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Abstract

We introduce a novel method for utilizing user input to sparsely label membranes in electron

microscopy images. Using gridlines as guides, the user marks where the guides cross the

membrane to generate a sparsely labeled image. We use a best path algorithm to connect each of

the sparse membrane labels. The resulting segmentation has a significantly better Rand error than

automatic methods while requiring as little as 2% of the image to be labeled.
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1. Introduction

Machine assisted biological image segmentation methods range from manually labelled

computer assisted methods [1, 2] to manually refined more automatic methods [3, 4, 5].

Manual methods require a significant time commitment to accurately label images such as is

done for membrane detection in electron microscopy (EM) images of the brain in [1]. Active

learning methods such as Ilastik [6] attempt to decrease the user input required for

generation of training data used in supervised methods. In addition, automatic methods

typically require a large dataset of manually labeled images to be used for learning.

In this paper, we propose a new method that seeks to utilize user input in an efficient way to

produce highly accurate results with minimal user input. Different than [6] which uses

learning on user input to segment the image, we utilize the user input as a starting point for

best path finding to segment EM images. We sparsely label the dataset by using gridlines to

guide the user in identifying membrane locations and then use a best path algorithm to

identify the complete membrane structure. In EM images, cell membranes generally have

complete connectivity with only a few exceptions per image so that finding the best path

between all labeled membrane in an image results in the correct structure. This differs from

manual methods that require membrane tracing [1]. In addition, we introduce a method of

membrane labeling that replaces the binary label with an intensity label that allows further

improvement through thresholding.

In Section 2, we outline the complete method for obtaining the sparse labeling, the best path

algorithm used, and the method for label replacement. Following we will present results
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from using this method on two different EM datasets in Section 3. In addition, we show the

results of using a learning method for further refinement. Then in Section 4 we present our

conclusions and propose future research.

2. Methods

To be able to take advantage of manual labeling and minimize the amount of effort required

from the user, we propose using gridlines on an image as a guide to create a sparse sampling

of the image. Along each gridline, the person doing the labeling will indicate the locations

where the gridline crosses membrane pixels. The result gives us an image of squares where

the membrane locations on the borders of each square are known and the labels of all pixels

inside each square are entirely unknown. Figure 1 shows an example of the gridlines

overlaid on a denoised image with the membrane labels in yellow and non-membrane labels

in red.

In general, each of the cells in an EM image are immediately adjacent to another cell so that

neighboring cells appear to share a membrane in the image. This is due to dehydration

during sample preparation that shrinks the spacing between the cells. Once the membrane on

the gridlines have been identified, we take advantage of this near complete connectivity

between cell membranes to attempt to find a best path between all membranes on the

borders of a single grid square. We then do this for every grid square so that we have

complete connectivity of membranes throughout the image. To solve the best path problem,

we use Dijkstra's algorithm computed separately using each membrane pixel along the

border of the square as a starting node. Then the minimum path between the current starting

node and every other membrane pixel on the border of the current grid is labeled as

membrane. We use 8-connected neighbors as the edges of the graph and the edge costs are

computed as the geometric distance between the current pixel node and its neighboring

pixels times the cost (C) for each neighboring pixel where

(1)

Here In is the intensity value at node n taken from a denoised version of the original image,

M is the set of membrane pixels on the border of the current grid square, med(M) is the

median intensity value of M, and λ is a parameter that controls the penalty. The intensity

values of In for all n are between 0 and 1 so the cost function at locations with intensity

nearest to the intensity of the membrane pixels will have values close to 1 and locations with

intensity furthest from the intensity of the membrane pixels will have values close to exp(λ).

The absolute value is taken because the interior cell structures, such as mitochondria, can be

darker than the membrane which would cause nodes in those structures to have a lower cost

and create inaccurate paths through the middle of the cell. The resulting best path will

primarily stay on membrane areas and only cross non-membrane areas when there is no

other feasible path between two membrane points on the grid. Figure 2 shows the results of

the paths connecting all of the membrane points in a single square with yellow showing the

membrane gridline points, red showing the unlabeled gridline points, and blue showing the

paths between them.
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Once every grid square has been evaluated for the best path they are concatenated together

into a full image where all pixels that have been visited by at least one path will be assigned

a membrane label and all other pixels will be assigned a non-membrane label. Because paths

between membrane pixels tend to get used multiple times, the membrane is often thin. In

addition, the membrane pixels are frequently along the edges of the membrane since that

tends to be the shortest distance between two points that has low cost. To clean up places

where a single membrane has two separated paths going along it, we perform a

morphological closing of the membrane pixels with a shaping element having a diameter

similar to half the thickness of the membrane in the image.

The final result of this is a binary image with all of the membrane connected. However,

some of these paths will cross non-membrane as a result of the forced requirement that all

membrane pixels within a given square be connected. To allow a simple thresholding to be

able to improve the resulting image even more by removing some of these paths, we replace

the membrane paths with their corresponding denoised image intensity. The non-membrane

locations are then assigned the value of 1. This resulting image will in general have lower

values corresponding to areas with the highest probability of being membrane and higher

values corresponding to areas with lower probability of being membrane.

3. Results

Here we present the results of this algorithm on two different datasets. The first dataset we

used for these experiments is a stack of 60 images from a serial section Transmission

Electron Microscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve cord

(VNC) [1]. It has a resolution of 4 × 4 × 50 nm/pixel and each 2D section is 512 × 512

pixels. The corresponding binary labels were annotated by an expert neuroanatomist who

marked membrane pixels with zero and the rest of pixels with one. During the ISBI Electron

Microscopy Image Segmentation Challenge 30 images were used for training and the

remaining images were used for testing. We have used the 30 images designated as training

from this dataset to use for this experiment since there is no learning involved and the

testing labels were not made available.

On the gridlines we used simulated user input to ensure that all membrane pixels on each

gridline are complete and accurate to provide a best-case result for a given gridspacing. To

do this we used the ground truth provided with the datasets and labeled as membrane

everywhere that the gridlines crossed the correct membrane label in the ground truth. The

paramaters were grid-spacings of 25, 50, 75, and 100 pixels with λ = 3 and a square shaping

element with diameter of 5 pixels. The images were denoised using a non-local means

denoising algorithm [7] as this has shown to be effective at denoising textured images. The

denoised image was used both as the input to the cost function and as the intensity values for

replacement once the path finding was complete. To measure accuracy we use the 1 minus

pair f-score (1 – F) metric as used in the ISBI 2012 segmentation challenge [8]. It is a

measure of disagreement in the segmentation and is a useful measure for segmentation

quality. Figure 3 shows the image results for 25 and 100 pixel grid spacing and the 1 – F

results are presented in Table 1. For comparison the results on the same dataset from a
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supervised learning method using a mult-scale artificial neural network [3] are also

presented.

The second dataset used for these experiments is from the mouse neuropil. This set consists

of 70 images size 700 × 700 manually annotated by an expert electron microscopist that

have been separated into 5 bins with 14 images per bin. 1 bin of 14 images (bin 1) was used

in training of the MSANN. The other 4 bins were used as different sets of testing images.

Figure 4 shows the image results for 25 and 100 pixel grid spacing and the 1 – F results are

presented in Table 2.

When training data is available, further improvement can be made by utilizing a region

merging learning algorithm. Because of the requirement that all membranes be connected to

every other membrane within a grid square, oversegmentation is a common reason for the

errors. To see what kinds of additional improvement could be done be eliminating these

errors, we used a watershed and tree merging learning algorithm [9] to learn and

automatically remove some of these oversegmentations. The results are presented in Table

3. In some cases the region merging learning algorithm was able to remove large

oversegmentation regions resulting in significant improvement as with bin 4. In the other

cases the improvement is more modest, but still evident.

4. Discussion

By selectively labeling just 2/25th of the image we were able to achieve 1 – F rates that were

significantly better than a supervised learning algorithm, and even when reducing the

labeling by a factor of 4 further to 2/100th of the image we were still able to show a marked

improvement. This method also has the advantage of being more immediate in the results

than automatic methods. Whereas some supervised methods can take days [3] or even

months [4] to train, within a few minutes a user should be able mark the membrane

crossings of the gridlines and get a high accuracy result. In addition, the creation of accurate

training data requires complete manual labeling which is also very time intensive.

Using this method with a 25 pixel spacing between grid lines, we were able to achieve very

high segmentation accuarcy. We were also able to achieve further improvement by applying

a region merging algorithm intended to correct oversegmentations. Currently we are

working to be able to correct undersegmentations that occur as the grid spacing gets larger.

Using adaptive sampling we hope to sample more sparesely in areas where it won't affect the

segmentation and sample more fully areas where the accuracy can be improved. Even

without these improvements, the positive results that we have been able to show using

simulated user input indicate that this method of user interaction can become a viable

alternative to both fully automatic and fully manual segmentation methods.
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Fig. 1.
Example of grid labeling of cell membranes. Red represents the non-membrane sections on

the gridlines and yellow represents the membrane labeled gridlines.
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Fig. 2.
Example of the paths found within a single grid square. Red and yellow represent non-

membrane and membrane sections on the gridlines respectively. Blue represents the best

paths connecting all membrane pixels on the gridlines.
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Fig. 3.
Example of (a) original image, (b) ground truth, (c) 25, and (d) 100 pixel grid spacing on the

Drosophila data set.
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Fig. 4.
Example of (a) original image, (b) ground truth, (c) 25, and (d) 100 pixel grid spacing on the

mouse neuropil dataset.
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Table 3

1 – F performance of the algorithm with different grid spacing followed by region merging using the mouse

neuropil dataset. For each reported bin, that bin was used as the test data and the other 4 bins were used as the

training data.

Method

25 50 75 100

Bin 1 0.0217 0.0791 0.1162 0.1508

Bin 2 0.0537 0.0770 0.1028 0.1424

Bin 3 0.0454 0.0684 0.1031 0.1214

Bin 4 0.0229 0.0385 0.0629 0.0825

Bin 5 0.0436 0.0736 0.0841 0.1225
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