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Continuous Optimization

Brian Fahs Todd Rafacz 
Sanjay J. Patel Steven S. Lumetta

Center for Reliable and High Performance Computing 
University of Illinois at Urbana-Champaign

Abstract

This paper presents a hardware-based dynamic op­
timizer that continuously optimizes an application’s in­
struction stream. In continuous optimization, dataflow 
optimizations are performed using simple, table-based 
hardware placed in the rename stage o f the processor 
pipeline. The continuous optimizer reduces computation 
tree height by performing constant propagation, reasso­
ciation, redundant load elimination, and store forward­
ing. To enhance the impact o f the optimizations, the opti­
mizer integrates values generated by the execution units 
back into the optimization process. Continuous opti­
mization allows instructions with input values known at 
optimization time to be executed in the optimizer, leav­
ing less workfor the out-of-order portion of the pipeline. 
This feature can detect branch mispredictions earlier 
and thus reduce the misprediction penalty. In this pa­
per, we present a detailed description of the hardware 
optimizer and evaluate it in the context of a contempo­
rary microarchitecture running current workloads. Our 
analysis of SPECint, SPECfp, and mediabench work­
loads reveals that a large percentage o f instructions can 
be executed early, many mispredicted branches can be 
recovered at the optimization stage, and most memory 
operations can have their addresses fully generated in 
the optimizer. These positive effects combine to provide 
performance speedups in the range o f 0.98 to 1.28.

1 Introduction
Over the last several years, dynamic optimization has 

become a popular topic in computer systems research 
because it offers opportunities beyond static compiler 
optimization through its ability to identify hot execu­
tion paths dynamically, thereby adapting to changing 
program behavior and input and providing performance 
improvements even for binaries compiled with aggres­
sive static optimization. Many dynamic optimization 
systems [1, 3, 6, 8, 9, 10, 20,23] share a common over­

all structure: they (1) select regions (functions, traces, 
hyperblocks, etc.) through some form of dynamic pro­
filing, (2) apply optimizations to the selected regions, (3) 
cache the optimized versions, and (4) replace future dy­
namic occurrences of the original regions with the opti­
mized versions. In this paper, we propose a dynamic op­
timization system, which we call continuous optimiza­
tion, that does not require profiling of the instruction 
stream or caching of the optimized instructions. Instead, 
dataflow optimizations are applied to each fetched in­
struction using a table-based hardware optimizer.

Fetch Decode Rename Schedule Reg. Read Execute Retire

RAT Optimizer

Figure 1. High-level view of optimizer
Figure 1 depicts the high-level organization of a con­

tinuous optimizer. It is integrated into the rename stage 
of a dynamically-scheduled processor, and uses a se­
ries of hardware tables described in Sections 2 and 3 
to perform constant propagation, reassociation, redun­
dant load elimination, and store forwarding. The opti­
mizer also takes advantage of values already generated 
by the execution units to further optimize the instruction 
stream. This feedback path enables the optimizer to di­
rectly execute some fraction of instructions without hav­
ing to send them into the out-of-order core. As a whole, 
the objectives of the optimizer are (1) to reduce com­
putation tree height, and (2) to execute simple1 instruc­
tions in the optimization stage. These two objectives are 
symbiotic and combine to provide the overall benefit of 
continuous optimization.

Previous work on hardware-based dynamic optimiza­
tion [1, 23] performed optimization offline through an 
abstract optimizer that operated on discrete traces ex­
tracted from the instruction stream. Our architecture

1 Simple instructions are those that require a single cycle to execute.



performs low-level compiler optimizations continuously 
on the whole instruction stream, but can easily be 
adapted for offline optimization frameworks.

In summary, several contributions are made in this 
paper:

•  The notion of continuous optimization.

•  A detailed description of a table-based hardware 
optimizer that implements low-level compiler op­
timizations.

•  A quantitative analysis of the performance impact 
and sensitivity to various design choices for contin­
uous optimization.

This paper is organized as follows. Section 2 pro­
vides the motivation and high-level details of continu­
ous optimization. Section 3 presents the details of the 
hardware required for continuous optimization. Sec­
tion 4 presents our experimental infrastructure. In Sec­
tion 5, we provide our performance characterization, and 
in Section 6, we present our sensitivity studies. Section 
7 presents related work. Section 8 provides a summary 
of the findings.

2 Continuous Optimization
Figure 2 contains a more detailed view of the contin­

uous optimization hardware. Constant propagation (CP) 
and reassociation (RA) are implemented by augmenting 
the register alias table (RAT) with additional informa­
tion. Redundant load elimination (RLE) and store for­
warding (SF) are implemented using a separate, cache­
like structure that is accessed after the RAT.

RAT Optimizer

|  feedback from RLE/SF |

RAT
instrs • & RLE/SF

CP/RA
i —  — r

value
feedback
execute

Figure 2. Architectural view of optimizer
In this architecture, the optimization process is ap­

plied to every dynamic instruction. Unoptimized in­
structions from the decode stage of the pipeline have 
their inputs and outputs renamed while simultaneously 
being transformed into more parallel instructions. The 
crux of the optimizer architecture is that a symbolic rep­
resentation of the value of each architectural register is 
maintained within the RAT. The optimizer leverages this 
symbolic representation to expose opportunities for par­
allelism in the dataflow and to reduce the number of 
memory accesses.

As a further enhancement, values generated during 
execution are fed back to the optimizer in order to in­
crease the availability of constant values for the opti­
mizer. We call this process value feedback, and call the 
values fed back known values to differentiate them from 
the symbolic information available before an instruction 
has executed. In particular, these values are known at the 
time of their use in the optimizer, and can thus be treated 
as constants. The mechanism used for value feedback 
is similar to that already present for bypass, but differs 
in that the values returned to the optimizer are not nec­
essary for correct behavior (symbolic values suffice for 
correctness), thus instruction optimization does not stall 
waiting for value feedback.

In this section, we describe the general operation of 
the optimizer and the concept of value feedback using a 
motivating example.

2.1 Optimizations
The optimizer considered in this paper performs four 

common dataflow optimizations: constant propagation, 
reassociation, redundant load elimination, and store for­
warding. Each is briefly described below:

Constant propagation (CP) propagates known val­
ues from producers to consumers. This optimization 
reduces computation tree height by removing any de­
pendences on known values, and also allows simple in­
structions with only known values as inputs to execute 
within the optimizer. If, for example, the instruction 
ad d q  r 3 , 4 - > r4  is to be optimized, and r3  is 
known to have the value 3, the constant propagation 
logic performs the add and moves the value 7 into r4 .

Reassociation (RA) flattens recursive expressions of 
the form ( re g  << s c a l e )  ±  o f f s e t ,  reducing 
computation tree height and increasing parallelism by 
shifting dependences to earlier producers. For reasso­
ciation, all s c a l e  and o f f s e t  values are constants 
extracted from instructions, while r e g  values are sym­
bolic. The optimizer thus copies the symbolic r e g  value 
from producer to consumer and recalculates the con­
sumer’s s c a l e  and o f f s e t  fields.

Redundant load elimination (RLE) combines two 
load operations accessing the same memory location 
into a single operation. The second load is converted 
to a move operation, which is then optimized away in a 
manner similar to [10, 15]. This optimization happens 
only when the physical destination of the first load still 
contains its value, i.e., it has not yet been assigned to 
another instruction.

Store forwarding (SF) converts a load operation that 
references a recently stored value into a move operation, 
which is then optimized away in the same manner as is 
used for redundant load elimination.

In our optimizer design, RLE/SF follows CP/RA.
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Constant propagation and reassociation serve to flat­
ten the B aseR eg ±  o f f s e t  address specifications 
of memory instructions, enabling redundant load elimi­
nation and store forwarding to capture more instructions.

In addition to these optimizations, our system per­
forms several other minor optimizations. The consumers 
of register move instructions are made dependent on 
the producer of the move instruction through reassoci­
ation. Additionally, simple strength reductions are per­
formed when possible (multiplies by powers of two are 
converted into left shifts). Finally, if the direction of a 
branch indicates information about a register value (e.g., 
b e q  indicates that the register value is zero if the branch 
is taken), the register is assumed to be precisely that 
value. This optimization is safe because, in the event 
of a branch misprediction, the optimized instructions on 
the wrong path are discarded, and the optimization state 
is recovered.

2.2 Value feedback
Each value generated by an execution unit can be in­

tegrated into the optimization tables, thereby convert­
ing a symbolic value into a known value. The known 
value can then be propagated by the CP/RA logic into 
consumer instructions. For example, if the instruction 
addq r3 , 4 - > r4  executes and generates the re­
sult 15, and this particular version of r4  is still architec­
turally live, the optimization tables record that r4  con­
tains the known value 15. Subsequent instructions that 
use r4 ,  such as b e q  r 4 , LOOP, read the value 15 for 
r4  and potentially execute in the optimizer.

----------------  xm it d e la y -------------------------------------
1 » » ■ ■ 1

Fetch Decode Ren/Opt Schedule Reg. Read Execute Retire

Figure 3. Value feedback from execution
Notice that this temporal notion of a known value de­

pends on the pipeline length between the optimization 
stage and the execution stage, as indicated by Figure 3. 
That is, a symbolic value referencing an instruction’s 
destination register is added to the optimization tables 
when the instruction is renamed. If this register is still 
being referenced in the optimization stage when the in­
struction executes (actually some small transmission la­
tency after the instruction executes), the symbolic value 
is replaced with the actual value.

2.3 Performing other optimizations
We considered the implementation of several other 

dataflow optimizations in the context of a continuous 
optimizer, but decided not to include them for various 
reasons. We discuss these optimizations and reasons be­
low.

Common subexpression elimination leverages the 
fact that unrelated operations (i.e., in terms of PC and 
data-flow dependence) occasionally compute identical 
values by forwarding the result of the first computation 
on to the second. General instruction reuse [24] per­
forms this optimization by discovering instructions with 
identical operand/immediate and physical register de­
pendence. However, general instruction reuse has lim­
ited effectiveness in that it does not simplify computa­
tions before comparison and, therefore, misses oppor­
tunities where common expressions are effectively but 
not computationally the same. Incorporating general in­
struction reuse would be beneficial, but its implementa­
tion differs significantly from continuous optimization. 
Redundant load elimination, one of our four optimiza­
tions, is a subset of common subexpression elimination, 
but we include it because it is a simple and natural ex­
tension to our store forwarding optimization.

Dead code elimination is a simple algorithm, but 
requires explicit knowledge of consumer and anti­
dependence relationships. Since dead code elimination 
requires looking at the future execution stream, it re­
quires additional instruction buffering, potentially re­
quiring additional pipeline stages. Furthermore, spec­
ulation support is no longer trivial because the original 
future information following a branch misprediction will 
change. As a result, correcting a misprediction may re­
quire resurrecting instructions from before the branch 
that were previously identified as dead. With the opti­
mizations included in our current design, all decisions 
are based on previously executed instructions, thus mis- 
speculated instructions can be discarded with no ill ef­
fects. The current optimizations do substantially in­
crease the fraction of dead instructions in the instruc­
tion stream, but few of these instructions are removed in 
our present evaluation. A mechanism to remove dead 
instructions from the pipeline, such as that proposed 
in [7], is likely to improve continuous optimization per­
formance beyond what we show here.

2.4 Motivating example
To demonstrate the operation of continuous optimiza­

tion, we use the simple code example in Figure 4. Static 
Code shows the static representation of a loop that sums 
together the elements of an array. For the purposes of 
this example, the loop counter is initialized to some 
value that is not statically computable. On each itera­
tion of the loop, an array value is loaded and added to 
the sum. The loop counter is decremented, and the next 
array index is computed. The loop ends when the loop 
counter reaches zero. Dynamic Data Flow illustrates the 
producer-consumer relationships of the loop instructions 
as it executes within a processor that performs register 
renaming. On such a processor, each arc is bound to

3



Static Code Dynamic Data Flow Optimized Data Flow with Value Feedback

a physical register by the register renamer. Notice that 
each array index addition and array element load within 
each iteration is fed by a loop-carried dependence. Simi­
larly, the branch at the end of each iteration is dependent 
on a chain of subtractions equal in length to the chain of 
array index additions.

The sequence of operations emitted by the continu­
ous optimizer is represented by the column labeled Op­
timized Data Flow. The arcs that are modified by the 
optimization logic are shaded. Although the computa­
tion tree height of the accumulate chain is not reduced 
significantly, the chains of computation for the array in­
dex, load, and loop counter have been eliminated.

To make this process more concrete: consider what 
happens when the SUB r i , 1 ->  r l  instruction 
from the first iteration enters the rename/optimization 
stages of the pipeline. The RAT and CP/RA tables 
are accessed by the source architectural register num­
ber r l ,  and the previous mapping of r l  is discov­
ered (it was previously generated by the instruction Id  
[ r29]  -> r l ) .  Say it is p 3 5. Because the SUB in­

struction also writes to r l ,  the mapping for r l  is up­
dated with the symbolic value p 35  - 1. When the 
SUB r l ,  1 ->  r l  instruction from the second iter­
ation is renamed, r l  still maps to the symbolic value 
p 3 5 - 1, and the optimizer replaces this mapping with 
p 35 - 2. If the physical register destination chosen

for this second SUB operation is p37, the instruction it­
self becomes SUB p 3 5 ,  2 -> p 3 7. This process is 
described in more detail in the next section.

By the time the 100i/l iteration occurs, the instruc­
tions from the beginning of the loop are likely to have 
completed execution, in which case their results have 
been placed into the optimization tables (value feed­
back). The column labeled with Value Feedback shows 
the modifications to the 100th iteration that result from 
incorporating the values of previously executed instruc­
tions into the optimizations. In particular, both the itera­
tion counter load ( Id  [r2  9] ->  r l )  and the array 
base load ( Id  [r3  0] ->  r4 )  are assumed to have 
completed execution and their results are integrated back 
into the optimization tables because both are still live. 
The shaded instructions are from iteration 100 and their 
outputs can be completely determined within the opti­
mizer because all of their inputs are known values. The 
out-of-order portion of the pipeline does not need to ex­
ecute these instructions. Also, the optimizer computes 
the memory address for the load instruction, enabling 
the load to proceed directly to the data cache read port.

This particular example does not make use of the 
RLE/SF portion of the optimizer, but the optimization 
process from this example applies directly to the redun­
dant load and store-forwarding process.

4



2.5 Impact of continuous optimization

As with any new microarchitectural feature, both pos­
itive and negative aspects must be considered. We de­
vote this subsection to discussing the potential impacts 
of continuous optimization.

2.5.1 Positives
From a qualitative point of view, continuous optimiza­
tion can directly provide several benefits that, depend­
ing on the baseline processor microarchitecture, can im­
prove performance and/or power.

Computation tree height reduction is provided by 
all four optimizations. It is beneficial because it results 
in more instruction-level parallelism (ILP). For example, 
as illustrated by the example in Section 2.4, some chains 
of dependent adds can be reduced to a single add.

Early execution, i.e., executing instructions in the 
optimization stage of the pipeline, has several positive 
benefits. First, it creates a synergistic effect: the result­
ing constant is propagated to consumers, which might 
also be allowed to execute early. Additionally, early ex­
ecution relieves pressure on the out-of-order portion of 
the pipeline because instructions that are executed early 
only need to be retired, i.e., they do not need to pass 
through the scheduler, dispatch, register read, and exe­
cute stages. As we show in Section 5, roughly one in 
four instructions executes early. An important sub-case 
of this effect is early branch resolution. With continuous 
optimization, over 10% of mispredicted branches can be 
resolved at rename. The newest Pentium 4 [13] has a 
minimum branch misprediction penalty of over 30 cy­
cles, the majority of which occur post-rename. Almost 
all post-rename cycles can be saved when a mispredicted 
branch is executed early.

Load reduction is provided by the redundant load 
and store forwarding optimizations. Both optimizations 
exploit provable short-term reuse of data to remove load 
instructions (i.e., loads to addresses which have recently 
been loaded or stored and whose value still exists in the 
physical register space). These optimizations can re­
move nearly 20% of load instructions, potentially reduc­
ing the power due to data accesses, since an optimizer 
table read is likely to consume less dynamic power than 
an LI cache access.

2.5.2 Negatives
The positive aspects come at some cost, however. Here 
we list several negative aspects of continuous optimiza­
tion.

Increased pipeline depth is one potential drawback 
of inserting an optimizer into a processor pipeline. As 
discussed in Section 3, the number of additional pipeline 
stages required for optimization is likely to be small, on 
the order of two to four stages. As the astute reader may

notice, the addition of pipeline stages increases the mis­
prediction penalty, and, conversely, early branch resolu­
tion reduces branch misprediction penalty for branches 
executed in the optimizer. These effects counteract one 
another, and the resulting performance impact depends 
on the number of branches that can be recovered early.

Design complexity potentially increases with contin­
uous optimization. The increased rename complexity 
caused by the addition of the optimizer may be signif­
icant. As shown in the next section, fast, simple ALUs 
are required for each instruction that can pass through 
rename in a single cycle (e.g., four in a four-wide rename 
stage), plus additional forwarding and bypass logic to 
perform the symbolic optimizations. In addition, value 
feedback carries results from the execution stage back 
into rename. This feedback requires additional forward­
ing logic that does not exist in current processors. The 
continuous optimization tables require approximately 
2K to 4K bytes of storage2: the CP/RA tables require 
one entry per integer architectural register, and each en­
try contains approximately 100-150 bits. This table re­
quires as many read and write ports as required by the 
RAT to support the rename rate. The RLE/SF stage also 
requires a small cache, which we model as consisting of 
128 entries, each requiring approximately 100-150 bits. 
This small cache requires a read and write port for each 
load capable of being optimized each cycle.

Power. The impact on overall power consumption is 
not obvious. The power implications of both the addi­
tional pipeline stages [12] and increased rename com­
plexity is unclear. Certainly, without any simplification 
in the out-of-order portion of the pipeline, it can be ar­
gued that power requirements increase. However, the 
optimizations simplify and pre-compute many of the in­
structions, thus, there is an opportunity to reduce the 
complexity of the out-of-order pipeline, but this is a sub­
ject of future work.

3 Microarchitectural Details
In this section, we delve more deeply into the mi­

croarchitectural details of continuous optimization. The 
optimization process consists of two sequential steps. 
CP/RA is performed in the first step, which happens 
concurrently with register renaming. RLE/SF happens 
in the second step. The detailed microarchitecture is 
provided in Figure 5, which shows the logic slice needed 
to process one instruction in a multi-instruction rename 
bundle.

3.1 CP/RA

In order to perform constant propagation and re­
association, a small amount of additional informa-

2We have not yet analyzed any tradeoffs between storage and per­
formance. We believe that significant storage reduction is possible.
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Feedback from ExecutionStage

Figure 5. A microarchitecture diagram of the optimizer showing the logic slice necessary to 
optimize a single instruction

tion must be maintained per architectural register. 
Specifically, we maintain information about whether 
the register contains an expression of the form 
( r e g  << s c a l e )  ±  o f f s e t .  Here, the register 

specifier r e g  indicates a physical register, s c a l e  in­
dicates a two-bit left shift quantity, and o f f s e t  is a 
64-bit immediate field. When an instruction enters the 
rename stage of the pipeline, its input source operands 
access the register alias table (RAT) and read the re­
named register mapping as well as a symbolic value for 
each source, if one exists. The optimizer then processes 
the symbolic source information and either (1) immedi­
ately determines the output of the instruction, (2) de­
rives a new symbolic value for the destination of the 
form ( r e g  << s c a l e )  ±  o f f s e t ,  or (3) deter­
mines that the symbolic form of the output is too com­
plex, in which case its value must be generated by the 
execution core. The result is stored in the RAT for fu­
ture instructions3.

From an implementation point of view, constant 
propagation and reassociation are treated as equiva­
lent transformations by the optimizer hardware. To 
denote that the output of an instruction is a con­
stant value, the register field of the symbolic form 
( r e g  << s c a l e )  ±  o f f s e t  is set to the hard­

wired zero register, and a full 64-bit data value is stored 
in a “base register value” field.

Processing a symbolic value requires that the opti­
mizer shift the base physical register value by the scale, 
if  both are present. The scaled constant and the offset 
are then passed as inputs to an ALU, which fully exe­
cutes the instruction if all values are known. Otherwise,

3 Again, because the optimizer only contains simple ALUs, only 
one-cycle instructions execute directly in the optimizer.

depending on the opcode, the optimizer may produce a 
new offset value and/or physical register inputs for the 
instruction, or it may produce nothing if the instruction’s 
result cannot be encoded in the symbolic representation. 
The destination register’s RAT entry is modified accord­
ingly.

Careful consideration reveals that extending the opti­
mizer to process multiple instructions per cycle can be a 
little problematic. In particular, the destination updates 
produced by optimizing one instruction may be required 
as input for another instruction in the same rename bun­
dle. For a four-wide renamer, the implication is that four 
serial additions are required. In our evaluation, we al­
low only a single level of addition to occur for any fetch 
packet. Instructions that require more than one level of 
addition are not optimized. For example, consider the 
following instruction sequence, assuming that the RAT 
entry for rl indicates that it is symbolically rO + 1.

add r l , 1 -> r2
add r 2 , 1 -> r3
add r 3 , 1 -> r4
add r 4 , 1 -> r5

The optimizer can in theory optimize this sequence 
into four parallel instructions, but only through multiple 
serial additions. Instead, we limit the number of addi­
tions that can occur to one, and only the first instruction 
is reassociated, as shown below. The performance im­
plications of this choice are discussed in Section 6.2.

add rO, 2 -> r2
add r 2 , 1 -> r3
add r 3 , 1 -> r4
add r 4 , 1 -> r5

6



A second subtlety arises regarding the lifetime of 
physical registers. Many current physical register allo- 
cation/deallocation schemes, such as those used in the 
MIPS R 10000 and Alpha 21264, allow physical regis­
ters to be reused after the retirement of the next instruc­
tion that overwrites the architectural destination. Our 
optimizations can extend the lifetime of a physical reg­
ister value beyond this point, in which case such deal­
location schemes no longer work. We instead rely upon 
an algorithm based on reference counters, such as the 
scheme proposed by [15].

Finally, it is important to notice that a single physical 
register may be referenced several times in the RAT (i.e., 
once at its destination’s architectural register and possi­
bly many times as a base physical register). This mul­
tiplicity complicates the mechanism of value feedback, 
in which the value of an executing instruction is inte­
grated into the optimization table. We propose a method 
for providing value information to multiple consumers 
within the RAT in Section 3.3.

3.2 RLE/SF
Redundant load elimination and store forwarding 

only perform transformations on load instructions. A 
small cache that maintains information about previous 
load and store instructions is used to match load instruc­
tions passing through the pipeline with previous mem­
ory instructions that accessed the same memory loca­
tion. Once a match is found, the load instruction is con­
verted into a move operation that references the previ­
ous memory operation. All instructions dependent on 
the load then use the destination (or source, if a store) of 
the previous memory operation as their source.

A complication arises because, at rename, memory 
addresses are generally not known. The RA/CP step in­
creases the number of memory instructions whose mem­
ory addresses can be computed at rename to nearly 70%. 
When a load is encountered with a known address, it is 
looked up in a small table called the Memory Bypass 
Cache (MBC). A hit provides the symbolic representa­
tion of the data for the load, no subsequent cache access 
is required. If the load address is unknown, no optimiza­
tion is performed. If a store instruction passes through 
the pipeline with an unknown address one of two things 
must be done: (1) flush the Memory Bypass Cache be­
cause of consistency issues, or (2) proceed speculatively 
and recover if the store happens to collide with an ex­
isting entry. For all evaluations presented in this paper, 
our continuous optimizer and pipeline proceeds specu­
latively. However, we have evaluated both scenarios and 
have found little difference in the overall performance.

The Memory Bypass Cache (MBC) component of the 
diagram is a small and constrained cache. Excluding the 
access information, the cache line data is precisely the

same data provided by the RAT. To simplify the table, 
it is assumed that entries are all 8-byte aligned. The 
access information for tag matching not only needs to 
match the standard address tag but also match the offset 
from the 8-byte alignment and the size of the memory 
access. If a load address matches an entry in the table, 
the cache line data (RAT entry) is forwarded to all inter­
mediate references (instructions in the current and previ­
ous pipeline stages), written back into the CP/RA table 
updating the load destination information, and used for 
converting the load instruction into the expression pro­
vided by the cache line. If the load address does not 
hit in the MBC, the MBC entry for the load address is 
updated to reference the physical register destination of 
the load in case that another load to the same address 
follows after this instruction. For store instructions, the 
data source information provided by the CP/RA table 
is stored in the MBC. As with multiple sequential ad­
ditions for CP/RA, we do not allow any dependences 
across instructions within a rename packet to be satisfied 
with RLE/SF. In our experimentation, we use an MBC 
consisting of 128 entries.

3.3 Value Feedback

With Value Feedback, the results of executed in­
structions are propagated back to the optimization ta­
bles to further enhance the ability of the optimizer to 
pre-determine instruction outputs. This is problematic 
for the optimizer architecture presented in this section 
because a single physical register may be referenced 
multiple times within the optimization tables (RAT and 
MBC). In order to update multiple table locations si­
multaneously with the same physical register value, ei­
ther a content-addressable structure is necessary or a 
level of indirection is required. When a physical reg­
ister value is produced, each table entry can perform a 
content-addressable match with the “base physical reg­
ister” field. If there is a match, the “base physical regis­
ter” field is set to the zero register and the “base physical 
register value” is updated with the corresponding value. 
With the indirection approach, the “base physical reg­
ister” field can be examined in a separate value table, 
but this adds extra latency to the optimizer, potentially 
complicating the intra-optimizer bypass network.

3.4 Continuous online versus discrete offline 
optimization

Although this hardware has been described in the 
context of continuous optimization, the actual hardware 
structures can easily be adapted for offline hardware- 
based optimization schemes such as rePLay [23], PAR­
ROT [1], or trace-cache-based schemes [10, 14]. The 
basic structure would remain similar. The major fun-
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damental difference between the online and offline op­
timizations is that the optimization table entries would 
be invalidated at the start of each trace (or frame). That 
is, the optimizations are discrete per region as opposed 
to continuous across the execution stream. Further­
more, real-time value feedback for discrete optimization 
is more difficult. On the other hand, multipass and com­
plex optimizations such as dead code removal and com­
mon subexpression elimination are more easily consid­
ered in the context of offline optimization.

4 Experimental Setup
4.1 Experimental Workload

For all experimental evaluation, we use the 
SPEC2000 integer, SPEC2000 floating point, and medi- 
abench benchmarks. The specific benchmarks that were 
included and the simulated instruction counts for each 
benchmark are provided in Table 1. We included all 
benchmarks that our infrastructure would accommodate. 
For most of the SPEC integer benchmarks, the input sets 
were modified to allow simulation through completion 
of the program. The benchmarks written in C were com­
piled with the Compaq Alpha C compiler, Compaq C 
V5.9, with optimization level 4. The C++ and Fortran77 
benchmarks were compiled at the highest optimization 
level with g++ and g77, respectively.

Type o f Total
App. Name Insts.

bzip2 (bzp) 293M
crafty (era) 625M
eon (eon) 132M
gap (gap) 474M
gcc (gcc) 284M

SPECint mcf (mcf) 410M
perlbmk (prl) 1000M
twolf (twf) 596M
vortex (vor) 272M
vpr (vpr) 1000M
ammp (amp) 500M
applu (app) 382M
art (art) 1000M

SPECfp equake (eqk) 1000M
mesa (msa) 1000M
mgrid (mgd) 1000M
g721 decode (g721d) 662M
g721 encode (g721e) 358M

mediabench mpeg2 decode (mpg2d) 220M
mpeg2 encode (mpg2e) 1000M
untoast (untst) 96M
toast (tst) 287M

Table 1. Experimental Workload

Fetch/Decode/Rename 4 insts/cycle
Retire 6 insts/cycle
BrPred 18-bit gshare, lK-entryBTB
Pipeline 20 cycles (min) for BR res

(if not executed early)

Scheduler four 8-entry schedulers
(int, complex int, fp, mem)

Inst Window max. 160 in-flight insts
ExeUnits 4 Simple IALUs,

1 Complex IALU,
2 FPALUs, 2 Agen

LI I Cache 64KB, 4-way assoc., 
64B line size, 1 cycle

LI D Cache 32KB, 2-way assoc.,
32B line size, 2 ports, 2 cycles

L2 Unified Cache 1MB, 2-way assoc., 
128B line size, 10 cycles

Memory 100 cycle latency
Optimizer 2 stages, Memory Bypass 

Cache of 128 entries,
4 rd/4wr ports

Table 2. Simulated Machine Configuration

4.2 Performance model

The SimpleScalar 3.0 tool set provides the framework 
on which our machine model is built. Our custom tim­
ing model resembles the pipeline of the Pentium 4 de­
scribed in [13]. The specifics of the machine model are 
provided in Table 2. These default configurations should 
be assumed for all experiments unless stated otherwise.

In addition to the default processor configurations, 
there are also several default settings pertaining to the 
optimizer. Our baseline machine configuration (without 
continuous optimization) has two fewer pipeline stages 
in rename. Therefore, continuous optimization has an 
additional two cycle branch misprediction penalty for 
mispredicted branches that are not resolved in the op­
timizer. For those mispredicted branches that are re­
solved early, recovery happens after the extended re­
name stage. We assume that execution results being fed 
back to the optimizer incur a one cycle transmission de­
lay. Our default optimizer configuration only evaluates 
a single level of addition dependence in a cycle. There­
fore, if one addition feeds another addition within a re­
name bundle, the dependent instruction will not be opti­
mized. Similarly, if the result of one load is used for the 
address of another load within a rename bundle, the de­
pendent instruction will not be able to be optimized. The 
sensitivity of these default values is evaluated in Sec­
tion 6.

For all of our optimizations, correctness is verified 
through strict expression and value checking to ensure

8



that faulty optimizations are not performed.

5 Performance Characterization
In this section of the paper, we evaluate several per­

formance aspects of continuous optimization, both on 
our baseline processor configuration and on variations 
of the baseline.

5.1 Speedup over the Baseline
Figure 6 demonstrates the performance of continuous 

optimization for all of the SPECint, SPECfp, and medi- 
abench benchmarks. The horizontal axis specifies the 
benchmark, and the vertical axis shows speedup over 
the default processor configuration without optimiza­
tion. The average performance improvement is shown as 
the rightmost bar in each graph. Mediabench shows the 
largest overall performance improvement. The most im­
portant observation that can be made from these graphs 
is that, despite the additional pipeline stages, almost all 
benchmarks are able to demonstrate a performance im­
provement. Speedups range from 0.98 to 1.28. Note: 
the benchmark amp exhibited a speedup of 1.00.

Several of the benchmarks demonstrate significant 
improvements. We devote Section 5.2 to analyzing the 
performance improvements observed for mcf (mcf) and 
untoast (untst) because these benchmarks demonstrated 
the largest speedups.

Benchmark exec, early recov. mispred. brs.
SPECint 20.0% 10.5%
SPECfp 28.6% 17.5%
mediabench 33.5% 13.5%
avg 26.0% 12.2%
Benchmark ld/st addr. gen. Ids removed
SPECint 56.2% 5.5%
SPECfp 71.2% 21.7%
mediabench 84% 47.2%
avg 65.3% 17.4%

Table 3. Effects of continuous optimization

In addition to reducing the number of cycles re­
quired for execution, continuous optimization can im­
prove other characteristics. Table 3 presents some statis­
tics. Exec, early is the percentage of the instruction 
stream that the optimizer was able to execute. Recov. 
mispred. brs. is the percentage of mispredicted branches 
that were able to be resolved and thus recovered in the 
optimizer. Ld/st addr. gen. is the percentage of all 
load and store instructions that were able to have their 
addresses generated in the optimizer. Lds removed is 
the average percentage of load instructions that were 
able to be converted into move operations by forward­
ing a value from a previous load or store operation.

Across all benchmarks, 26% of instructions were exe­
cuted in the optimizer, 12.2% of mispredicted branches 
were resolved faster, 65.3% of memory access instruc­
tions could have their address generated in the optimizer, 
and 17.4% of load instructions were executed in the op­
timizer.

5.2 Individual benchmark performance

Among the SPECint benchmarks, mcf provides an 
improvement two or three times as large as its peers. 
Because of this anomaly, we tracked the performance 
improvements to the source code level. One of the 
most significant performance improvements came from 
the sort-basket function in the mcf benchmark. The 
sort-basket function is an implementation of the well- 
known quicksort algorithm. To sort using the quicksort 
algorithm, a pivot point is chosen, and the array is par­
titioned around the pivot by sorting every other value 
only with respect to the pivot. The algorithm then re- 
curses on the two unsorted sub-arrays created by the 
partitioning process. Continuous optimization produces 
performance from two sources for the quicksort algo­
rithm. First, many instructions for the internal iterative 
loop of this algorithm can be executed in the optimizer. 
Dynamically, this early execution allows the instructions 
to exit the machine at a higher average rate. Second, 
the redundant memory accesses performed in quicksort 
create opportunities for redundant load elimination and 
store forwarding. Since the quicksort algorithm touches 
every element of the array at each level of recursion, the 
quicksort algorithm effectively fills up the MBC with ar­
ray elements. Once the array being passed to quicksort 
is small enough that it does not thrash the MBC, all ar­
ray accesses are eliminated, and the simple instructions 
dependent on these load operations are executed in the 
optimizer.

Continuous optimization also produces a speedup 
for untoast (untst) that is significantly higher than 
any other mediabench benchmark. The function 
Short_term-synthesis_filtering is one of the most sig­
nificant performance contributors. This function is an 
iterative procedure that uses two 8-entry arrays. The 
loop iterations vary from 13 to 120 with each iteration 
performing some computation on every entry of the two 
arrays. Because the arrays are small enough to fit in the 
MBC, after the first iteration, all of the array accesses 
for this function are eliminated, and many of the simple 
instructions involved in the computation are performed 
in the optimizer.

5.3 Performance on other Machine Models

For the evaluations presented in this paper, we chose 
a baseline processor model that was relatively balanced;
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Figure 6. Speedup of continuous optimization over baseline

that is, in our estimation it was neither fetch-bound 
nor execution-bound. However, continuous optimiza­
tion changes the overall balance of a machine, po­
tentially changing an execution-bound machine into a 
balanced or fetch-bound machine effectively executing 
some fraction of the instruction stream at optimization 
time. Because continuous optimization allows some 
mispredicted branches to be resolved earlier, it also im­
proves the fetch throughput. In this section, we evaluate 
the impact on processor throughput by observing the ef­
fect of continuous optimization on different processor 
configurations.

fetch bound balanced

□
□□ □
□□

□  □
□  □

□  □  \
□  □ □  □

(a) (b)

execution bound

□  □  

(C)

Figure 7. Processor throughput diagram
Figure 7 presents a high level view of the different 

machine configurations we evaluate. Figure 7(a) depicts 
a machine with ample execution resources, in which the 
fetch/decode/rename portion of the pipeline is limiting 
the overall performance. Figure 7(b) depicts a balanced 
machine, much like our default processor configuration, 
which is equally restrictive at fetch and execute. Fig­
ure 7(c) depicts a machine for which performance is re­
stricted by the execution throughput.

Figure 8 demonstrates the performance of the three 
processor configurations previously described relative to 
the default processor configuration from Section 4.2. On

Figure 8. Performance relative to various 
machine configurations

the horizontal axis, there are five bars for each bench­
mark suite. Fetch bound is the performance of the 
default processor configuration where the processor is 
made fetch-bound by doubling the number of sched­
uler entries from four 8-entry schedulers to four 16- 
entry schedulers. Fetch bound +  opt is the performance 
of fetch bound with continuous optimization. Opt is 
the performance of the baseline configuration from Sec­
tion 4.2 with continuous optimization. Exec, bound 
is the performance of the default configuration where 
the processor is made execution-bound by changing 
the fetch/decode/rename from 4-wide to 8-wide. Exec, 
bound +  opt is the performance of this configuration 
with continuous optimization.

The fetch-bound configuration has a significant 
speedup over the baseline for all benchmark suites. 
When continuous optimization is incorporated into the 
fetch-bound processor, a speedup occurs, but, the rela-
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tive improvement over the fetch-bound configuration is 
much smaller than when continuous optimization is ap­
plied to the base configuration. Because the architec­
ture is primarily fetch-bound, the benefits of executing 
instructions in the optimization stage of the processor 
are not as considerable. Under this configuration, re­
solving mispredicted branches in the rename stage of the 
pipeline is more important and thus provides the major­
ity of the performance improvement demonstrated.

On the contrary, the speedup for continuous opti­
mization in the execution-bound processor model is 
much more significant. In all benchmark suites, con­
tinuous optimization for the execution-bound processor 
offers average improvements of three to five times the 
improvement obtained by only widening the fetch band­
width. This performance improvement demonstrates the 
ability of continuous optimization to increase the ex­
ecution bandwidth of the processor, possibly without 
the complexity required to provide additional execution 
resources. Continuous optimization can thus be cou­
pled with known techniques for scaling fetch bandwidth 
to produce a balanced processor with improved perfor­
mance.

One interesting trend in the graph is that, for all of 
the benchmarks suites, continuous optimization with the 
default, balanced, processor model achieves speedups 
greater than or equal to the speedups achieved by dou­
bling the fetch width of the processor. For the me- 
diabench suite, continuous optimization also produces 
speedups greater than the speedups achieved from dou­
bling the number of scheduler entries.

6 Performance Sensitivities

In this section of the paper, we evaluate the sensitivity 
of the continuous optimizer to various implementation 
considerations such as latencies and algorithmic trade­
offs.

6.1 Optimization versus Value Feedback

First we evaluate the contribution from value feed­
back versus optimization. Figure 9 presents the speedup 
observed for each overall benchmark suite when only 
value feedback is enabled versus when both value feed­
back and optimization are enabled. Value feedback 
alone, in some sense, can be considered a form of eager 
bypassing from the execution units back to the rename 
stage. It is clear from the experimental data that feed­
back alone offers little in terms of performance. Opti­
mization enhances the effectiveness of feedback by pro­
jecting the usefulness of old values further into the fu­
ture.

1.14

SPECint SPECfp mediabench

M  feedback &  feedback+opt

Figure 9. Continuous optimization vs. 
value feedback

6.2 Dependence depth

As discussed previously, since the optimizer must 
process multiple instructions in parallel (i.e., four in a 
four-wide machine), it may not be possible to optimize 
all instructions to the fullest degree when they are within 
the same rename bundle. In our default configuration, 
the optimizer handles only the first instruction in a chain 
of dependent additions. Also, for chained memory ac­
cesses, only the first instruction in the chain can query 
the MBC. In this section, we evaluate the missed op­
portunities that result from our conservative decisions. 
Specifically, we evaluate three additional scenarios: (1) 
up to one level of chained additions, (2) up to three lev­
els of chained additions, and (3) up to three levels of 
chained additions and up to one chained memory opera­
tion.

Figure 10 shows four different bars corresponding 
to our default continuous optimization configuration 
and the three new scenarios described previously. For 
SPECint and SPECfp, there is very little performance to 
be gained from processing dependent instructions in par­
allel. However, mediabench shows a significant depen­
dence on the ability to process multiple dependent in­
structions in parallel. Specifically, the speedups between 
handling dependent chains of additions up to length 3 in­
creases the speedup on mediabench from an average of 
1.11 to 1.25. There appears to be no additional benefit 
across all the benchmark sets in allowing chained mem­
ory operations. It should be noted that better compiler 
scheduling of rename bundles can potentially provide 
speedups similar to the “depth 3” case without additional 
hardware complexity.

6.3 Optimizer latency

Up until now, the additional pipeline stages required 
by the optimizer has been assumed to be two stages
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H  depth 0 (default) H  depth 1 depth 3 ■  depth 3  & 1 mem

Figure 10. Importance of processing de­
pendent instructions in parallel

H  delay 0 Et delay 2 (default) delay 4

Figure 11. Optimizer latency sensitivity

out of an overall pipeline depth of 20 stages (for mis­
predicted branches). For this study, we evaluate the 
performance sensitivity of continuous optimization on 
optimization latency. Since optimization occurs on­
line, this latency elongates the branch recovery critical 
loop, adding a negative component on performance. As 
shown in Figure 11, the achievable performance of con­
tinuous optimization can vary based on the number of 
additional pipeline stages, but it does not vary wildly 
and it is important to note that even at four additional 
pipeline stages (i.e., |  of total branch recovery loop), 
average speedup is still noteworthy, ranging from 1.04 
to 1.10.

6.4 Value feedback latency
Implementation constraints, wire delays, and floor- 

plan issues may complicate the delivery of value infor­
mation from the execution units back to the optimiza­
tion tables. Value transmission might take multiple cy­
cles as a result. This delay could potentially have an 
impact on the performance of value feedback. If the de­
lay is too long, the physical register might no longer be

H  delay 0 M  delay 1 (default) delay 5 ■  delay 10

Figure 12. Performance sensitivity to value 
feedback transmission delay

referenced by new instructions, and therefore of no use 
in optimization. Our default configuration assumes that 
once an instruction executes, it will be available for op­
timization one cycle later. For this study, we also eval­
uate value transmission delays of zero, five, and ten cy­
cles. Figure 12 demonstrates that there is no change in 
the overall performance resulting from additional delay. 
The key insight here is that either a physical register will 
be referenced by the optimizer for a long period of time 
or will not be referenced at all. For example, recall the 
motivating example from Section 2.4: the initial loop 
counter load and array base address were both loaded 
from memory at the beginning of the loop. The opti­
mization process extended the live range of these values 
to include all iterations. The transmission delay of the 
values from execution therefore is of minimal impact.

7 Related Work
This paper contains a detailed description of a hard­

ware optimizer that implements several low-level com­
piler optimizations and is general enough to be used 
for substantial online and offline dataflow optimization. 
Several previous works provide restricted variations of 
this architecture or concepts orthogonal to it. We de­
scribe these works below.

7.1 Early Address Resolution

Zero-cycle Loads [2] and Early Address Resolution 
[5, 11] aim to reduce the load-to-use latency by pre- 
computing load addresses early in the pipeline. Con­
tinuous optimization is a generalization of these works. 
It executes as many simple instructions as possible in 
the early stages of the pipeline and reduces the compu­
tation tree height for the rest of the instruction stream 
that must proceed through the full pipeline. It has all of 
the advantages of these previous works and is also ca­
pable of optimizing the dependents of load instructions,
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correcting branch mispredictions earlier, and also sig­
nificantly reducing the number of instructions that must 
pass through the out-of-order portion of the pipeline.

7.2 Physical Register Reuse

Physical Register Reuse [15] exploits value redun­
dancy in applications. Instructions that are deemed to 
produce an identical value to a previous instruction are 
mapped to the original producer’s physical register in­
stead of a new physical register. This optimization 
collapses dependency chains by redirecting dependent 
instructions to the original value producer rather than 
the duplicate value producer. The original work evalu­
ated the impact of performing this optimization on di­
rect moves and also explored the idea of implement­
ing more advanced versions, both safe and speculative. 
General Instruction Reuse and Reverse Integration [24] 
extend this work by implementing advanced techniques 
for discovering value redundancy. Continuous optimiza­
tion naturally detects and optimizes a significant por­
tion of value redundancy (exceptions were discussed in 
Section 2.3), and it aggressively reduces computation 
tree height when value redundancy is not present. The 
primary focus of continuous optimization is not to de­
tect value redundancy but rather pre-execute and reduce 
computation tree height.

7.3 Load and Store Reuse

Load and Store Reuse [22] is an alternative approach 
for performing redundant load elimination and store for­
warding in hardware. Unlike continuous optimization, 
Load and Store Reuse performs optimization late in the 
pipeline and is unable to optimize the dependents of load 
instructions. Additionally, the RLE/SF stage proposed 
here allows data to be represented symbolically, which 
means data does not have to be ready prior to optimiza­
tion. Since the RLE/SF stage stores its contents in the 
MBC and the MDRD stage of Load and Store Reuse re­
lies on the contents of the memory location existing in a 
physical register indicates that the two approaches work 
under different circumstances implying they are at least 
partially orthogonal.

7.4 Similarities to Other Works

There are several previous works which share a sim­
ilar framework to continuous optimization. We discuss 
these works here.

Flea-Flicker [4] and continuous optimization both 
pre-execute instructions early in the pipeline. Flea- 
Flicker is primarily designed to absorb LI cache miss 
latencies and overlap L2 cache miss latencies that a com­
piler could not anticipate. It does this by speculatively

pre-executing instructions without stalling in an Ad­
vance pipeline and then finalizing execution in a Backup 
pipeline which does stall. Continuous optimization not 
only pre-executes instructions but also optimizes those 
that it cannot execute. It is likely that incorporating 
continuous optimization into the Flea-Flicker pipeline 
would improve performance by reducing the computa­
tion tree height for the Backup pipeline.

Like continuous optimization, Physical Register In­
lining [18] incorporates physical register values into the 
RAT. It does so only when the values require no more 
bits than the physical register tags.

Offline hardware optimization schemes such as re- 
PLay [23], PARROT [1], and other trace optimiza­
tion [10, 14] bear similarity to the online continuous 
technique, as we discussed in Section 3.4. The hardware 
for continuous optimization, although described here as 
a portion of the execution pipeline, can very easily be 
adapted to be a forward optimization pass in an offline 
optimizer.

In addition to these works, there are several other 
complimentary works. Scheduling optimizations such 
as those proposed in [16] can also be layered onto the 
continuous optimization performed by our hardware. 
In [25], the authors propose a technique for reducing 
power consumption by avoiding updates to the architec­
tural register file when a value is detected to be short 
lived. Due to the extended physical register lifetimes, 
modifications to the proposed scheme are necessary. 
Early register deallocation [21, 19] or techniques to de­
tect and remove dead instructions [7] will be enhanced 
by the ability of the optimizer to increase the fraction of 
dead code.

8 Conclusions
In this paper, we present and evaluate the concept 

of continuous optimization. Our table-based continu­
ous optimizer can be integrated into the rename stage of 
a dynamically-scheduled processor. It performs simple 
dataflow optimizations by representing the results of in­
structions symbolically. In particular, the optimizer is 
able to reassociate and propagate constant values and 
perform store forwarding and redundant load elimina­
tion. We also enhance the optimizer with the ability to 
integrate known values (ie., values generated during ex­
ecution) back into the optimization process. The opti­
mizer requires a modest hardware budget requiring ap­
proximately 2KB-4KB of additional multiported stor­
age in the rename stage along with 4 simple ALUs.

Through our evaluations, we found that continuous 
optimization can produce speedups ranging from 0.98 
to 1.28 on a deeply pipelined processor similar to the 
Pentium 4. If the processor model has increased fetch 
bandwidth (say, through a trace cache), higher speedups 
are possible. We find that the optimizer is able to ex-
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ecute many instructions, resolve branch mispredictions, 
and determine load addresses and values at rename time, 
potentially lessening the dynamic burden placed on the 
execution core.
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