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Abstract—We present a new model for distributed shared
memory systems, based on remote data accesses. Such features
are offered by network interface cards that allow one-sided
operations, remote direct memory access and OS bypass. This
model leads to new interpretations of distributed algorithms
allowing us to propose an innovative detection technique of race
conditions only based on logical clocks. Indeed, the presence
of (data) races in a parallel program makes it hard to reason
about and is usually considered as a bug.

I. INTRODUCTION

The shared-memory model is a convenient model for

programming multiprocessor applications: all the processes

of a parallel application running on different processors

have access to a common area of memory. Another pos-

sible communication model for distributed systems is the

message-passing model, in which each process can only

access its own local memory and can send and receive

message to other processes.

The message-passing model on distributed memory re-

quires to move data between processes to make it available

to other processes. Under the shared-memory model, all

the processes can read or write at any address of the shared

memory. The data is shared between all the processes.

One major drawback of the shared-memory model for

practical situations is its lack of scalability. A direct imple-

mentation of shared memory consists in plugging several

processors / cores on a single motherboard, and letting

a single instance of the operating system orchestrate the

memory accesses. Recent blades for supercomputers gather

up to 32 cores per node, Network on Chip (NoC) systems

embed 80 cores on a single chip: although the “many-core”

trend increased drastically the number of cores sharing

access to a common memory bank, it is several orders of

magnitude behind current supercomputers: in the Top 5001

list issued in November 2010, 90% of the systems have 1K

to 16K cores each.

The solution to benefit from the flexibility and con-

venience of shared memory on distributed hardware is

distributed shared memory. All the processes have access

to a global address space, which is distributed over the

processes. The memory of each process is made of two

parts: its private memory and its public memory. The

private memory area can be accessed from this process

only. The public memory area can be accessed remotely

1http://www.top500.org

from any other process without notice to the process that

maps this memory area physically.

The notion of global address space is a key concept

of parallel programming languages, such as UPC [4], Ti-

tanium [19] or Co-Array Fortran [16]. The programmer sees

the global memory space as if it was actually shared mem-

ory. The compiler translates accesses to shared memory

areas into remote memory accesses. The run-time envi-

ronment performs the data movements. As a consequence,

programming parallel applications is much easier using

a parallel language than using explicit communications

(such as MPI [6]): data movements are determined by

the compiler and handled automatically by the run-time

environment, not by the programmer himself.

The memory consistency model followed by these lan-

guages, such as the one defined for UPC [10], does not

define a global order of execution of the operations on

the public memory area. As a consequence, a parallel

program defines a set of possible executions of the system.

The events in the system may happen in different orders

between two consecutive executions, and the result of the

computation may be different. For example, if a process

writes in an area of shared memory and another process

reads from this location. If the writer and the reader are

two different processes, the memory consistency model

does not specify any kind of control on the order in which

these two operations are performed. Regarding whether the

reader reads before or after the data is written, the result

of the writing may be different.

In this paper, we introduce a model for distributed

shared memory that represents the data movements and

accesses between processes at a low level of abstraction.

In this model, we present a mechanism for detecting race

conditions in distributed shared memory systems.

This model is motivated by Remote Direct Memory Ac-

cess capabilities of high-speed, low-latency networks used

for high-performance computing, such as the InfiniBand

standard2 or Myrinet3.

The remainder of this paper is organized as follows.

In section II, we present an overview of previous models

for distributed shared memory and how consistency and

coherency has been handled in these models. In section III

2http://www.infinibandta.org/
3http://www.myri.com
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we present our model for distributed shared memory and

how it can be related to actual systems. In section IV we

present how race conditions can be represented in this

model, and we propose an algorithm for detecting them.

II. PREVIOUS WORK

Distributed shared memory is often modeled as a large

cached memory [9]. The local memory of each node is

considered as a cache. If a process running on this node

tries to access some data, it gets it directly if the data is

located in its cache. Otherwise, a page fault is raised and

the distributed memory controller is called to resolve the

localisation of the data. Once the data has been located

(i.e., once the local process knows on which process it is

physically located and at which address in its memory), the

communication library performs a point-to-point commu-

nication to actually transfer the data.

In [13], L. Lamport defines the notion of sequential

consistency: on each process, memory requests are issued

in the order specified by the program. However, as stated by

the author, sequential consistency is not sufficient to guar-

antee correct execution of multiprocessor shared memory

programs. The requirement to ensure correct ordering of

the memory operations in such a distributed system is that

a single FIFO queue treats and schedules memory accesses

from all the processes of the system.

Maintaining the coherence of cache-based distributed

shared memory can then be considered as a cache-

coherency problem. [14] describes several distributed and

centralized memory managers, as well as how coherence

can be maintained using these memory managers.

However, in a fully distributed system (i.e., with no

central memory manager) with RDMA and OS bypass ca-

pabilities, a process can actually access another process’s

memory without help from any memory manager. In par-

allel languages such as UPC [4], Titanium [19] and Co-Array

Fortran [16], data locality (i.e., which process holds the data

in its local memory) is resolved at compile-time.

The MPI-2 standard [7] defines remote memory access

operations. The MARMOT error checking tool [11] checks

correct usage of the synchronization features provided by

MPI, such as fences and windows.

III. MEMORY AND COMMUNICATION MODEL

In this section, we define a model for distributed shared

memory. This model works at a lower level than most

models described previously in the literature. It considers

inter-process communications for remote data accesses.

A. Distributed shared memory model

In many shared-memory models that have been de-

scribed in the literature [1], [5], [18], pairs of processors

communicate using registers where they read and write

data. Distributed shared memory cannot use registers be-

tween processors because they are physically distant from

each other; like message-passing systems, they can com-

municate only by using an interconnection network.

Figure 1 depicts our model of organization of the public

and private memory in a multiprocessor system. In this

model, each processor maps two distinct areas of mem-

ory: a private memory and a public memory. The private

memory can be accessed from this processor only.

The public address space is made of the set of all the

public memories of the processors (the Global Address

Space). Processors can copy data from/to their private

memory and the public address space, regardless of data

locality.

Public memory can be accessed by any processor of

the application, in concurrent read and write mode. In

particular, no distinction is made between accesses to

public memory from a remote process and from the process

that actually maps this address space.

P0 P1 P2

Private

Address

Space

Public

Address

Space

Remote
get

Remote
put

Remote
put

Fig. 1: Memory organization of a three-processor distributed
shared memory system.

The compiler is in charge with data locality, i.e., putting

shared data in the public memory of processors. For in-

stance, if a data x is defined as shared by the programmer,

the compiler will decide to put it into the memory of a

processor P . Instead of accessing it using its address in

the local memory, processors use the processor’s name and

its address in the memory of this processor. This couple

(pr ocessor _name, local_addr ess) is the addressing sys-

tem used in the global address space. The compiler also

makes the address resolution when the programmer asks a

processor to access this shared data x.

In addition, since NICs (Network Interface Controllers)

are in charge with memory management in the public

memory space, they can provide locks on memory areas.

These locks guarantee exclusive access on a memory area:

when a lock is taken by a process, other processes must

wait for the release of this lock before they can access the

data.

B. Communications

Processor access areas of public memory mapped by

other processors using point-to-point communications.

They use one-sided communications: the process that initi-

ates the communication can access remote data without

any notification on the other processor’s side. Hence, a



processor A is not aware of the fact that another processor

B has accessed (i.e., read or written) in its memory.

Accessing data in another processor’s memory is called

Remote Direct Memory Access (RDMA). It can be performed

with no implication from the remote processor’s operating

system by specific network interface cards, such as Infini-

Band and Myrinet technologies. It must be noted that the

operating system is not aware of the modifications in its

local shared memory. The SHMEM [2] library, developed

by Cray, also implements one-sided operations on top of

shared memory. As a consequence, the model and algo-

rithms presented in this paper can easily be extended to

shared memory systems.

RDMA provides two communication primitives: put and

get. These two operations are represented in figure 2. They

are both atomic.

P0 P1 P2

get put

Fig. 2: Remote R/W memory accesses.

Put consists in writing some data into the public memory

of another processor. It involves one message, from the

source processor to the destination processor, containing

the data to be written. In figure 2, P2 writes some data

into P1’s memory.

Get consists in reading some data from another pro-

cessor’s public memory. It involves two messages: one to

request the data, from the requesting processor to the

processor that holds the data, and one to actually transfer

the data, from the processor that holds the data to the

requesting processor. In figure 2, P2 reads some data from

P1’s memory.

Communications can also be done within the public

space, when data is copied from a place that has affinity to

a process to a place that has affinity to another process.

The get operation is atomic (and therefore, blocking). If

a thread gets some data and writes it in a given place of

its public memory, no other thread can write at this place

before the get is finished. The second operation is delayed

until the end of the first one (figure 3).

C. Race conditions

One major issue created by one-sided communications is

that several processors can access a given area of memory

without any synchronization nor mutual knowledge. For

example, two processors A and B can write at the same

address in the shared memory of a third processor C .

P0 P1 P2

getput

Fig. 3: A put operation is delayed until the end of the get operation
on the same data.

Neither B nor C know that A has written or is about to

write there.

Concurrent memory accesses can lead to race conditions

if they are performed in a totally anarchic way (although

some authors precise data race conditions, we will use only

"race conditions" throughout this paper). A race condi-

tion is observed when the result of a computation differs

between executions of this computation. Race condition

makes, at least, hard to reason about a program and

therefore is usually considered as a bug.

In the kind of systems we are considering here, a race

condition can occur when several operations are performed

by different processors on a given area of shared memory,

and at least one of these operations is a write.

For instance, if a piece of data located in the shared

memory is initialized at a given value v0 and is accessed

concurrently by a process A that reads this data and a

process B that writes the value v1. If A reads it before B

writes, it will read the value v0. If B writes before A reads,

A will read v1.

More formally, we can consider read and write operations

as events in the distributed system formed by the set of

processors and the communication channels that intercon-

nects them.

Two events e1 and e2 are ordered iff there exists an hap-

pens before (as defined by [12] and denoted →) relationship

between them such that e1→e2 or e2→e1. Race conditions

are defined in [8] by the fact that there exists no causal

order between e1 and e2 (further denoted by e1 ×e2).

IV. DETECTING RACE CONDITIONS

In this section, we present an algorithm for detecting

race conditions in parallel applications that follow the

distributed shared memory model presented in section III.

A. Causal ordering of events

In section III-C, we stated that there exists a race con-

dition between a set of inter-process events when there

exists no causal order between these events. In practice,

this definition must be refined: concurrent accesses that do

not modify the data are not problematic. Hence, when an

event occurs between two processes, we need to determine

whether it is causally ordered with the latest write on this

data.



Lamport clocks [12] keep track of the logical time on

a process; vector clocks (introduced by [15]) allow for the

partial causal ordering of events. A vector clock on a given

process contains the logical time of each other process at

the moment when the other process had an influence on

the process (i.e., last time it had a causal influence on this

process).

When the causality relationship between a set of events

that contains at least a write event cannot be established,

we can conclude that there exists a race condition between

them. More specifically, when we compare the vector clocks

that are associated with these events and the latest write.

Lemma 1 (Mattern, Theorem 10): ∀e,e ′ ∈ E : e < e ′ iff

H(e) < H(e ′) and e ∥ e ′ iff C (e) ∥C (e ′)

Corollary 1: Consider two events denoted e1 and e2 and

their respective clocks H1 and H2. If no ordering can

be determined between H1 and H2, there exists a race

condition between e1 and e2 (e1 ×e2).

In the following algorithms, we detail the put and get

commands. Algorithm 1 describes a put performed from

P0 by the library to write the content of sr c address into

process P1’s memory at address d st . Algorithm 2 describes

a get performed by the library to retreive content of sr c

address from process P1’s memory to process P0’s memory

at address d st . Each process associates two clocks to areas

of shared memory: a general-purpose clock V and a write

clock W that keeps track of the latest write operation.

Figure 4 shows an example of two concurrent remote

read operations (i.e., get operations) on a variable a. This

variable is initialized at a given value A before the remote

accesses. Since none of the concurrent operations modifies

its value, this is not a race condition. As stated in sec-

tion III-C, there exists a race condition between concurrent

data accesses iff at least one access modifies the value of

the data. As a consequence, concurrent read-only accesses

must not be considered as race conditions.

P0 P1 P2

a = ? a = A a = ?

get

a = A

get

a = A

Fig. 4: Two concurrent get operations

The lock primitive takes care of mutual exclusion if the

addressed value is in public space or not. If the address

is in private space, there is no need of a real lock (ex-

cept in multithreading). The compar e_clocks(P0, a,P1,b)

primitive first read the vector clock V1(b) from P1’s memory

and then compare it with V0(a). The comparison is done

Algorithm 1: Put operation from P0 to P1

begin
lock(P0, sr c);

lock(P1,d st);

V = update_local_clock(P0, sr c);

W ′ = get_clock_W(P1, sr c);

if ¬ compare_clocks(V ,V ′)

∧¬ compare_clocks(V ′,V ) then
signal_race_condition() ;

put(P0, sr c,P1,d st);

update_clock_W(P1,d st);

update_clock(P1,d st);

unlock(P1,d st);

unlock(P0, sr c);
end

Algorithm 2: Get operation from P0 to P1

begin
lock(P0,d st);

lock(P1, sr c);

V = update_local_clock(P0,d st);

W =V V ′ = get_clock(P1, sr c);

if ¬ compare_clocks(W,V ′)

∧¬ compare_clocks(V ′,V ) then
signal_race_condition() ;

get(P1, sr c,P0,d st);

update_clock(P1, sr c);

update_clock(P0,d st);

unlock(P1,d st);

unlock(P0,d st);
end

as described in algorithm 3.

Algorithm 3: compare_clocks algorithm

begin
return ∀n ∈ {0, . . . , N −1} : VP i <VP j ⇔

VP i [n] <VP j [n] ) ;

end

In figure 5, we present three use-cases of our algorithm:

two situations of race conditions and one when the mes-

sages are causally ordered.

B. Clock update

The clock matrix VP i is maintained by each process Pi .

This matrix is a local view of the global time. It is initially

set to zero. Before Pi performs an event, it increments its

local logical clock VP i [i , i ] (upd ate_local_clock). Clocks



P0 P1 P2

000 000 000

m1(100)100

110

m2(001) 001

110×001

(a) Race condition detected on recep-
tion of m1 (put) and m2 (put)

P0 P1 P2

000 000 000

get1(010)
010

010

110
m1(110)

120

130
m2(130)

131

m3(132) 132

132

(b) No race condition between m1
(get) and m3 (put)

P0 P1 P2 P3

m11000
1100

m22000

2010

m32020
2021

m4 2022

X

(c) Race condition detected between m1 (put) and
m3 (put)

Fig. 5: Detecting race conditions with vector clocks

are updated by any event as follows (algorithm 4, see [17]).

Algorithm 4: max_clock algorithm

begin
∀l ,V ′[l ] = max(VP i [l ],VP j [l ]);

return V’ ;
end

The remote clock update is performed as follows:

Algorithm 5: update_clock algorithm

begin
VP j = get_clock(P j ,d st);

V ′ = max_clock(VP i ,VP j );

put_clock(P j ,d st ,V ′);

end

The update_clock_W algorithm is similar to the up-

date_clock algorithm, except that it updates the value of

the “write clock” W .

Since the shared memory area is locked, there cannot

exist a race condition between the remote memory accesses

induced by the race condition detection mechanism.

C. Discussion on the size of clocks

If n denotes the number of processes in the system, it

has been shown that the size of the vector clocks must be at

least n [3]. As a consequence, the size of the clocks cannot

be reduced.

D. Discussion on error signalisation

A race condition may not be fatal: some algorithms

contain race conditions on purpose. For example, parallel

master-worker computation patterns induce a race con-

dition between workers when the results are sent to the

master. Therefore, race conditions must be signaled to the

user (e.g., by a message on the standard output of the

program), but they must not abort the execution of the

program.

In the algorithm presented here, we refine the error

detection by using two distinct clocks, a general-purpose

one and a “write clock”. The drawback of this approach is

that it doubles the necessary amount of memory. On the

other end, it offers more precision and eliminates numerous

cases of false positives (e.g., concurrent read-only accesses).

V. CONCLUSION AND PERSPECTIVE

In this paper, we presented a model for distributed shared

memory. This model considers interactions between pro-

cesses and causal dependencies, while taking into account

specific features from hardware used to implement such

systems.

In this model, we propose an algorithm for detecting

race conditions caused by the absence of ordering between

events in the distributed system. This algorithm can be

implemented in the communication library of the run-time

support system that executes the program on a distributed

system.

A. Discussion

As stated in section IV-C, the size of the matrices cannot

be smaller than n, if n denotes the number of processes

in the system. Moreover, a clock must be used for each

shared piece of data. As a consequence, our algorithm

has an overhead on data storage space (clocks associated

with shared data) and with communication performance.

However, race condition detection is typically a debugging

technique. It does not need to be enabled on a parallel

application that is actually running at full performance

and large-scale systems. Parallel programmes are typically

debugged on small data sets and a few processes (typically,

about 10 processes).

B. Future works

The model presented in this paper leads to new interpre-

tations of distributed algorithms. New operations can also

be imagined, such as non-collective, global operations: for

example, a process can perform a reduction (i.e., a global

operation on some data held by all the other processes)



without any participation for the other processes, by fetch-

ing the data remotely.

Our race condition detection algorithm can be imple-

mented at two levels: in the communication library of a

parallel language, for automatic detection of conflictual

accesses, or in the pre-compiler, as wrappers around remote

data accesses.
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