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Abstract
The presence of noise in High Angular Resolution Diffusion Imaging (HARDI) data of the brain
can limit the accuracy with which fiber pathways of the brain can be extracted. In this work, we
present a variational model to denoise HARDI data corrupted by Rician noise. Numerical
experiments are performed on three types of data: 2D synthetic data, 3D diffusion-weighted
Magnetic Resonance Imaging (DW-MRI) data of a hardware phantom containing synthetic fibers,
and 3D real HARDI brain data. Experiments show that our model is effective for denoising
HARDI-type data while preserving important aspects of the fiber pathways such as fractional
anisotropy and the orientation distribution functions.

1. INTRODUCTION
High angular resolution diffusion imaging (Tuch et al. [1, 2]) is a modality of magnetic
resonance imaging (MRI) used in reconstructing the fiber directions in the brain. Water
diffuses preferentially along the directions of fiber pathways, so knowing how water diffuses
in the brain gives information regarding the orientation of fibers. The relationship between
the MRI signal and water diffusion based on the Stejskal-Tanner equation [3], is S(x, θ, ϕ) =
S0(x) exp (−b · d(x, θ, ϕ)), where S(x, θ, ϕ) and d(x, θ, ϕ) are the MRI signal and
corresponding diffusion (spherical apparent diffusion coefficient, sADC) at x and in the
direction (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)) on the sphere. S0(x) is the MRI signal at x
when no diffusion gradient is applied, and b is a parameter used in collecting the data. Note
that the true MRI signal S(x, θ, ϕ) cannot be larger than the MRI signal without any
diffusion gradient applied; i.e. S(x, θ, ϕ) ≤ S0(x) or d(x, θ, ϕ) ≥ 0.

Acquired HARDI data is contaminated by noise, likely violating the constraints above, that
can alter important characteristics of fiber pathways such as fractional anisotropy (FA) (see
[4, 5, 6]), which measures the amount of anisotropy of water diffusion present in fibers.
Thus, it is likely to be beneficial to denoise the HARDI data before attempting to extract
fibers. Since MR diffusion weighted images are magnitudes of complex valued signals, and
if the real and imaginary components of the signal are assumed to have Gaussian noise, the
resulting magnitude image will have Rician distributed noise [7], given by:

, where u is the underlying clean signal, S is the noisy
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signal, σ is the standard deviation of the noise, and I0 is the zeroth-order modified Bessel
function of the first kind. We refer to [8, 9] for more details about HARDI. Most relevant
previous work can be found in [7, 10, 11, 12]. Our proposed model is different from [10] in
that we incorporate the data acquisition model and from [11, 12] in that we impose a more
accurate noise model, the Rician distributed one.

First, we present our variational denoising model and the numerical implementation of our
algorithm. Following this, we perform numerical experiments on three sets of data. The first
is 2D synthetic data; the second is 3D diffusion-weighted magnetic resonance imaging
(DW-MRI) data of a hardware phantom containing synthetic fibers; the last is 3D real
HARDI data of the brain. We provide numerical results to demonstrate the validity of our
denoising model. We summarize our findings in the conclusions.

2. VARIATIONAL DENOISING MODEL
As in [11, 12], we consider the sADC, d, as unknown, and the recovered denoised HARDI
signal u over Ω computed from d. We propose the variational model (b = 1):

where λ > 0 is a tuning parameter, Si is the observed noisy HARDI signal measured in the
spherical direction i, and di is the denoised unknown sADC in the same direction. We denote
by ui = S0 exp(−P(di)) the recovered denoised HARDI signal. P is a projection operator

given by  is the vectorial total
variation as a prior imposed on d. The first term acts as a regularization, and the second acts
as a fidelity that incorporates the Rician distribution; up to a constant, it is equivalent to
−log(P(Si|S0 exp(−P(di))). The projection operator is introduced to satisfy the constraint di ≥
0.

To numerically implement the model described above, we consider the Euler-Lagrange
equations in combination with the L2 gradient descent method. The resulting evolution
equations for i = 1, …, n are given by

We discretize the above system of equations using finite differences and an iterative method.
We define the initial guess

(1)

to help satisfy the condition di ≥ 0. Decreasing the constant 0.005 results in more violations
of the constraint, while increasing it may lead to a less satisfactory numerical result.

For one of the data sets we consider, the standard deviation of the noise, σ, is unknown. To
approximate σ, we use the identity E(X2) = A2 +2σ2 for a Rician distributed variable X;

Tong et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



E(X2) is the expected value of X2, and A is the true signal. Using portions of the data set

(e.g. background) where we expect A = 0, we estimate .

3. NUMERICAL RESULTS
We perform numerical experiments on three sets of data to demonstrate the validity of the
proposed denoising model.

First, we consider a 2D synthetic data set of size 8 × 8 with diffusion measured in n = 94
uniformly distributed directions at each spatial point. S0 in this case is assumed to be a
constant equal to 1. We create noisy data by adding Rician noise with standard deviation σ =
0.01, 0.02, 0.04, 0.1 and 0.2. The same σ used to create the noisy data is input as a known
parameter in our denoising model (however, slightly different σ could also be used, or σ
could be estimated from the data). We compute the diffusion orientation distribution
function (ODF), which is a probability density function measuring the distribution of water
diffusion in different directions on the sphere, for the ground truth, noisy, and denoised data
(Fig. 1). ODFs are calculated using the tensor distribution function algorithm in [13]. Here,
we use the Jensen-Shannon divergence (JSD) to measure the difference between the noisy/
denoised ODF and the ODF of the ground truth. In all cases, the denoised data gives lower
JSD values than those of the corresponding noisy data sets, indicating an increase in
similarity to the ODF of the ground truth after denoising (Table 1). Also, root mean square
error (RMSE) values between the denoised and ground truth MRI signals are lower than the
RMSE values between noisy and ground truth MRI signals (Table 1). This suggests that we
have a more accurate signal after denoising.

Second, we consider DW-MRI data of a hardware phantom containing synthetic fibers
created by Pullens et. al. [14]. The fibers (≈ 10µm circular diameter) consist of polyester
yarns wound into bundles, which are then interdigitated on top of each other and secured
with heat shrink tubes. A 7T scanner was used to collect the DW-MRI data from the
phantom (data collection performed at the CMRR, University of Minnesota, on a Magnex
Scientific MRI scanner driven by a Siemens console, with a head gradient insert capable of
80 mT/m in 200 ms. Parameter settings were: 66 slices with FOV=192 mm × 192 mm,
1.5×1.5×1.5 mm3 voxels, TR/TE=5000/50ms, 128 DWI at b=1000 s/mm2 and 15 b0
images). The dataset has an acquisition matrix of size 128 × 128 × 84 and 100 uniformly
distributed diffusion directions, but for computational purposes, we consider the 37th to 41st
z-slices only and present T2 and FA images for the 38th z-slice (Fig. 2). Given the way in
which the fibers are constructed (i.e. from synthetic materials), the FA along the fiber should
be approximately constant. In addition, ideally, the mean FA along a fiber should not drop
after denoising, as a drop in FA can signify some loss in coherence, perhaps due to
oversmoothing. As seen in Table 2, the mean FA drops slightly after denoising, but the
standard deviation of the FA also decreases. After denoising, the FA correctly lies within a
smaller range of values and is closer to being more constant along the fiber.

Lastly, numerical experiments were performed on real HARDI data of the brain. A healthy
subject was scanned on a 4 Tesla Bruker Medspec MRI scanner with an optimized diffusion
imaging sequence. Diffusion weighted imaging (DWI) parameters were: echo and repetition
time, TE/TR 92.3/8250 ms, 55 × 2mm contiguous slices, field of view: FOV = 23 cm. 41
images were collected: 11 baseline (b0) images with no diffusion sensitization (i.e., T2-
weighted images) and 30 diffusion-weighted images (b-value: 1159 s/mm2) with gradient
directions evenly distributed on the hemisphere. The reconstruction matrix was 128×128,
yielding a 1.8×1.8 mm2 in-plane resolution. This data was created by fitting actual HARDI
data to a 6th order spherical harmonic expansion; the resulting data set is considered to be
the “ground truth” (although this is not truly correct, it has artifacts and negative d values),
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and noisy data was generated by adding noise with σ = 15 to this “ground truth”. The data
set has volume 95 × 128 × 55 and 30 uniformly distributed diffusion directions. We present
in Fig. 3 the “ground truth”, noisy, and denoised ODF’s of the 30th z-slice. Fig. 4 shows the
JSD between the noisy data and “ground truth” and between the denoised data and the
“ground truth”; this figure shows that the similarity of the ODF to that of the “ground truth”
is increased after denoising.

4. CONCLUSIONS
We presented a variational model to denoise HARDI-type data. We considered three types
of data: 2D synthetic data with 94 directions, 3D DW-MRI data of a phantom consisting of
synthetic fibers, and 3D real HARDI data of the brain. A comparison of the JSD values for
the noisy versus denoised 2D synthetic data sets shows a higher similarity between the
ODFs of the denoised result to that of the ground truth than between the ODF of the noisy
data set to that of the ground truth. Furthermore, the denoised result for the phantom data
gives more constant (and therefore more realistic) FA values along the fiber. Finally, ODF
images for the real HARDI data show that the denoised ODF produces a better
approximation to the ground truth ODF than the noisy ODF.
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Fig. 1.
Top: ODF of ground truth. Middle: ODF of noisy data generated with σ = 0.2. Bottom: ODF
of denoised data.
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Fig. 2.
Visualizations of 38th slice of phantom data. Top: T2 visualization. Bottom left: FA
visualization of noisy data. Bottom right: FA visualization of denoised data.
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Fig. 3.
ODF visualizations of 30th slice of real HARDI data. Top: “ground truth”. Middle: noisy.
Bottom: denoised. The color in this figure indicates the fiber direction: red for left-right,
blue for superior-inferior, and green for anterior-posterior. Also, RMSE between noisy/
denoised MRI signal and “ground truth” MRI signal: 14.9171 and 12.0868.
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Fig. 4.
JSD between noisy and “ground truth” (mean = 0.5787, std. dev. = 0.3445) and between
denoised and “ground truth” (mean = 0.3297, std. dev. = 0.3037) for the 30th slice of the
real HARDI data. In the colorbar, we have values from 0 (blue) to 1 (red).
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Table 1

Jensen-Shannon divergence (JSD) values between ODF of noisy/denoised and ODF of ground truth, and
RMSE values between noisy/denoised signal and ground truth signal.

JSD RMSE

σ noisy denoised noisy denoised

0.01 0.0044 0.0004 0.0100 0.0065

0.02 0.0102 0.0008 0.0201 0.0130

0.04 0.0441 0.0133 0.0396 0.0231

0.1 0.1578 0.0431 0.0986 0.0545

0.2 0.5423 0.1736 0.1950 0.0963
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Table 2

Mean and standard deviation values of FA for noisy and denoised phantom data.

mean standard deviation

noisy 0.2392 0.1503

denoised 0.2140 0.1292
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