pixels were manually labelled as either clear-sky y; ; = —1 or cloudy y; ; = 1. 7
of the images (earlier dates) are used for training and the remaining 5 (later dates) are used for testing. The training
dataset (33,600 pixels) have 5 images featuring: contrail, cumulus, altocumulus, clear-sky and altostratus. The testing
dataset images (24,000 pixels) show: stratocumulus and cumulus, stratocumulus, cirrocumulus and stratocumulus,
altocumulus, cumulus, nimbus and clear-sky

Leave-One-Out Cross-Validation (LOO-CV) is applied to validate the hyperparameter of the models and the prior A in
Eq. (T3). In each iteration of the LOO-CV routine an image is left out for validation and the remaining 6 images are
used for training the model. A j-statistic is computed for each of the 7 LOO-CV iterations. The validation j-statistic
(used as selection criteria of the hyperparameters) is calculated averaging together the j-statistics obtained in each
LOO-CV iteration. The selected set of parameters and A are those which yield the maximum validation j-statistic
among all the cross-validated combinations of sets of hyperparameters and .

'https://github.com/gterren/cloud_segmentation.git
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Figure 1: This figure shows the features extracted from three testing images. The image in the first row show the
increments of temperature with respect to the height of the Tropopause. The features in the second row show the heights
of the clouds. The images in the third row show the normalized intensity of the pixels. The images in the fourth row
show the magnitude of the velocity vectors.
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): 77.44% JI: 74.88% F1: 85.63% J: 91.27% JI: 82.02% F1: 90.12% J: 94.03% JI: 71.59% F1: 83.44%

SA ICM-MRF SA-ICM-MRF SA-ICM-MRF
): 64.73% JI: 64.45% F1: 78.38% J: 92.15% JI: 85.64% F1: 92.26% J: 93.58% JI: 77.54% F1: 87.35%

Figure 2: This figure shows three images from the testing set in the columns. The rows are the segmentation performed
by the models. The j-statistic (J), Jaccard Index (JI) and F1 score (F1) achieved by each segmentation model is displayed
on the top of the testing images. The higher j-statistic was achieved by ICM-MREF in the first image and by GMM in the
second and third image.
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The set of hyperparameter is different for each model, k-means clustering does not have hyperparameter, but the
GMM has the covariance matrix regularization term £ which needs cross-validation in Eq. (I). The ICM-MRF and
SA-ICM-MREF require the cross-validation of the cliques potential 8 in Eq. (8). The ICM algorithm is computationally
expensive, so the regularization term of the covariance matrix was set to € = 1. The cooling hyperparameter of the
SA-ICM-MRF was also set to a = 0.75. This value of o was found to be an optimal compromise between speed and
convergence. In the k-means clustering algorithm, the feature vectors were standardized X; ; = [x; ; — E(X)]/Var(X).
The rest of the models neither required normalization nor standardization of the feature vectors, since the covariance
matrix is inferred in the learning phase.

ICM-MREF reached the highest j-statistic of 92.55 % but the average testing time was the highest, at 640.81ms. SA-
ICM-MREF achieved a lower j-statistic of 90.06 % but the implementation of the SA algorithm reduced the average
testing time to 136.53ms. The GMM has the best compromise between an average testing time of 4ms and j-statistic
of 89.39 %. The k-means algorithm reached the fastest average testing time of 1ms, but had the lowest j-statistic of
80.73 %. The preprocessing time of the feature vectors is 0.1 ms for x*, 4.7 ms for x2, 99.9 ms for x> and 1079 ms
for x*. When the preprocessing time is considered, the GMM (1083ms) is much slower than the rest of the algorithm.
Taking the preprocessing time into account, the optimal models are the ICM-MRF (740.71ms) or the SA-ICM-MRF
(236.43ms) depending on the time constraints of the user.

The j-statistic obtained in the testing images is compared to the Jaccard index and F1 score (see Fig. 2). The accuracy
metrics are consistent with the exception of the segmentation perfomred by k-means in the second testing image. This
inconsistency is due to the challenging segmentation of the selected images, even when the proposed preprocessing is
implemented. Nevertheless, the Jaccard index and F1 score achieved by the rest of the models in the first and third
image testing images are consistent with j-statistics pointing to the most accurate model.

The experiments were carried out in the Wheeler high performance computer of the UNM-CARC, which uses a SGI
AltixXE Xeon X5550 at 2.67GHz with 6 GB of RAM memory per core, 8 cores per node.

6 Conclusion

This investigation aims to find an optimal learning algorithm for real-time segmentation of clouds in thermal images
acquired using an infrared sky-imaging system. The thermal images were preprocessed to extract the most informative
features for segmentation. Preprocessing removes the scattering effect produced by debris in the outdoor germanium
window of the camera, and the direct and scattered irradiance produced by the Sun and the atmosphere.

The performance of the classification models increases when the extracted features were preprocessed and information
from neighboring pixels was included in the feature vectors. Further research could investigate the performances of
supervised Bayesian methods for cloud segmentation, and compare the classification performances between generative
and discriminative models.
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