
HISTOPATHOLOGY IMAGE REGISTRATION BY INTEGRATED 
TEXTURE AND SPATIAL PROXIMITY BASED LANDMARK 
SELECTION AND MODIFICATION

Pangpang Liu*, Fusheng Wang†, George Teodoro∔, Jun Kong*,‡

*Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA

†Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794, USA

∔Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, 31270, 
Brazil

‡Department of Computer Science, Emory University, Atlanta, GA, 30322, USA

Abstract

Three-dimensional (3D) digital pathology has been emerging for next-generation tissue based 

cancer research. To enable such histopathology image volume analysis, serial histopathology 

slides need to be well aligned. In this paper, we propose a histopathology image registration fine 

tuning method with integrated landmark evaluations by texture and spatial proximity measures. 

Representative anatomical structures and image corner features are first detected as landmark 

candidates. Next, we identify strong and modify weak matched landmarks by leveraging image 

texture features and landmark spatial proximity measures. Both qualitative and quantitative results 

of extensive experiments demonstrate that our proposed method is robust and can further enhance 

registration accuracy of our previously registered image set by 31.15% (correlation), 4.88% 

(mutual information), and 41.02% (mean squared error), respectively. The promising experimental 

results suggest that our method can be used as a fine tuning module to further boost registration 

accuracy, a premise of histology spatial and morphology analysis in an information-lossless 3D 

tissue space for cancer research.

Index Terms—

histopathology image registration; landmark evaluations; three-dimensional pathology

1. INTRODUCTION

The vast majority of prevalent tissue-based studies analyze two-dimensional (2D) 

histopathology images. However, such 2D projection representations are subject to 

significant information loss and bias. A promising solution is to extend such histology 

feature analysis to a three-dimensional (3D) tissue space [1, 2, 3]. As such a 3D microscopy 
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image volume is made of serial tissue slides, an accurate spatial registration becomes the key 

premise of the 3D histopathology image analysis. Although there are numerous registration 

methods in the radiology field, such as the region-based diffeomorphic registration method 

[4], or the patch-based discrete registration algorithm [5], among others, the registration 

method for whole-slide histopathology images is scarce due to the giga-pixel image 

resolution. Additionally, histopathology tissues are often subject to global and local 

deformations during the slide preparation process, making histopathology image registration 

a challenging problem.

In our prior work, we have developed such a pioneering method that dynamically registers 

3D subvolumes from serial gigapixel whole slide images by an optimal deformation 

estimation at low resolution, and a mapping and propagation method at the high resolution 

level [6]. Although such a method provides a feasible solution to the whole-slide 

histopathology image registration problem, its registration accuracy needs to be further 

improved to support the cell-level spatial alignment. To address this problem, we propose 

a registration method with integrated landmark processing by texture and spatial proximity 

measures in this study.

2. METHODS

Due to the strong variation in stains, we first normalize the slide color [8] and the pixel 

intensity. The resulting gray-scale images are used for registration by our previously 

published dynamic registration method [6]. We detect corner points based on Harris features 

[9] and nuclei [10] for landmark candidates. These candidates from the reference and target 

images are matched by normalized cross-correlation, and partitioned to strong and weak 

landmark pairs by the image texture similarity and local spatial proximity patterns. Strong 

matched landmarks serve as a reference to further adjust weak landmarks. With the resulting 

landmark pairs, the registered image is produced by pixel-wise local transformations from 

interpolation. The schema of our registration procedure is illustrated in Figure 1.

2.1. Landmark Extraction and Matching

For histology images with a clear presence of nuclei, we detect nuclei as landmarks by 

a convolutional neural network [10]. When it is challenging to detect nuclei, we choose 

to detect corner points as landmarks instead. To achieve a high registration accuracy, we 

impose the spatial locality constraint on matched landmarks from the reference and the 

target image. We denote (xr, yr) as a landmark coordinate in the reference image. The size 

of the square local neighborhood in the reference and target image is Lr and Lt (s.t. Lr < Lt), 

respectively. For each local square reference image patch Pr = P(xr, yr, Lr) with center (xr, 

yr), we find landmark candidates from a larger local square region Pt = P(xr, yr, Lt) in the 

target image. Our aim is to find a matched point (xt, yt) in Pt for each (xr, yr) in Pr. To obtain 

the initial matched point (xt, yt) in Pt, we find the maximum normalized cross-correlation 

crt between Pr and Pt. A correlation constraint is imposed to exclude weak correlation. The 

resulting initial matched point pair set is denoted as: M0 = {{(xr, yr), (xt, yt)} : crt > n}, 

where η is the normalized cross-correlation threshold.
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Next, we differentiate strong from weak matched points in M0 by the local distance pattern 

analysis. We first find n nearest landmarks xir, yir , i = 1, …, n for each (xr, yr) and n nearest 

landmarks xit, yit , i = 1, …, n for each (xt, yt) in M0 by Euclidean distance, respectively. 

The resulting difference between the matched landmarks and the corresponding n nearest 

landmarks is denoted as:

Δi
j = xj − xi

j, Γi
j = yj − yi

j, i = 1, …, n, j = r, t

The selected matched landmarks are included in the following set subject to a local spatial 

constraint:

M0
+ = xr, yr , xt, yt :C0(n)

where the constraint of the n spatial shifts is:

C0(n) = Δi
rΔi

t ≥ 0, Δi
r − Δi

t < τ Δi
r , Γi

rΓi
t ≥ 0, Γi

r − Γi
t < τ Γi

r , ∀i = 1, …, n (1)

Note τ is the relative distance difference ratio cutoff. To obtain strong matched landmarks, 

we find m nearest landmarks for each landmark in M0
+, and further generate a new matched 

landmark set M+ subject to the distance constraint C0(m) described by Equation (1). We 

present such strong matched landmarks in a representative reference and target image in 

Figure 2.

2.2. Spatial Shift Modification

To further increase the registration accuracy, we next improve the spatial shifts of weak 

matched landmark pairs based on the spatial shifts of strong matched landmarks in 

proximity. For each matched landmark in M0
− = M0\M+, we find the nearest landmark 

from M+. We denote the set of shortest distances as Dn = dr: min
x+, y+ ∈ M+

dr
+ , where dr

+ is 

the Euclidean distance of a landmark from M0
− and its counterpart in M+. We define dmax 

= sup Dn, and dmin = inf Dn. The resulting set of matched landmarks after adjustment is 

M1
− = xr, yr , xt, yt :xt = xr + dx, yt = yr + dy , where dx = w xr+ − xt+ + (1 − w) xr − xt , 

dy = w yr+ − yt+ + (1 − w) yr − yt  and the non-linear weight w is max 0, e−
dr − dmin

dmax − dmin − 0.5 .

2.3. Selection by Texture and Spatial Proximity

Next, we find the nearest landmark in M+ for each landmark in M1
−, and further generate a 

new matched landmark set M2
− subject to the distance constraint C0(1) by Equation (1). We 

extract SURF features of small reference and target local patches centered on each pair of 

landmarks in M2
−, respectively. The resulting feature distance sr is computed. As the spatial 
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distribution of matched landmarks affects the end registration accuracy, we would like to 

have such matched landmarks distributed over the complete tissue image domain. Therefore, 

we design a dynamic feature distance cutoff value that depends on the local landmark spatial 

proximity: γ = 0.1e−1/dr−, where dr
− is the distance between the reference landmark from M2

−

and its closest neighboring reference landmark from M2
−. The resulting landmark set is {M− 

= {{(xr, yr), (xt, yt)} : sr < γ}, where sr is the distance between the matched SURF features 

[7]. We assemble the final set of matched landmarks as M*= M+ ∪ M−. With matched points 

in M*, pixel-wise spatial shift vectors are computed by interpolation.

3. EXPERIMENT AND RESULTS

We test our registration fine-tuning method with 28 pairs of serial histopathology images 

of Hematoxylin and Eosin stained glioblastoma (GBM) biopsy sections. Although this set 

of images (3544 × 4096 pixel each) has been pre-aligned by our prior method [6], further 

spatial fine tuning is required. For our experiments, we set = 0.25, Lr = 200, Lt = 500, τ = 

0.1, n = 4, and m = 2.

To quantitatively evaluate the registration enhancement effect, we compute Correlation 

(COR), Mutual Information (MI), and Mean Squared Error (MSE) for each serial image 

pair. Our method enhances registration quality in all 28 image pairs. We also compare our 

method with state-of-the-art method pTV [11] and Demons [12, 13], with results shown in 

Table 1. Our method is consistently superior to pTV by all metrics for all 28 image pairs, 

and better than Demons in the vast majority of cases (24, 19, and 23 out of 28 image pairs 

by COR, MI, and MSE). Compared with results before registration, our method, on average, 

improves 31.15%, 4.88%, and 41.02% by COR, MI, and MSE, respectively. By contrast, 

pTV improves on average by 3.06% (COR), −0.76% (MI), and 7.89% (MSE), while 
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Demons method presents 11.70% (COR), 2.74% (MI), and 16.50% (MSE) improvement 

on average.

In addition to quantitative measures, we illustrate the checkerboard views of representative 

results for visual comparisons in Figure 3. In our method, detected nuclei serve as landmark 

candidates for the top image, while Harris points are used in the bottom image. It is visually 

noticeable that certain tissue areas misaligned before our analysis become well aligned 

after our registration fine-tuning process. By contrast, neither pTV nor Demons method 

significantly improves registration quality. Such difference in image alignment is clearly 

manifested by insets in Figure 3. We further demonstrate the resulting 3D tissue volume 

composed with serial registered images by our method in Figure 4.

Furthermore, we validate our method with simulated images. We produce 100 random affine 

transformations with affine matrix entries subject to the uniform distribution U(0, 0.5) and 

artificially warp a randomly selected GBM image by such transformations for distortion 

simulation. Next, we apply our proposed registration method to the resulting simulated 

deformed images. The registration enhancement quality measured by MI, COR, and MSE 

are computed and demonstrated in Figure 5 from top to bottom. The x-axis represents the 

deformed image index and the y-axis presents the numeric value of these measures before 

and after registration. It is clear that our method consistently improves registration quality 

in all experiments by all measures. When compared with pTV and Demons, our method 

performs better for all simulated image pairs by COR, and for the vast majority of simulated 

image pairs by MI (81, and 91 out of 100 image pairs) and MSE (71, and 98 out of 100 

image pairs).

4. CONCLUSION

We have developed a pathology image registration fine-tuning method that evaluates and 

improves landmark candidates by integrated texture and spatial proximity measures. We 

partition the matched landmarks into strong and weak matched pairs. By modification and 

selection of weak matched pairs, we improve estimation of spatial shifts derived from 

weak matched landmark pairs. Therefore, the resulting registration accuracy is substantially 

enhanced. Both quantitative and visual evaluation results demonstrate the effectiveness of 

our method for fine tuning pathology image registration.
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Fig. 1. 
Schema of the proposed registration method with landmark selection and modification by 

the integrated use of texture and spatial proximity measures.
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Fig. 2. 
Strong matched landmarks are overlaid on a representative (Left) reference, and (Right) 

target image.

Liu et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
We present checkerboard views of representative registration results (a) before, after (b) 

our registration method with (top) nuclei and (bottom) Harris points serving as landmark 

candidates, (c) pTV, and (d) Demons method.
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Fig. 4. 
A 3D tissue volume composed with serial pathology image regions registered by our 

method.
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Fig. 5. 
Registration improvement assessed by MI, COR, and MSE are presented from top to 

bottom.
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Table 1.

Comparisons of registration quality assessed by different metrics.

Before registration After our method pTV [11] Demons [12, 13]

N COR MI MSE COR MI MSE COR MI MSE COR MI MSE

1 0.616 4.381 2193 0.767 4.540 1334 0.635 4.363 2031 0.719 4.531 1588

2 0.656 4.361 2046 0.771 4.477 1359 0.679 4.336 1840 0.769 4.537 1354

3 0.389 4.139 3500 0.767 4.459 1393 0.402 4.063 3310 0.469 4.218 3026

4 0.628 4.213 2114 0.756 4.341 1416 0.650 4.148 1937 0.732 4.356 1516

5 0.623 4.275 2459 0.754 4.439 1689 0.652 4.180 2112 0.703 4.390 1941

6 0.620 4.291 2053 0.776 4.464 1229 0.637 4.260 1917 0.725 4.461 1475

7 0.404 4.244 3585 0.724 4.588 1851 0.423 4.275 3273 0.471 4.303 3145

8 0.651 4.402 2224 0.777 4.552 1417 0.673 4.390 2017 0.755 4.572 1544

9 0.648 4.179 1963 0.777 4.319 1251 0.664 4.188 1833 0.767 4.376 1282

10 0.637 4.303 1996 0.770 4.455 1272 0.660 4.222 1831 0.739 4.449 1420
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