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Abstract—This paper studies the impacts of stochastic load
fluctuations, namely the fluctuation intensity and the changing
speed of load power, on the size of the voltage stability margin. To
this end, Stochastic Differential-Algebraic Equations (SDAEs) are
used to model the stochastic load variation; bifurcation analysis
is carried out to explain the influence of stochasticity. Numerical
study and Monte Carlo simulations on the IEEE 14-bus system
demonstrate that a larger fluctuation intensity or a slower load
power changing speed may lead to a smaller voltage stability
margin. Particularly, this work may represent the first attempt to
reveal the influence of the time evolution property of the driving
parameters on the voltage stability margin in power systems.

I. INTRODUCTION

The growing load demand along with the integration of
renewable energy sources (RES) have posed great challenges
to the stability assessment of power systems [1] - [3]. To
incorporate the randomness, stochastic power system dynamic
models have been proposed in [4] - [6] for power system
voltage stability study. It has been shown in [5] that although
the conventional deterministic model can well approximate the
stochastic model under some mild conditions, there are critical
cases in which it may fail to provide accurate results in the
voltage stability assessment. To deal with these challenges, it
is important to conduct systematic study to assess the impacts
of the randomness on power system voltage stability.

Bifurcation theory has been widely used to explain the
dynamic mechanisms of voltage collapse [7] - [10]. However,
the randomness brought about by the loads and RES was not
considered in these studies. To incorporate the randomness
into dynamic voltage stability, the authors of [11] considered
load fluctuations in voltage stability study and derived the first
exit time as a measure for voltage stability assessment. Similar
approaches were adopted in [12], [13] to study the intensities
of load fluctuations and the uncertainty of wind power on
system voltage stability. The authors of [3] used the bifurcation
theory to analyze how a stochastic load model may affect the
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voltage profile. However, the conclusions are based on a single
realization of the stochastic dynamic system.

In this paper, we strive to systematically investigate the
impacts of stochastic load fluctuations on the dynamic voltage
stability margin. Inspired by the bifurcation theory and the
analytical results in [6], we focus on the influence of two
sets of parameters, namely, the intensity of load fluctuation
and the changing speed of load power. Detailed numerical
study and Monte Carlo simulations are conducted on the
IEEE 14-bus system. Interestingly, we find that the changing
speed of load power (i.e., the time evolution property of the
driving parameters) may affect the size of the voltage stability
margin. Such interesting results have not been reported in the
previous literature. From the extensive simulation study it can
be concluded that the randomness of load fluctuations should
be incorporated into the dynamic voltage stability study and
the time evolution property needs to be carefully considered
in order to achieve an accurate stability assessment.

II. THE STOCHASTIC POWER SYSTEM MODEL

To study the influence of the randomness on the dynamic
behavior of power systems, the stochasticity can be incorpo-
rated in the classic power system model represented by a set
of Differential-Algebraic Equations (DAEs) as follows:

ẋ = f(x,y,p,η)

0 = g(x,y,p)
(1)

where x is the vector of state variables, e.g., generator angles
and speeds, states of dynamic loads; y is the vector of
algebraic variables, e.g., bus voltage magnitudes and phases;
p is the vector of parameters, e.g., load powers; η is the
vector of stochastic perturbations describing, for instance, load
fluctuations and renewable energy variations. f describe the
behavior of the dynamic components, including generators
and their control, dynamic loads etc.; g describe the static
behaviors and network power flow constraints.
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In this paper, we focus on the randomness brought about by
load fluctuations, which can be described by a vector Ornstein-
Uhlenbeck process as in previous work [4], [14]:

η̇ = −Aηη + σBηξ, t ∈ [0, T ] (2)

where Aη = diag([α1, ..., αk]) and is positive definite; σ
describes the intensity of stochastic perturbations; Bη =
diag([β1, ..., βk]) denotes the relative strength between pertur-
bations. ξ ∈ Rk is a vector of independent Gaussian random
variables described by ξi = dWti

dt , where Wti is a Wiener
process, i ∈ {1, ..., k}.

For an initial condition ηi(0) ∼ N (0, (σβi)
2/2αi), i ∈

{1, ..., k}, the stochastic process ηi has the following statistical
characteristics [15]:
• E[ηi(t)] = 0, ∀t ∈ [0, T ],
• Var[ηi(t)] = (σβi)

2/2αi, ∀t ∈ [0, T ],
• Aut[ηi(tp), ηi(tq)] = e−α|tq−tp|, ∀tp, tq ∈ [0, T ].

Therefore, η is a vector of stationary autocorrelated Gaussian
processes describing the load fluctuations.

If the algebraic Jacobian matrix gy is non-singular, which
is typically satisfied in normal operating state, y can be
expressed by x and p. Therefore, the stochastic power system
model (1)-(2) can be represented by:

ẋ = H(x,p,η) (3)
η̇ = −Aηη + σBηξ (4)

Let u =
[
x,η

]T
and B =

[
0, Bη

]T
, (3)-(4) is equivalent to:

u̇ = G(u,p) + σBξ (5)

A. The Stochastic Load Model

In this paper, we consider the dynamics of the exponential
recovery load (ERL) model that play a significant role in
voltage stability analysis. As a result, the detailed expression
of (1) takes the following form (6)-(8):

ẋp = −xp/Tp + ps − pt
ẋq = −xq/Tq + qs − qt

(6)

where xp and xq are related to the active and reactive
power dynamics; Tp and Tq are the corresponding power time
constants; ps and pt are the static and transient real power
absorption; qs and qt are similarly defined as for the reactive
power absorption. If the randomness of load fluctuation is
incorporated into the dynamic load model, similar to the ap-
proach in [4], [16], [17], we have the following relationships:

ps = (p0 + ηp(t))(
V

V0
)αs pt = (p0 + ηp(t))(

V

V0
)αt

qs = (q0 + ηq(t))(
V

V0
)βs qt = (q0 + ηq(t))(

V

V0
)βt

(7)

where p0 and q0 are the nominal active and reactive power
of the ERL; ηp and ηq are Ornstein-Uhlenbeck processes (see
(2)) describing the stochastic perturbations around the nominal
power values; αs, βs, αt and βt are exponents related to the
steady state load response and the transient load response,

respectively; V0 is the nominal bus voltage. The resulting
active and reactive power of the ERL are given by:

p = xp/Tp + pt

q = xq/Tq + qt
(8)

It should be noted that similar procedures can be applied to
other dynamic load models such as the frequency-dependent
load model, the thermostatic recovery load model, etc. to
include the stochastic perturbations into their nominal powers.

III. THE IMPACTS OF RANDOMNESS ON VOLTAGE
STABILITY MARGIN

A. Bifurcation Theory

Bifurcation theory has been widely used in the literature to
explain voltage stability in power systems [7] - [10]. Generally,
we consider a nonlinear dynamic system described by:

ẋ = F (x,p(εt)) (9)

where x ∈ Rn are the state variables and p are the slowly
changing parameters. In power system voltage stability study,
such parameters are typically the real and/or reactive power
of loads and renewable generators. As the parameters p vary,
a bifurcation may occur leading to a qualitative change in the
behavior of the system, such as the change of stability of the
equilibrium point, the emergence of oscillations and even the
disappearance of equilibrium points.

The Saddle-Node Bifurcation (SNB) is typically used to
explain the dynamic mechanism of voltage collapse. As the
parameters p, e.g., load powers, change, the equilibrium point
x? will vary in the state space leading to a slow decrease in
voltage magnitudes. At the critical load power p1, the voltage
magnitudes sharply decrease and the system loses stability
by x? disappearing in a SNB. The difference between the
power at the current operating point and the power at the SNB
point is defined as the voltage stability margin of the system.
A necessary condition for the SNB is the singularity of the
Jacobian matrix Fx [18].

If we describe (9) in the slow timescale s = εt, we have:

x′ =
1

ε
F (x,p(s)) (10)

where ′ denotes d
ds . Let M = {x?(s) : F (x?(s)) = 0}

be the uniformly asymptotically stable slow manifold of the
deterministic system (10). According to Fenichel’s theorem,
for sufficiently small ε, there exists an invariant manifoldMε

= {x̄(s, ε) : x̄(s, ε) = x?(s) + O(ε)} at a distance of order
ε from M, which attracts nearby solutions exponentially fast.
In other words, the solution of (10) will stay in Mε despite
the initial transient.
B. Concentration of Sample Path around the Stable Manifold

In the presence of white Gaussian noise, the slowly time-
dependent equation (9) becomes:

ẋ = F (x,p(εt)) + σΣξ (11)

where σ describes the intensity of the stochastic perturbations
and Σ describes the relative strength and the correlation



between noises. If written in the slow time scale s = εt, it
takes the following form:

x′ =
1

ε
F (x,p(s)) +

σ√
ε

Σξ (12)

It has been shown in [6], [19] that the sample path of
the stochastic dynamic model (12) is unlikely to leave
the neighbourhood B(h) of the invariant manifold Mε of
(10), if h � σ. Particularly, B(h) := {x(s) : 〈x(s) −
x̄(s, ε), X̄(ε)−1(x(s) − x̄(s, ε))〉 < h2}, where 〈〉 denotes
the inner product and X̄(ε) describing the cross section of
B(h) is well defined (See Appendix in [6]). The sample path
of (12) surrounding the invariant manifold of the trajectory of
the deterministic system (10) is illustrated in Fig. 1.

Fig. 1. The trajectory of the stochastic model (12) is concentrated in the
neighborhood B(h) of the trajectory of the deterministic model (10) if h� σ.

The above results reveal that the trajectory of the stochastic
power system model (12) will be likely concentrated in a
small neighborhood of the trajectory of the deterministic power
system model (10) when the power system is operating in
normal conditions. Therefore, a natural question to ask is what
will happen if the system is getting close to the SNB point.
What are the impacts of the randomness on SNB and thus on
the voltage stability margin?
C. The Impact of Noise on Saddle-Node Bifurcation

It is revealed from the previous results that the shape of
the concentration neighborhood B(h) is affected by ε (in the
detailed expression of X̄(ε)−1) while the depth of B(h) is
determined by σ. Mathematically, ε describes the decoupling
between the slow and the fast dynamics, whereas σ describes
the intensity of the stochastic perturbations. Inspired by theses
results, we intend to study the impact of the two parameters
σ and ε on SNB.

In the context of power system voltage stability study, σ
describes the intensity of load fluctuations and ε describes
the changing speed of load power or the other parameters
depending on the problem of interest. In this work, we assume
that the real and reactive power of the constant PQ loads
experience a gradual increase with respect to time:

P (εt) = P0(1 + λ(εt))

Q(εt) = Q0(1 + λ(εt))
(13)

where λ is the loading factor which gradually increases. The
maximum value λP0 before the SNB occurs corresponds to
the voltage stability margin.

As a result, the stochastic power system model (5) can be
represented by:

u̇ = G(u,p(εt)) + σBξ (14)

We aim to study the impact of the intensity of the stochastic
perturbation σ and the load power increasing speed ε on SNB
of the model (14) and thus on the voltage stability margin of
power systems.

Detailed simulation study in Section IV shows that both the
strength of load fluctuation and the load changing speed can
affect the size of the voltage stability margin.

IV. NUMERICAL RESULTS

Numerical study and Monte Carlo simulations were carried
out on the IEEE 14-bus system in which an ERL dynamic
load was added to Bus 9. Random fluctuations were included
in the ERL model as in (7). PSAT Toolbox [20] was used to
perform all the simulations. Euler-Maruyama method was used
to generate the Ornstein-Uhlenbeck process and the numerical
integration step size was ∆t = 0.05s.
A. The Impacts of the Load Power Changing Speed on the
Voltage Stability Margin

If there is no uncertainty, i.e., σ = 0 in (4), the voltage
stability margin is 5.4275 per unit (pu). To investigate how the
increasing speed of load power will affect the voltage stability
margin if the randomness of load variation is considered, we
increased the real and reactive power of the PQ load at Bus
4 at five different speeds, namely 2% of its nominal values
P0 and Q0, every 0.1s, 0.5s, 1s, 2s and 5s, while keeping the
fluctuation intensity of the ERL load as σ = 0.10.

Table I presents the statistics (the mean and the variance in
the first two rows) and the 90% confidence interval (the last
two rows) of the load margin λP0 obtained from 1000 Monte
Carlo simulations for each of the five cases. It can be seen that
the size of the stability margin will not be greatly affected if
the load changing speed is fast. However, as the load changing
speed decreases (i.e., longer time passes before each increase),
E(λP0) starts decreasing. Indeed, E(λP0) can be decreased up
to 3.12% as the load changing speed decreases. In addition,
Fig. 2 shows the histograms of the voltage stability margin for
the different cases, in which we can see that there is a shift
of the curves to the left for slower speeds.

The above observation makes sense since the system takes
longer time to reach the SNB if slower load changing speed
is applied, during which the randomness may accumulate and
thus it may drive the system to the SNB sooner. These results
imply that the time evolution property of the driving param-
eters needs to be carefully considered to achieve accurate
voltage stability assessment due to the randomness brought
about by loads. It is worth noting that such important results
cannot be observed by using deterministic or static approaches.

TABLE I
THE STATISTICS AND THE 90% CONFIDENCE INTERVAL OF THE VOLTAGE
STABILITY MARGIN VARIATION FOR VARIOUS LOAD INCREASING SPEEDS

Load
Increasing
Speed (s)

0.1 0.5 1 2 5

E(λP0) (pu) 5.40 5.3299 5.2991 5.2678 5.2313
Var(λP0) 0.0074 0.0052 0.0037 0.0030 0.0023

E(λP0)− d (pu) 5.3955 5.3262 5.2959 5.2650 5.2288
E(λP0) + d (pu) 5.4045 5.3337 5.3022 5.2707 5.2337



Fig. 2. The distribution of the voltage stability margin for different load
increasing speeds in the case where σ = 0.1.

B. The Impacts of the Load Fluctuation Intensity on the
Voltage Stability Margin

In this part, the impact of the intensity of load fluctuations
on the voltage stability margin is studied. Intuitively, the larger
the fluctuation intensity is, the smaller the voltage stability
margin would be. Nevertheless, validation of such conjecture
is lacking in the literature. Therefore, we used Monte Carlo
simulations to analyze the probabilistic characteristics of the
voltage stability margin under the influence of various load
variation intensities. We applied three different intensities, i.e.,
σ1 = 0.05, σ2 = 0.10 and σ3 = 0.15, respectively, to model
the Ornstein-Uhlenbeck fluctuations for the ERL at Bus 9,
while keeping the same changing speed for the PQ load at
Bus 4. Particularly, the constant PQ load increased its nominal
power by 2% per second.

The mean value, the variance, and the 90% confidence
interval for the voltage stability margin are reported from 1000
realizations for each case in Table II. From these results, it
can be observed that E(λP0) decreases as the load fluctuation
strength becomes larger. Particularly, the percentage of the
decrease observed is 3.01% as the fluctuation intensity grows
from 0.05 to 0.15. The distributions of the voltage stability
margin for the different load variation intensities are depicted
in Fig. 3, from which we observe a shift of the histograms
to the left when it comes to larger σ. Such results from
systematic Monte Carlo simulations are consistent with our
previous conjecture.

Additionally, Fig. 4 presents the voltage magnitude |V13| at
Bus 13 for one realization of σ1, σ2, σ3. It can be observed
that the voltage collapse occurs earlier for larger values of σ,
leading to a smaller voltage stability margin. All the other
bus voltage magnitudes exhibit similar behaviors. To have
a clearer picture about the statistical characteristics of the
trajectories, Fig. 5 shows a comparison of the 1000 realizations
of |V4| for different σ. It corroborates the analytical results
shown in Section III-B that the depth of the concentration
neighborhood B(h) depends on the fluctuation intensity σ.
The larger fluctuation intensity is, the wider the trajectory
distribution is expected.

V. CONCLUSIONS

This paper investigates the impacts of stochastic load fluctu-
ations on the size of the dynamic voltage stability margin using
bifurcation theory. Through systematic numerical study, it has

TABLE II
THE STATISTICS AND THE 90% CONFIDENCE INTERVAL OF THE VOLTAGE

STABILITY MARGIN VARIATION FOR VARIOUS NOISE INTENSITIES

Fluctuation intensity σ 0.05 0.10 0.15
E(λP0) (pu) 5.3768 5.2991 5.2148
Var(λP0) 0.0012 0.0037 0.0070

E(λP0)− d (pu) 5.3750 5.2959 5.2104
E(λP0) + d (pu) 5.3786 5.3023 5.2192

Fig. 3. The distribution of the voltage stability margin for the same load
increasing speed yet different noise intensities.

Fig. 4. The voltage magnitude at Bus 13 for one realization with different
noise intensities.

Fig. 5. The voltage magnitude at Bus 4 for different noise intensities.

been shown that both the load fluctuation intensity and the
load power changing speed may affect the size of the voltage
stability margin. Particularly, it seems to be the first time to re-
veal the influence of the time evolution property of the driving
parameters on the voltage stability margin in the presence of
uncertainty. It has been observed that a slower changing speed
of load power or a larger load variation intensity may lead to
a smaller voltage stability margin. Therefore, it is crucial to
consider both factors in order to accurately assess the voltage
stability. It is worth mentioning that such outcomes cannot be
observed by using static or deterministic approaches, which
in turn reinforces the importance of carrying out dynamic and
stochastic approaches in voltage stability analysis, especially
considering the increasing degree of uncertainty in modern
power systems due to the integration of RES.
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