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Abstract

Recent developments in social media and cloud storage lead to an exponential growth in the 

amount of multimedia data, which increases the complexity of managing, storing, indexing, and 

retrieving information from such big data. Many current content-based concept detection 

approaches lag from successfully bridging the semantic gap. To solve this problem, a multi-stage 

random forest framework is proposed to generate predictor variables based on multivariate 

regressions using variable importance (VIMP). By fine tuning the forests and significantly 

reducing the predictor variables, the concept detection scores are evaluated when the concept of 

interest is rare and imbalanced, i.e., having little collaboration with other high level concepts. 

Using classical multivariate statistics, estimating the value of one coordinate using other 

coordinates standardizes the covariates and it depends upon the variance of the correlations instead 

of the mean. Thus, conditional dependence on the data being normally distributed is eliminated. 

Experimental results demonstrate that the proposed framework outperforms those approaches in 

the comparison in terms of the Mean Average Precision (MAP) values.
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1. Introduction

The complexity and cost of the data storage and retrieval for multimedia research and 

applications have increased tremendously [10,14,21,25,26,28,47]. How to store and index 

multimedia data in various media types including video, audio, image, text, etc. for efficient 

and effective data retrieval has drawn a lot of attention [16, 31, 42, 43]. To solve this 

problem, multimedia data is labeled with respect to their real high-level semantic meanings 

such as “Person”, “Boat”, and “Football”. These labels are often referred to as “concepts” or 

“semantic concepts” [8, 32, 41, 44]. The foremost challenge in this research domain is to 

reduce the gap between the low-level features [19, 29] and high-level semantic concepts 

[7,10,15,29,48], i.e., to build a connection between the different meanings and conceptions 

formed by different representation systems.
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To bridge the semantic gap [27, 58, 59], a lot of effort has been put into Scale Invariant 

Feature Transform (SIFT) and Histogram of Oriented Gradients (HOG) based feature 

detectors [9, 11–13, 15, 45]. Other methods try to increase the ratio of positive and negative 

data (for example, video frames) to improve the classification accuracy for automatic 

labeling and to build the correlations between the labeled concepts to utilize underlying 

predictors [6, 30, 40, 46, 55, 57]. Some notable solutions include the conditional random 

field (CRF) methods that improve object classification by maximizing its inter-label 

agreements [12, 37]. In [34], the CRF method is extended by creating a database of semantic 

concepts for event detection. On a similar pattern, the ontology based methods utilize the 

fusion of concept detection confidence scores such as fused Neural Network and concept 

ontologies to improve the concept identification [4]. In [18], the authors fused the ontologies 

with fuzzy logic to deduce the correlations among concepts. Other correlation based 

frameworks such as [24] introduced a Domain Adaptive Semantic Diffusion (DASD) based 

approach to capture the correlations using Pearson Product. More recent ontology based 

models use linguistic ontology models to correlate different concepts [2]. For instance, [3, 

45] united the WordNet model and Association Rule Mining (ARM) for video retrieval. A 

more recent and promising approach is to use tree based frameworks that model the 

contextual correlation using a probabilistic tree method and the conditional probability to 

evaluate the scores using weights [1,17]. The bag-of-words (BoW) model in [51] effectively 

uses random forests and K-Nearest Neighbor (KNN) for large datasets. Similar models 

assign each descriptor to a single concept or multiple concepts using KNN [36, 52, 56].

Random forests are a notion of the general technique of random decision forests that are an 

ensemble learning method for classification, regression and other tasks. Using random forest 

classifiers, [20] proposed a framework for similarity based labeling of concepts to cluster the 

training images. It has been observed in [53] that the soft assignment to multiple concepts 

improves the prediction at the cost of an increased computation time. An interesting 

framework using random forests and supervised learning reported an improvement in the 

processing time with a smaller number of classes [35]. An extension of [35] uses random 

forests in their image segmentation stage by applying the forest on image pixels [39]. 

However, several random forest based methods reported challenges with noisy attributes and 

error propagation and their effects on inter-concept collaboration; while others reported 

shortcomings on either relying on the conditional independence within concepts and 

depending highly on the prior knowledge and domain knowledge of the data. Some of the 

data-oriented approaches rely on the assumption that the data is normally distributed and the 

distribution of the training and testing datasets are the same. These conditions served as the 

motivation to our work because several of these requirements are not necessarily valid in 

video dataset detection. Our proposed framework tries to overcome these shortcomings by 

extending the work from [33,52,56] where the noise issue was minimized and a good 

retrieval accuracy was achieved by using unsupervised random forests and large datasets.

The paper is organized as follows. In Section 2, the proposed framework is introduced and 

descriptions are provided for the important components of the developed random forests. 

Experimental setup based on the TRECVID dataset and the results are discussed in Section 

3. Section 4 concludes the paper with the summary of the key findings and important future 

directions.
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2. The Proposed Framework

Our framework is modeled as a random forest based regression problem with big data. The 

model utilizes the semantic content of images to improve the confidence scores in the 

retrieval of video shots (keyframes). It was deduced that utilizing the correlations of the 

concepts assume that the data is normally distributed and centered at zero. This represents a 

case of conditional expectation and the optimal way to improve the annotation would be to 

calculate the covariance matrix. However, this is not always the real case so that the 

proposed model was developed for such cases without the normal distribution assumption. 

Since there is no “mean” at all, the problem is just a multivariate regression problem with 

correlation due conditional expectation to calculate the predicted value. This is achieved by 

using an unsupervised multivariate regression forest that does not require any domain 

knowledge or does not necessitate any distribution requirement. In classical multivariate 

statistics, estimating the value of one coordinate using other coordinates standardizes them 

and the predicted outcome, instead of the mean, depends upon the variance of the 

correlations.

We consider the scores of 346 concepts from the IACC.1.B dataset in TRECVID 2015 as a 

346-dimensional multivariate vector and there are more than 130,000 observations (video 

shots). Sample images for some of the concepts are depicted in Figure 1.

Our proposed framework first splits the TRECVID 2015 data equally into a training data and 

a testing data. The two data sets are used in the training and testing parts respectively as 

shown in Figures 2 and 3. The goal is to improve the confidence scores of each concept for 

all of the observations. Since there is no output variable, we model each instance as a 

conditional regression problem to predict its best estimate. For any given testing instance, to 

predict Ci, we take all other variables from C1, C2, C3, …, Ci−1, Ci+1, …, C346 and regress 

the value of Ci, using random forests, against this high dimensional large dataset. This 

process is repeated for all concepts and video shots.

In the training part, a state-of-the-art concept detection framework is applied to the video 

shots in the training data set and the detection confidence scores for each concept are 

evaluated. Please note that the focus of this paper is not on the initial concept detection 

performance but rather on the score improvement in the latter step. Thus, the central part of 

the proposed framework is kept flexible so that the scores output from any concept detection 

framework could be utilized with our framework. The variable importance (VIMP) evaluator 

permutes all 346 concepts and identifies the most significant concepts in the prediction of 

each concept. This results in significantly reducing the dimensionality and the output of this 

essential component is used in the testing part. We also grow a synthetic forest to 

empirically identify the most suitable forest tuning parameters such as mtry and node size 

for the domain of multimedia concepts detection.

In the testing part, after the detection scores are generated from the concept detection 

framework, the scores are forwarded to the multivariate regression forest where each concept 

is predicted as a missing value problem treated by multivariate regression. The VIMP and 

tuning parameters are used to reduce the dimensionality and fine tune the forest. Finally, the 
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scores output from all the randomly grown trees are assembled together to give the final 

predicted confidence scores of each concept.

The prediction of each testing video shot is performed by a process called Bootstrap 

Aggregating (BAGGING). Bootstrap aggregating and random forests were introduced in [5] 

where it was concluded that the model is always overfitted and by randomly perturbing the 

dataset and taking the ensemble of that dataset will reduce the overall variance and 

effectively turn the random forests into highly accurate estimators. It was also proposed that 

the random forest is a great way for noise reduction and for building a model with low 

variance [5].

3. VIMP-based Random Forests

3.1. Random Forests

A random forest is an aggregation of ntree number of trees, usually in thousands, and each 

tree is grown by bootstrapping a randomly sampled vector mtry from the complete dataset. 

Each tree in the random forest collection is grown non-deterministically with a two stage 

method. In the first stage, randomization is induced in each tree by randomly selecting sub-

sampled data (bootstrapping) from the original data. The second stage randomization is 

applied at the node level, where each node is split by randomly selecting a variable from the 

sub-sampled variables and only those variables are utilized to get the best possible split. This 

process results in substantially de-correlating the trees so that the final ensemble or the 

average among the trees will have low variance. Each tree is grown to a depth where the 

terminal nodes contain at least nodesize number of video frames or cases. Algorithm 1 lists 

the steps of constructing a random forest.

To achieve this, we begin by modeling the prediction based on the regression setting for 

which we have a numerical outcome called Y. The learned or observed data is assumed to be 

independently drawn from the joint distribution of (X, Y) and comprises n * (p + 1) samples, 

namely (x1, y1), …, (xn, yn). X is an n by p matrix indicating the total number of video 

frames (or samples) and their features Y, where X=[x1, …, xn]T, Y =[y1, …, yn]T, xi is the 

subsampled vector (of size 1 by p) from X for the ith sample, p is the total number of 

features (or dimensions), and Y indicates the vector of outcome variables (yi, i=1 to n) that 

are to be regressed using the random forest.

The random forest for regression is built by growing the trees based on a random vector θk 

such that the tree predictor h(x, θk) takes on numerical values as opposed to class labels. The 

vector θk contains regressed values of the outcome variable Y. The output values are 

numerical values and we assume that the training dataset is independently drawn from the 

distribution of the random vector X and random vector Y.

Then, the regression based random forest prediction is defined as the unweighted average 

over the collection of the predictor trees as shown in Equation (2), where h(x; θk), k = 1, …, 
ntree are the collection of the tree predictors and x represents the observed input variable 

vector of length mtry with the associated i.i.d random vector θk.
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(2)

As k → ∞, the Law of Large Numbers ensures:

(3)

where θ represents the regressed outcome variable average over ntree trees. The quantity on 

the right is the prediction (or generalization) error for the random forest, designated . 

The convergence in Equation (3) implies that the random forests do not overfit. Now the 

average prediction error for each individual tree is defined in Equation (4).

(4)

The common element in all of these procedures is that for the kth tree, a random vector θk is 

generated, independent of the past random vectors θ1, …, θk−1 but with the same 

distribution; and a tree is grown using the training dataset and θk, resulting in a classifier 

h(x, θk) where x is an input vector. After developing the forest, we further fine tune it by 

reducing the dimensionality of the features. This is achieved by optimizing mtry, nodesize, 

and variable importance (VIMP) as described in the following subsection.

Algorithm 1

Construction of Random Forests

1 Draw the ntree bootstrap samples from the original data.

2 Grow a tree for each bootstrap data set. At each node of the tree, randomly select mtry variables for 
splitting. Grow the tree so that each terminal node has no fewer than the nodesize cases.

3 Aggregate the information from the ntree trees for a new data prediction such as majority voting for 
classification.

4 Compute an out-of-bag (OOB) error rate by using the data not in the bootstrap samples (Equation (1)).

MSEOOB = n−1 ∑
i = 1

n
{yi − yi

OOB}2, (1)

where n indicates the total number of OOB observations (video frames); while yi and  are the 
average predictions for the in-bag and out-of-bag samples in the ith observation.
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3.2. Optimizing the Forest

There are three key factors to optimize the maximum throughput from a random forest, 

namely nodesize, mtry, and VIMP. Their parameters as used in the proposed framework and 

subsequent justifications are provided as follows. When deciding upon nodesize, some 

methods like [38] argue that large sampled terminal nodes provide consistent results. On the 

other hand, [5] advises to grow the random forest trees very deeply, i.e., expanding the trees 

until the terminal nodes contain only one variable. Although this causes very skewed and 

deep trees that require relatively longer times to compute, it has been observed empirically 

that near singular terminal sizes are more effective in high dimensional problems [22]. This 

is because that the trees are grown to purity, i.e., single sampled terminal nodes resulting in a 

much lower bias. While deep trees result in low bias values, the final ensemble or 

aggregation of all the trees reduces the variance. Thus we opt our forest to be grown in near 

purity.

VIMP is another tuning feature of the random forests that we utilize to rank each variable 

based on its predictability. VIMP calculates the increase in the prediction error for the forest 

aggregation by randomly noising up a variable and permuting its value. The larger the VIMP 

value of each variable, the more predictive the variable is. VIMP helps to select only the 

most predictive variables in the prediction process and helps implement the dimensionality 

reduction in an efficient way. Empirical results show that in some cases the number of 

prediction variables were reduced down to 1%, which also significantly reduced the 

computation time. The most commonly used permutation method is the Breiman-Cutler 

importance measure for the random forest. In the method, the variable importance VI of a 

feature variable Xj in tree k is evaluated as shown in Equation (5).

(5)

where Xj is the jth feature from X and ℬ̄k is the out-of-bag (OOB) sample of the variable for 

a particular tree k, with k ∈ 1, …, ntree. Moreover,  is described as the selected class for 

observation i before permuting,  is the class for observation i after permuting its value 

for variable Xj, and I(.) is the identity function. γi represents the observed class for the 

observation i. Please note that if variable Xj is not in tree k, V I(k)(Xj) = 0 by definition. The 

raw variable importance score for each variable is then computed as the mean importance 

over all trees as given in Equation (6).

(6)

One of the key techniques in calculating the VIMP variable is to keep the mtry variable very 

close to p, where p is the total number of predicting variables (in our case 346), and mtry is 
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the number of randomly subsampled variables to be used in each tree. The default setting for 

choosing mtry is , but it has been argued in [22] by several empirical studies to 

keep mtry close to M = 7/8 × p. This is because if the mtry variables chosen for the root 

node are noisy (i.e., they are not predictive for the outcome), then the predicted variable and 

the permuted importance of the variable are also noised up [50]. This principle is depicted in 

Figure 4, i.e., the larger number of mtry helps better identify the variable importance 

(VIMP). The colors are used to indicate the relevance of the variables with color red being 

highly predictive.

4. Experiments and Results

4.1 Experiment Setup

For this paper, we use TRECVID 2015 dataset which is a huge dataset with lots of 

imbalanced concepts. The TRECVID conference series is sponsored by the National 

Institute of Standards and Technology (NIST) with additional support from other U.S. 

government agencies. The goal of the conference series is to encourage research in 

information retrieval by providing a large test collection, uniform scoring procedures, and a 

forum for organizations interested in comparing their results. The TRECVID dataset is very 

suitable for our experiment due to its vast volume. We choose the IACC.1.B dataset used in 

the TRECVID 2015 semantic indexing (SIN) task which aims to detect the semantic concept 

contained within a video shot. Challenges such as data imbalance [54], scalability, and the 

semantic gap [27] make the SIN task tough.

In the IACC.1.B dataset, there are 137,327 observations by extracting a keyframe from each 

shot. Totally 346 concepts are given including many popular semantic concepts include 

“Vehicle”, “Airplane”, and “Cloud” which are common and appear in many papers. It also 

contains many rare and imbalanced concepts such as “Security Checkpoint”, “Helicopter 

Hovering”, and “Mosques”. The distribution of some concepts are highly skewed in which 

the majority of the data instances belong to one class and far fewer data instances belong to 

others. The list of concepts and detailed explanations can be found in [49].

The average precision (AP) value is used as a metric which is widely used in the multimedia 

concept retrieval domain. For a given concept, P re(i) indicates the precision at cut-off i in 

the item list, and N is for the number of the retrieved data instances. The average precision at 

N (i.e., AP @N) is defined in Equation (7). If the denominator is zero, AP is set to zero. By 

generating AP for all concepts and calculating the mean value of them, the mean average 

precision (MAP) value is calculated for evaluation.

(7)
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4.2 Experimental Results

In our experiment, we choose 20 highly imbalanced concepts for testing including “Airplane 

Takeoff”, “Emergency Vehicles”, “Military”, “Natural-Disaster”, “US Flags”, “Airplane 

Landing”, “Airport Or Airfield”, “Car Crash”, “Cigar Boats”, “Earthquake”, “Military 

Base”, “Rowboat”, “Election Campaign Debate”, “Election Campaign Greeting”, “Exiting 

A Vehicle”, “Exiting Car”, “Flags”, “Military Aircraft”, “Rescue Vehicle”, and “Prisoner”. 

Also, the detection scores from the group of DVMM Lab of Columbia University [23] for 

shots are used as the raw scores and the benchmark. Their group got the best performance on 

TRECVID IACC.1.B dataset but the raw scores for the many imbalanced concepts are 

relatively low and need to be enhanced.

To conduct the comparison, the proposed framework is evaluated against the following four 

approaches. The first one, “Benchmark”, is the raw scores we got from [23] without any 

modification. The “Naive Bayes” approach is based on applying the Bayes’ theorem with 

strong independence assumptions between the scores. In the implementation of our 

approach, the selected 20 imbalanced concepts with the p/n ratio values lower than 0.001 are 

tested and the VIMP-based random forests are applied. We also compare our work with 

random forests without VIMP. In the proposed work, the dataset is split in half, one for 

training and one for testing. The comparison results are shown in Table 1.

As can be seen from Table 1, since the assumption of the “Naive Bayes” approach is not true 

for many concepts like “sea” and “fish”, the accuracy is very low as expected. The random 

forests without VIMP also fail to enhance the raw scores as well, and this may be caused by 

the inappropriate tree built process. Among all the four methods, our proposed framework 

achieves the best performance and successfully enhances the raw scores, which proves the 

novelty of using random forests with VIMP and shows good MAP results of our proposed 

framework.

5. Conclusions

Many of the multimedia content based semantic data mining methods face a very complex 

challenge known as the semantic gap problem. This is the problem of connecting low level 

details of the image with its high level concepts. The problem becomes even more 

challenging with those concepts that are rare and imbalanced. In this paper, the proposed 

framework attempts to solve this problem by utilizing the unsupervised random forest 

classifiers. Several experiments were conducted on the TRECVID dataset and the results 

were compared with several existing frameworks. The proposed method illustrates the 

improvement in terms of the Mean Average Precision (MAP) values for the rare and 

imbalanced concepts. Furthermore, our proposed random forest approach with VIMP 

successfully reduces the dependency on domain knowledge and the restriction on data 

distributions.
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Figure 1. 
Sample images of concepts from TRECVID 2015 data
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Figure 2. 
Forest optimization using the training dataset
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Figure 3. 
Multivariate regression forest grown on the testing dataset
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Figure 4. 
Example of a parametric plot
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