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ABSTRACT 

 

The thyroid gland is an important endocrine organ. 

For a variety of clinical applications, a system for 

automated segmentation of the thyroid is desirable. 

Thyroid segmentation is challenging due to the 

inhomogeneous nature of the thyroid and the surrounding 

structures which have similar intensities. In this paper, we 

propose a fully automated method for thyroid detection 

and segmentation on CT scans. The thyroid gland is 

initially estimated by a multi-atlas segmentation with joint 

label fusion algorithm. The segmentation is then corrected 

by supervised statistical learning-based voxel labeling 

with a random forest algorithm. Multi-atlas label fusion 

transfers expert-labeled thyroids from atlases to a target 

image using deformable registration. Errors produced by 

label transfer are reduced by label fusion that combines 

the results produced by all atlases into a consensus 

solution. Then, random forest employs an ensemble of 

decision trees that are trained on labeled thyroids to 

recognize various features. The trained forest classifier is 

then applied to the estimated thyroid by voxel scanning to 

assign the class-conditional probability. Voxels from the 

expert-labeled thyroids in CT volumes are treated as 

positive classes and background non-thyroid voxels as 

negatives. We applied our method to 73 patients using 5 

as atlases. The system achieved an overall 0.70 Dice 

Similarity Coefficient (DSC) if using the multi-atlas label 

fusion only and was improved to 0.75 DSC after the 

random forest correction.  

 

Index Terms – thyroid gland segmentation, multi-

atlas label fusion, random forest  

 

1. INTRODUCTION 

 

The thyroid is a small gland, shaped something like 

the letters H or U. It is located in the lower front part of 

the neck and surrounds the trachea. The thyroid is one of 

the important endocrine glands in the body. It produces 

thyroid hormones which have various impacts in the 

body, such as helping to regulate metabolism and energy 

usage. Thyroid volume estimation plays an important role 

in both diagnosis and treatment [1]. In radiation treatment 

planning, for patients with head and neck cancer, 

radiation therapy requires a precise delineation of the 

thyroid gland to be spared on the pre-treatment planning 

CT images to avoid thyroid dysfunction.  

In the current clinical workflow, the thyroid gland is 

normally manually delineated slice by slice by 

radiologists or radiation oncologists. This is time 

consuming and error prone, due to various interpretations 

of slices of CT scans. Therefore, a system for automated 

segmentation of the thyroid is desirable. However, 

automated segmentation of the thyroid is challenging 

because the thyroid is inhomogeneous and surrounded by 

structures, such as veins and lymph nodes, which have 

similar CT intensities. Moreover, the shape and size of 

thyroid glands can vary considerably. An example CT 

section through the thyroid is shown in Figure 1.  

 

 
Figure 1. CT image of the thyroid (pink). 

  

In this work, we propose an automated method for 

thyroid segmentation. The thyroid gland is initially 

segmented by a multi-atlas label fusion algorithm [2]. 

Multi-atlas segmentation uses more than one atlas to 

compensate for potential bias associated with a single 

atlas and applies label fusion to produce a consensus 

solution. Several studies have shown that multi-atlas 

segmentation outperforms single-atlas methods [3,4]. 

Then, the segmentation is corrected by supervised 

learning-based voxel labeling with a random forest 

algorithm [5]. The major contribution of this work is that 

supervised learning (random forest) is combined with 
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registration-based segmentation (multi-atlas label fusion) 

for more accurate thyroid segmentation. 

 

2. METHODS 

 

Our method consists of three major steps: (1) region 

of interest, (2) initial thyroid segmentation by multi-atlas 

label fusion, and (3) segmentation correction by random 

forest. 

2.1 Region of interest 

The region of interest (ROI) is determined automatically 

by using the segmentation of the trachea and spine to 

create a bounding box that includes the thyroid. The 

trachea is segmented using thresholding followed by 

morphological operations. The spine is segmented using a 

watershed algorithm followed by a directed graph search 

[6]. All segmentation methods do not require any user 

interaction. Figure 2 shows how the ROI is automatically 

determined. The upper bound of the ROI is indicated by 

the superior portion of the trachea and the height of the 

ROI is set as 6 cm for all patients.  

 

Figure 2: ROI (dashed yellow box) of thyroid gland and 

segmentation of spinal column (ivory), spinal canal (dark blue), 

and trachea (light blue). 

 

2.2 Initial thyroid segmentation 

The rationale of atlas-based segmentation is the 

segmentation of a target image correlates with the atlas 

image. A target image can be segmented by deforming the 

atlas images. The segmentations of the atlas are 

transferred to the target image by deformable registration. 

As an extension, multi-atlas segmentation makes use of 

more than one atlas to compensate for potential error 

associated with using a single atlas. The final 

segmentation is generated by label fusion which combines 

the results produced by all atlases to reduce the errors. 

In this work, multi-atlas with joint label fusion [2] 

was used for initial thyroid segmentation. An atlas A is 

defined as a pair of images ),( LI where I is the gray 

scale image and L is the manually labeled thyroid gland. 
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estimated independently from other atlases, ignoring 

potential correlations among the atlases. To address this 

problem, we use the joint label fusion algorithm [2] 

estimates voting weights by simultaneously considering 

pairwise atlas correlations. As shown in [2], joint label 

fusion performed better than label fusion with 

independent weight estimation.  
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where Mx is a matrix measuring the correlation between ith 

and jth atlases and 1n = [1; 1; …; 1] is a vector of size n. 

More detail about how to capture the probability that 

different atlases produce the same label error at location x 

by a dependency matrix Mx can be found in [2]. 

 Five atlases (n=5) were used in our experiment. 

Previous published work [8] also shows that n=5 is an 

appropriate choice for the multi-atlas segmentation of 

heart and aorta in chest CT scans; more atlases will not 

significantly improve the segmentation performance. 

Figure 3(b) shows the probability of thyroid after multi-

atlas label fusion.  

2.3 Segmentation correction  

The initial thyroid segmentation is corrected by 

supervised learning based voxel labeling with a random 

forest algorithm. A random forest classifier consists of a 
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number of trees that generates many classifiers and 

aggregates their results in order to make decisions. The 

advantages of the random forest include: (i) both training 

and classification are computationally efficient, (ii) 

classification output is probabilistic, (iii) can handle a 

large variety of features and features are not required to 

be normalized, and (iv) inherent feature selection.  

 

                                     
(a)                                        (b) 

 
(c)                                        (d) 

Figure 3. (a) Example of thyroid CT scan. (b) Thyroid 

probability map from the multi-atlas label fusion. (c) Voxels 

with thyroid probability ≥ 0.15. (d) Thyroid probability map 

after the random forest correction. 

 

At each node, the classification tree randomly takes a 

subset of training samples and predicts the probability of 

the sample being in the thyroid class. Based on the 

features, the random forest continually splits the training 

samples at every node (“tree growth”), and assigns the 

partitions to the left/right nodes. This splitting is done 

with a random dimension. Tree growth continues up to a 

certain tree depth. In the testing phase, target voxels are 

pushed through each tree according to the learned split 

functions. 

Here, random forest training starts with the 

subsampling of manually labeled data from the 5 atlases. 

Positive voxels were sampled on the labeled thyroids and 

negative voxels were sampled adaptively. First, all 

negative voxels within 2 voxels distance from the 

boundary of the labeled thyroid by distance transform 

were not used for training due to their low confidence of 

being negative or positive. Second, negatives beyond 2 

voxels but within 7 voxels away were randomly sampled.  

The two image features were CT attenuation and 

histogram of oriented gradient within a patch (7×7×7 

voxels). Features were selected by maximizing the 

information gain function. In this work, the number of 

trees used in the random forests was 500. Each node of a 

tree assessed possible sample splits on 3 randomly 

selected features. A tree branch was terminated if a split 

node results in 2 or fewer samples in the branch. 

Once trained, the forest was then applied to the 

initially estimated thyroid (all voxels with thyroid 

probability of greater than 0.15 (Figure 3c)). Each voxel 

was pushed through the tree starting at the root, and the 

path taken depended on the voxel’s feature response and 

the feature threshold at the node learned at training. All 

samples ended up at a tree leaf node where its probability 

function representing the likelihood of the voxel being 

thyroid was given. The testing point reached to different 

leaf nodes in each tree of the forest, and the posterior 

probabilities collected at each leaf were averaged to 

determine the final distribution, to be then used to classify 

the voxel (Figure 3d).   

 

3. RESULTS 

 

Our patient population consisted of 73 patients with 

intravenous contrast-enhanced thoracic CT scans that 

included the thyroid. The reference standard consisted of 

manual tracings of the 73 thyroids by a medical student. 

The CT slice thickness was 1 mm, and the voxel spacings 

within an axial slice were in the range 0.7 - 0.9 mm. 5 

scans served as the atlases for multi-atlas label fusion. For 

each atlas, the thyroid was manually segmented by using 

3D Slicer. These 5 scans were also used for random forest 

training. The remaining 68 patients were used for thyroid 

segmentation and evaluation.  

Figure 4 shows one example of thyroid segmentation 

before and after the random forest correction. More 

segmentation examples are shown in Figure 5.  

 

 
Figure 4. (a) Example of thyroid CT scan. (b) Manually-

labeled ground truth. (c) Segmentation from the multi-atlas label 

fusion. (d) Segmentation after the random forest correction. 

 

The segmentation performance was evaluated using 

the Dice Similarity Coefficient (DSC), a coefficient used 

to represent the ratio of volumetric overlap between two 

segmentations based on their average volume. Figure 6 

shows the comparison of the DSC results across the 

various stages of our method. Before the label fusion, the 

DSC (average of the 5 DSCs) was 0.49 ± 0.12. This value 

was increased to 0.70 ± 0.12 after label fusion, and  
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increased to 0.75 ± 0.08 with the random forest for 

segmentation correction.  

The surface error between the segmented thyroid and 

the ground truth was 1.14 ±1.25 mm after the multi-atlas 

label fusion and was reduced to 0.60 ± 0.37 mm after the 

random forest for correction. Figure 7 shows one example 

of thyroid surface comparison between the automated 

method and the ground truth. 

 

 
Figure 5: Example of automated thyroid segmentation (1st 

column) and ground truth segmentations (2nd column). 

 

 

 
Figure 6: Dice Similarity Coefficient comparison after the 

registration, the label fusion (LF) and the random forest (RF) for 

correction. 

 

 

 
Figure 7. Thyroid surface comparison between the automated 

method (blue) and the ground truth (red).  

 

4. CONCLUSION 

 

We presented a method for automatic segmentation of the 

thyroid gland on CT scans. This is a challenging problem 

because the thyroid is inhomogeneous and surrounded by 

structures with similar CT attenuations. The thyroid is 

initially segmented by multi-atlas segmentation method 

and further corrected by the supervised learning method 

random forest. This thyroid gland segmentation could be 

used for organ specific radiation dose estimation and 

radiotherapy treatment planning. 
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