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ABSTRACT
Intracerebral Hemorrhage (ICH) is the deadliest subtype of
stroke, necessitating timely and accurate prognostic evalua-
tion to reduce mortality and disability. However, the multi-
factorial nature and complexity of ICH make methods based
solely on computed tomography (CT) image features inade-
quate. Despite the capacity of cross-modal networks to fuse
additional information, the effective combination of differ-
ent modal features remains a significant challenge. In this
study, we propose a joint-attention fusion-based 3D cross-
modal network termed ICHPro that simulates the ICH prog-
nosis interpretation process utilized by neurosurgeons. ICH-
Pro includes a joint-attention fusion module to fuse features
from CT images with demographic and clinical textual data.
We introduce a joint loss function to enhance the represen-
tation of cross-modal features. ICHPro facilitates the extrac-
tion of richer cross-modal features, thereby improving classi-
fication performance. Upon testing our method using a five-
fold cross-validation, we achieved an accuracy of 89.11%, an
F1 score of 0.8767, and an AUC value of 0.9429. These re-
sults outperform those obtained from other advanced methods
based on the test dataset, thereby demonstrating the superior
efficacy of ICHPro. The code is available at our github 1.

Index Terms— Joint-attention mechanism, Cross-modal
fusion, Demographic and clinical text, ICH prognosis

1. INTRODUCTION

Intracerebral Hemorrhage (ICH) carries an extremely high
mortality rate of more than 40%, with only 20% of survivors
achieving functional independence [1]. Consequently, accu-
rate prognosis prediction is of crucial importance for patients
post-ICH in order to develop an appropriate treatment plan
[2]. Experienced neurosurgeons predominantly rely on com-
puted tomography (CT) scans, specifically the location, vol-
ume, and distinct texture features of the hemorrhage site, as

∗Corresponding authors: Ruiquan Ge and Changmiao Wang.
1Our source code is at: https://github.com/YU-deep/ICH prognosis.git

the primary determinants for judgment. Secondary indicators
include the patient’s age, gender, and Glasgow Coma Scale
(GCS) score [3] among others [4]. This process, however, is
contingent on manual predictions by neurosurgeons, a labor-
intensive task that may affect accuracy due to variability in
doctors’ experience and subjective factors. To address these
issues, early studies have employed machine learning tech-
niques [5, 6], achieving certain levels of success, albeit with
room for further improvement.

Despite the richer and more comprehensive information
that can be obtained with cross-modal methods, their appli-
cation in ICH prognosis remains limited and preliminary.
Recently, there have been some advances, such as the fusion-
based [7] and deep learning (DL)-based methods [8] that
directly concatenated extracted image with clinical features.
Also, GCS-ICHNet [9] improves performance by fusing
images with domain knowledge using a self-attention mecha-
nism. However, these methods lack an effective fusion mech-
anism, limiting the establishment of semantic connections
and internal dependencies of features between modalities.

In response to these limitations, in this paper we propose a
novel method boasting four key benefits: (1) The 3D structure
provides more spatial texture features of hemorrhage loca-
tions. (2) The cross-modal structure incorporates more com-
prehensive demographic and clinical data, thereby enhancing
the model’s understanding of the task. (3) The joint-attention
mechanism directs the network to adjust regions of attention,
facilitating the acquisition of richer and more effective fusion
features. (4) The Vision-Text Modality Fusion (VTMF) loss,
specifically designed for the cross-modal network, promotes
better feature representations across the two modalities.

2. METHODOLOGY

As depicted in Fig.1, ICHPro comprises three components:
the feature extraction module, the joint-attention fusion mod-
ule, and the classification module. These modules represent
the three consecutive stages of the entire process.
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Fig. 1: The illustration delineated the architecture of ICHPro and the green-dashed box below represents the internal structure
of the joint-attention fusion Module. The CMAF block is designed to facilitate the fusion of textual and visual modalities.
Concurrently, the VTMF loss actively encourages the superior formation of representation of cross-modal features.

In the feature extraction module, we employ the pre-
trained BioClinicalBERT [10] model as the text encoder to
obtain text representation f t, and the pre-trained 3D ResNet-
50 [11] as the vision encoder to secure vision representa-
tion fv . In the classification module, the pre-trained 1D
DenseNet-121 is utilized as the classification header.

2.1. Joint-Attention Fusion Module

In this module, f t is first fed into the text representation
transformation (TRT) block and fv into the vision represen-
tation transformation (VRT) block, respectively. This process
yields a unified reconstructed text representation f̃ t and re-
constructed vision representation f̃v . These are subsequently
processed through a cross-modal attention fusion (CMAF)
block and a multi-head self-attention fusion (MHSAF) block,
respectively, resulting in text-based vision representation
f tbv .
TRT and VRT Block. In these blocks, we transform f t and
fv into similar structures, thereby fostering a stronger seman-
tic connection between the two modalities. In the TRT block,
f t is multiplied by its transposition f tT and then transformed
through a fully connected (FC) layer and a reshaped layer,
yielding f̃ t. In the VRT block, fv is transformed through an
FC layer followed by four up-sampling layers to obtain f̃v .
CMAF Block. Partly inspired by the cross-modal fusion
component in the CMAFGAN framework [12] which was
originally designed for word-to-face synthesis tasks, we iden-
tified its potential for modal fusion and enhanced it to suit our
task. Additionally, we incorporated a SoftPool layer [13] into
the block to reduce computational overhead while preserving
more information. Furthermore, the overall structure of the
block was restructured.

As shown in Fig. 2, we initially diminish the size of inputs
f̃v and f̃ t through the FC layer, referring to these as x and y.

Following this, x and y are separately transformed into three
feature spaces via 1×1 convolution layers, which are referred
to as V1, K1, Q1 and V2, K2, Q2, with w and superscripts
denoting their corresponding weight matrices. Then, we can
compute the matching degree as follows:

βj,i =
exp (sij)∑S
i=1 exp (sij)

, where sij = wQ1xT
i × wK2yj , (1)

ρj,i =
exp (tij)∑S
j=1 exp (tij)

, where tij = wQ2yTi × wK1xj , (2)

where β and ρ signify the matching degree in vision and text
spaces, separately. We multiplied the matrices β and V1, ρ
and V2 to get cross-modal attention feature map ox and oy .
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Fig. 2: Architecture of the proposed CMAF Block. ⊗ denotes
matrix multiplication, ⊘ signifies SoftPool, ⊙ stands for ma-
trix addition, and ⊕ is representative of concatenation.

Subsequently, we apply SoftPool to the previously ob-
tained ox, oy , x and y to yield ŏx, ŏy , x̆ and y̆. Following
this, we add the matrices ŏx and x̆, ŏy and y̆, and pass them
through a linear layer to obtain ov and ow. Lastly, after apply-
ing a softmax layer to each, we can express f cmf as follows:

f cmf = concat (γ1 ∗ ov, γ2 ∗ ow) . (3)

MHSAF Block. We implemented a multi-head self-attention
mechanism to map features to different subspaces via sev-



eral distinct linear transformations. Subsequently, we execute
self-attention computations on each subspace to procure mul-
tiple output vectors, which are then concatenated.

2.2. Loss Function

In our study, we propose a joint loss function known as
the VTMF loss. This loss is composed of three integral
components. Firstly, the intra-modality and inter-modality
alignment (IMIMA) loss is incorporated as a global loss.
Its purpose is to map semantically similar samples from
both intra-modalities and inter-modalities into a harmonious
global space. Secondly, the similarity distribution matching
(SDM) loss is employed to enhance semantic matching and
to extract inherent dependencies between the two modalities.
Finally, the function includes masked language modeling
(MLM) loss, which serves to enrich semantic learning and
augment textual comprehension.
IMIMA Loss. To accomplish alignment on both intra-
modalities, such as Text-to-Text (t2t) and Vision-to-Vision
(v2v), as well as inter-modalities, specifically Text-to-Vision
(t2v) and Vision-to-Text (v2t), we map semantically related
samples into related individual spaces and maintain the prox-
imity of similar samples in the joint embedding space. We
designate the negative sets for the sample as N . In intra-
modalities is Nintra

i = {yj | ∀yj ∈ N, j ̸= i} and in inter-
modalities is Ninter

i = {xj | ∀xj ∈ N, j ̸= i}. Thus, the
intra/inter loss can be expressed as follows:

LA2B
intra/inter = − log

δ
(
fA, fB

)
δ (fA, fB) +

∑
fk∈N δ

(
fA, fB

k

) , (4)

where δ (a, b) = exp
(
aT b

)
. Therefore, IMIMA loss is:

LIMIMA = Lt2t
intra + Lv2v

intra + Lt2v
inter + Lv2t

inter. (5)

SDM Loss. We employ SDM loss [14] to forge consistent
semantic match, thus associating the representations across
modalities. For each vision-text pair, we obtain a vision
representation fv

i and a text representation f t
j . And we de-

fine
{(

fv
i , f

t
j

)
, li,j

}
, where li,j is the matching label. When

li,,j = 1 means that (fv
i , f

t
j ) is a matched pair which denotes

the two models from the same identity, while li,,j = 0 indi-
cates the unmatched pair. The true matching probability can
be formulated as:

qi,j = li,j

/
N∑

k=1

li,k (6)

Let sim(u,v) = u⊤v/∥u∥∥v∥ denotes the dot product
between L2 normalized u and v (i.e. cosine similarity). The
matching probability pi,j can be deemed as the proportion
of the cosine similarity score between fv

i and f t
j to the sum

of the cosine similarity score between fv
i and {f t

j}Nj=1 [15].

Then the probability of matching pairs can be simply calcu-
lated with the following softmax function [14]:

pi,j =
exp

(
sim

(
fv
i , f

t
j

)
/τ

)∑N
k=1 exp (sim (fv

i , f
t
k) /τ)

(7)

where τ the temperature hyperparameter to limit the proba-
bility distribution peaks.

The SDM loss of v2t can be delineated as follows:

Lv2t = KL (pi∥qi) =
1

n

n∑
i=1

n∑
j=1

pi,j log

(
pi,j
qi,j

)
, (8)

where q represents the true matching probability and p signi-
fies the proportion of a specific cosine similarity score to the
overall sum. The bi-directional SDM loss is the sum of the
loss of v2t and t2v.
MLM Loss. We adopt the design of the intrinsic loss function
from BERT. The objective of MLM is to randomly obscure
certain words in input texts. The model is then required to
predict these hidden words, serving for assessment of loss.
Overall Objective. Based on the analysis above, the defini-
tion of VTMF loss can be calculated as follows:

LV TMF = LIMIMA + αLSDM + βLMLM , (9)

where α and β represent the weights of LSDM and LMLM ,
respectively, serving to dynamically balance the relative sig-
nificance of these losses.

3. EXPERIMENT AND RESULTS

3.1. Experiment Setting

Dataset. In this study, we utilized a private ICH dataset ob-
tained from our collaborative hospital, comprising a total of
294 cases with 149 indicating good and 145 bad prognoses.
Each case included comprehensive CT imaging with demo-
graphic and clinical information including gender, age, onset-
to-CT time, hospital stay, GCS score, and treatment method
as well as hemorrhage position and volume. Each case was la-
beled with either a good or bad prognosis. The classification
label is the prognosis outcomes of patients, which is deter-
mined by the Glasgow Outcome Scale (GOS) by neurologists.
GOS is a rating scale that assesses patients’ functional out-
comes following brain injury and then according to it, neurol-
ogists can label each sample as good or bad. In terms of data
preprocessing, we carried out several operations, there are the
following steps: (1) Convert series 2D DICOM (Digital Imag-
ing and Communications in Medicine) to 3D NIfTI (Neu-
roimaging Informatics Technology Initiative) format through
dcm2niix. (2) Remove the skull and extract brain tissue with
the Swiss Skull Scripper plugin in 3D slicers and the Numpy
and Scipy package in Python. (3) Resample the images, con-
strained HU scales and perform Z-score standardization.
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Fig. 3: This graph depicts the impact of different medical
report texts on the regions of interest in the joint-attention
mechanism.

Implementation Details. Experiments were conducted using
two NVIDIA HGX A100 Tensor Core GPUs, employing the
Adam optimizer. The training epoch, learning rate, and batch
size were respectively set at 300, 0.0001, and 128. Finally, α
and β in Eq 9 is learned as 0.84 and 0.45. All experiments
were conducted through five-fold cross-validation.

3.2. Visualization Analysis

To better verify the interpretability of our work, we designed
visual experiments. We conducted four comparative exper-
iments, including (a) Good Prognosis Oriented Medical Re-
port, (b) Bad Prognosis Oriented Medical Report, (c) Vision
only (the same as the set in Sec.3.3) and our method. For (a)
and (b), we wrote a good prognosis-oriented medical report
and a bad prognosis-oriented medical report for the patients
by adjusting the patient’s demographic and clinical informa-
tion, with the help of neurosurgeons to simulate the impact of
different prognosis-oriented medical reports on the network.
The Score-CAM [16] method is applied to the last convolu-
tion layer of Vision Encoder, the last convolution layer of 3D
ResNet-50. Especially, because it is a 2D method, we uti-
lized it on the middle and lower 2D slices of visual features
(selected the 25th slice out of the 64 slices).

As shown in Fig.3, for different oriented medical reports,
our network can accurately locate the region of interest at the
location of bleeding, in order to pay more attention to the ar-
eas with a higher correlation with prognosis results. For dif-
ferent reports, the region of interest will change to a certain
extent with the change of text to match the text information.
However, the main part of the region of interest is still deter-
mined by the CT image, which is consistent with the original
intention of our network design and proves its rationality. .

3.3. Ablation Experiment

The Text-Only and Vision-Only models directly input the fea-
tures extracted from their corresponding encoders into the
MHSAF block, followed by a classification module. Com-
pared to Vision-Only, ICHPro demonstrates a significant im-
provement, exceeding it by 9.79% in accuracy and 0.0834
in AUC metrics. Our method learns modal fusion features
that encompass richer demographic and clinical information.
This enhances the extraction of more contextual information,
thereby facilitating more accurate prognostic predictions.

Table 1: Results of modal ablation experiment.
Method Acc(% ) Recall(%) Prec(%) F1 Score AUC

Text-Only 69.15 65.10 71.11 0.6797 0.7534
Vision-Only 79.32 77.18 82.72 0.7985 0.8595

ICHPro 89.11 84.56 91.02 0.8767 0.9429

3.4. Attention Fusion Structure Experiment

We further conducted a comparative analysis of six methods,
each comprising different permutations and combinations of
CMAF and MHSAF blocks. We utilized the terms ”Cross”
and ”Self” to individually denote these blocks. It is important
to note that, the notation A-B implies that Block A is entered
first, followed by Block B.

Table 2: Comparisons of attention fusion methods.
Structure Acc(% ) Recall(%) Prec(%) F1 Score AUC

Self Attention 82.71 78.52 83.17 0.8078 0.8671
Cross Attention 84.41 79.19 86.32 0.8260 0.8956

Self-Self Attention 76.94 71.81 80.95 0.7611 0.8025
Cross-Cross Attention 87.11 80.53 89.40 0.8473 0.9108
Self-Cross Attention 85.08 81.21 88.08 0.8451 0.8934
Cross-Self Attention 89.11 84.56 91.02 0.8767 0.9429

Methods incorporating cross-modal attention demonstrate
superior performance compared to those lacking this addition,
thereby confirming the effectiveness of the CMAF block. As
indicated in Table 2, sequentially passing through the CMAF
and MHSAF blocks yields optimal results. The former fa-
cilitates interaction between two modalities, establishing se-
mantic connections and enriching feature expressions, while
the latter captures the internal dependencies of fused features,
thereby effectively capturing contextual relationships. This
combination significantly amplifies the expressive power and
generalization capabilities of cross-modal networks.

3.5. Loss Function Based Experiment

We employed three alternative loss functions for the compar-
ative analysis of our model. These included two single cross-
modal losses, Lblend and Lcmpm, and one joint cross-modal
loss, LCMFA. Additionally, we conducted ablation experi-
ments to demonstrate the effectiveness of each component.

As summarized in Table 3, joint losses, which amalga-
mate multiple optimization objectives, yield superior per-
formance compared to single losses. As our global loss,
LIMIMA outperforms the other four single losses due to
its ability to align both intra and inter-modal. Although the



Table 3: Results of comparison and ablation experiment
based on loss function.

ComponentsLoss Function IMIMA SDM MLM Acc(%) Recall(%) Prec(%) F1 Score AUC

Lblend [17] 74.57 70.47 78.17 0.7412 0.7598
Lcmpm [18] 73.56 69.13 76.78 0.7275 0.7852
LCMFA [19] 85.08 80.54 88.72 0.8442 0.8930
LIMIMA

√
75.59 71.14 79.44 0.7506 0.7982

LSDM
√

71.86 68.45 73.19 0.7074 0.7346
LMLM

√
54.24 50.34 56.94 0.5344 0.5705

LIMIMA + αLSDM
√ √

84.40 81.88 86.49 0.8412 0.8806
LIMIMA + βLMLM

√ √
76.27 73.83 79.02 0.7634 0.8194

LV TMF
√ √ √

89.11 84.56 91.02 0.8767 0.9429

Table 4: Comparisons of ICHPro and other methods.
Method Acc(%) Recall(%) Prec(%) F1 Score AUC

Image-Based Method (2D) [6] 74.23 67.11 75.98 0.7127 0.6933
GCS-ICHNet (2D) [9] 85.08 81.88 87.25 0.8448 0.8590

DL-Based Method (3D) [8] 81.02 78.52 83.31 0.8084 0.9141
Multi-Task Method (3D) [20] 85.42 79.86 89.80 0.8454 0.8998

UniMiSS (2D+3D) [21] 82.03 78.52 87.59 0.8281 0.8275
ICHPro 89.11 84.56 91.02 0.8767 0.9429

individual LMLM performs poorly when paired with losses
bearing cross-modal capabilities, it can effectively enhance
the contextual understanding of fused features. Compared
to using LIMIMA independently, the addition of LSDM or
LMLM increases accuracy by 8.81% and 0.68%, respec-
tively. This demonstrates the efficacy of our additions. These
findings suggest that the combination of all three losses can
achieve optimal performance for each individual loss. Com-
pared to another joint loss function LCMFA, LV TMF out-
performs by 4.03% and 0.0499 in accuracy and AUC value,
respectively. This analysis highlights the effectiveness of our
loss function.

3.6. Comparative Experiments

We conducted a comparison of ICHPro with other advanced
methods, using our dataset. The results are illustrated in Table
4 and Fig.4. The first four methods delineated in the table are
specifically designed for the classification of ICH prognosis,
while UniMiSS represents a universal network for medical
image classification that utilizes a combination of 2D and 3D
convolutional techniques.

Owing to the integration of domain knowledge, the accu-
racy of the 2D GCS-ICHNet essentially matches that of the
3D multi-task method, which relies solely on images. It also
surpasses the universally applied 2D+3D UniMiSS method.
Both ICHPro and the DL-based method incorporate compre-
hensive demographic and clinical information, rendering their
AUC superior to all other methods. This highlights the en-
hanced robustness of networks that fuse information beyond
images. Compared to the DL-based method, our performance
is superior across all metrics, underscoring the effectiveness
of our joint-attention fusion mechanism. When compared to
the optimal indicators of other methods, ours improves accu-
racy by 3.69% and the AUC value by 0.0288. In addition, the
ROC curve is closest to the upper left corner, indicative of its
effectiveness in distinguishing between positive and negative
samples. Our method demonstrates a comprehensive superi-
ority over the comparison methods, and to our knowledge, it
surpasses existing advanced methods in the task of ICH prog-

nosis classification on our dataset.
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Fig. 4: ROC curves between ICHPro and other methods.

4. CONCLUSION

The absence of demographic and clinical information and
the inefficient cross-modal fusion mechanism could hinder
the effective extraction of cross-modal fusion features. To
address this, in this paper, we proposed an ICHPro, a joint-
attention fusion-based 3D cross-modal network, for ICH
prognosis classification. Furthermore, we proposed a VTMF
loss to enhance modal alignment and optimize networks. Our
experimental results demonstrate the efficacy of our method.
In the future, we aim to extend the network to an end-to-end
model and augment classification tasks through segmenta-
tion, for improved outcomes. Additionally, our proposed
method holds potential for application beyond ICH prog-
nosis, extending to other medical cross-modal classification
tasks.
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