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Abstract—The power grid and the communication network
are highly interdependent on each other for their well being
In recent times the research community has shown significant
interest in modeling such interdependent networks and stuging
the impact of failures on these networks. Although a number
of models have been proposed, many of them are simplistic in
nature and fail to capture the complex interdependencies tat
exist between the entities of these networks. To overcome gh
limitations, recently an Implicative Interdependency Model that
utilizes Boolean Logic, was proposed and a number of problem
were studied. In this paper we study the ‘entity hardening”
problem, where by “entity hardening” we imply the ability of the
network operator to ensure that an adversary (be it Nature or
human) cannot take a network entity from operative to inoperative
state. Given that the network operator with a limited budget
can only harden k entities, the goal of the entity hardening
problem is to identify the set of k& entities whose hardening will
ensure maximum benefit for the operator, i.e. maximally redee
the ability of the adversary to degrade the network. We show
that the problem is solvable in polynomial time for some casg
whereas for others it is NP-complete. We provide the optimal
solution using ILP, and propose a heuristic approach to sole the
problem. We evaluate the efficacy of our heuristic using powe
and communication network data of Maricopa County, Arizona.
The experiments show that our heuristic almost always prodoes
near optimal results.

I. INTRODUCTION

that may exist between network entities, such as when antity
is operational, if entities (i); andb;, andb; are operationabr

(i) by, andb,, are operationalr (iii) b, is operational. Graph
based interdependency models proposed in the literatate su
as [3], [4], [B], [1Q], [€], [7] including [1], [2] cannot caprre
such complex interdependency involving both conjunctive a
disjunctive terms between entities of multi-layer netvsrko
overcome these limitations, ammplicative Interdependency
Model that utilizes Boolean Logic, was recently proposed in
[Q], and a number of problems includingpmputation ofiKC
most vulnerable nod€g8], root cause of failure analysifL1],
andprogressive recovery from failur§&2], were studied using
this model.

In this paper we study theehtity hardening problem in
the interdependent power-communication network using the
Implicative Interdependency Mod@IM). By “ entity harden-
ing”, we imply the ability of the network operator to ensure
that an adversary (be it Nature or human), cannot take a net-
work entity from anoperative(operational) to arninoperative
(failed) state. We assume that the adversary is clever and
is capable of identifying the most vulnerable entities ie th
network that causes maximum damage to the interdependent
system. However, the adversary does not have an unlimited
budget and has the resources to destroy at nogntities
of the interdependent network. The network operator is also
aware of adversary’s target entities for destruction. Sine

The critical infrastructures of a nation form a complex sym-assume that once an entity ihdrdened by the network

biotic ecosystem where individual infrastructures arevhga

operator it cannot be destroyed by the adversary, iffall

interdependent on each other for being fully functionaloTw targets of the adversary are hardened by the network opgrato
such critical systems that rely heavily on each other foirthe then the adversary cannot induce any failure in the network.
well being are the power and communication network infrasHowever, if due to resource limitations the network operato
tructures. For instance, power grid entities such as SCADAs able to strengthen only entities, wherek < K, thesek
systems, that are used to remotely operate power generati@ntities have to be carefully chosen. The goal of the entity
units, receive their control commands over the commurdoati hardening problem is to identify the set &fentities whose
network infrastructure, while communication network #a§  hardening will ensure maximum benefit for the operator, i.e.
such as routers and base stations are inoperable withatii@le maximally reduce the ability of the adversary to degrade the
power. Thus, failure introduced in the system either by Natu network.

(hurricanes), or man (terrorist attacks), can trigger heirt : . . : .
failures in the system due to interdependencies between thc% S\é\gegéa?r%;heointtgg 2gtrgfeng}%r?éoimgméntgrfgggg'ﬁriﬂzg
entities of the two infrastructures. P ) P o

ships. We show that the first case can be solved in polynomial
Although a number of models have been proposed for modtime, and all other cases are shown to be NP-complete. We
eling and analysis of interdependent multi-layered networ provide aninapproximability result for the second case, an

[T, [21, [8], [4], [B], [6], [7], [8], many of these models arsim-
plistic in nature and fail to capture the complex interdefmm
cies that exists between the entities of these networksofezin

approximation algorithmfor the third case, and a heuristic
for the fourth (general) case. We evaluate the efficacy of our
heuristic using power and communication network data of

in [9], these models fail to model complex interdependencie Maricopa County, Arizona. The experiments show that our
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heuristic almost always produces near optimal results. I1l. PROBLEM FORMULATION

The paper is organized as follows, the IIM model is  Before we make a formal statement of the entity hardening
presented in Sectionlll, in Sectiofs] Il afd] IV we formally problem in the 1IM setting, we explain it with the help of an
state the entity hardening problem and analyze its computaxample. Consider an interdependent system as outlindain t
tional complexity, Section V outlines the optimal and hetici DR set shown in TablE I. It may be easily checked that when
solutions to the problem, Sectin]VI shows the experimentaihe adversary budget iK= 2, the most vulnerable entities

results, and finally Sectidn VIl concludes this paper. of this system are{as,b3}. If the network operator doesn't
harden any one of the entities or b3, then in this example
Il.  INTERDEPENDENCYMODEL all the network entities eventually fail, as seen from theltfa

We now present an overview of the underlying IIM in- Propagation in Tablelll. When the network operator chooses

terdependency modell[9]. IIM uses Boolean Logic to modef© harden botha, and bs then none of the entities in the
the interdependencies between network entities, these- int Network fail if the adversary restricts the attack only te tivo
dependent relationships are termed lagplicative Interde- MOSt vulnerable entities of the network, which in this exénp
pendency RelationgIDRs). We represent this interdepen- Nappens to bgas,, bs}. If the network operator has resources
dent network setting a<(4,B,F(A, B)), where sets4 [0 harden only one entity and the operator chooses to harden
and B are the power and communication network entities®2: the destruction ob; by the adversary will eventually lead
respectively, andF (A, B) is the set of dependency relations, to the failure of no other entities of the network, as shown in
or IDRs. Table[ll represents a sample interdependent nefablelli@). If on the other hand, the network operator ciemo
work Z(A, B, F(A, B)), where A = {a1,a2,a3,a4}, B = to harderbs, destruction by the adversary @f will eventually
{b1,bs, b3} and F(A, B) is the set of IDRs (dependency lead to the failure of the entitiefas, b2, a1,b1} as shown in
relations) between the entities df and B. In this example, Tapld]ﬂl{ﬂ). Clearly in this scenario the operator shouddden
the IDR by < ayas + as implies that entityb; is operational @2 instead ofb.

when both the entitieg; and a3 are operationalpr entity as

also referred to as minterm set of entitiesS, is the set of all entities that will eventually

fail due to failure ofS and the interdependencies between the

Power Network Comm. Network entities of the network as given by the set of IDR’s. The kill
a1 < b1bs b1 < aras + as iy . .

PP by < a1asas set of a set of entitie$' is denoted byK7illSet(S5).

asz < by + by + b3 b3 < a1 +az +as

s = b1t bs — It may be noted that the search foentities to be hardened

TABLE I: Implicative Interdependency Relations of a sampigwork IS restricted to theK:illSet(S), where S is the set ofK
) ) _ " i most vulnerable entities in the network, because hardearigg
Given a set of inoperable (failed) entities, a time steppegintity not in KillSet(S) does not provide any benefit to the

failure cascade can be derived from the dependency relatiopetyork operator. In this study we also assume that the set of
ships outlined in the IDR set. For example, for the inter@epe x most vulnerable entities in the network usique

dent network outlined in Tablg I, Tablel Il shows the failure

propagation when entitiefus, b3} fail at the initial time step l Entities | Time Steps 0 | ‘ Entities | Time Steps 0 |
(t = 0). It may be noted that the model assumes that dependen [0 1[2[3[4] [0TT[2[3T4]
entities fail immediately in the next time step, for example a 0101010160 a 0101t 1L ]1
when{az, b3} fail att = 0, b, fails att = 1 asb, is dependent s U e T
on ay, for its survival. The system reachestady statavhen as 0] 0]0]0]0 as 0] 0]0]0]0
the failure propagation process stops. In this example hwhe Zl 8 8 8 8 8 Zl 8 (1) (IJ } }
t{a27fg} fail at t = 0, the steady state is reached at time step —>—r—+5+11710 PR B e s e s
(a) Entity a2 is hardened (b) Entity b3 is hardened
Entities | Time Steps ) |
‘ [0J1[2[3[4]5]6 | TABLE llI: Failure cascade propagation with entity hardeni Enti-

ai OJO[IT 1[I 11 ties {a2, b3} are attacked at time step= 0. A value of 1 denotes

az 11111 ]1]1 entity failure,0 otherwise.x denotes a hardened entity.

as 0 0 0 0 1 1 1

o R R We now proceed to formulate the entity hardening

bo 0T T T T T T T 1T 1 problem formally. Given an interdependent network system

bs T[T T[T T[T Z(A, B,F(A,B)), and the set ofC most vulnerable entities

! ! ! ! .
TABLE lI: Failure cascade propagation when entit{es, b3} fail at of the systemA’ U B', whereA’ € A and B’ C B:

time stept = 0. A value of 1 denotes entity failure, and otherwise The Entity Hardening (ENH) problem

A primary consideration for using this model is the accuratd NSTANCE: Given:
formulation of the IDRs that is representative of the undad (i) An interdependent network systed(A, B, F(A, B)),
physical power and communication network infrastructureswhere the setsd and B represent the entities of the two
This can either be done by careful analysis as donElin [8], onetworks, andF (A, B) is the set of IDRs.
by consultation with experts of these infrastructures. \leze (i) The set of £ most vulnerable entities of the system
IIM to model the interdependency between the two networksd’ U B’, whereA’ C A and B’ C B
and analyze the entity hardening problem in this setting. (iii) Two positive integersk, k < K and Er.



[9]. So with two entities{z;,z;} € A’UB" andC,, NC,, =
QUESTION:Is there a set of entitieR = A” U B” A" C Cy, i.e, Oy, C Cy,, if x; is hardened it prevents the failure
A,B" C B,|H| < k, such that hardenin@{ entities results of C,, — C,, entities (provided that none of the entities in
in no more thant'x entities to fail after entitiesA’ U B’ fail Cr; — Cp; — {x;} are in A’ U B'). With this assertion, for
at time stept = 0. an entityz; € A’ N B’, steps 4-7 of Algorithnidl finds the
. actual entities for which failure is prevented by hardening
- We note some of the assumptions for the ENH problem-rp o 'soin " "p "' ' "1 comprises of these set of
irst, we assume that once an entity is hardened, it is alwaygntities for each hardened entity
operational and does not fail at any time step of the observa- '
tion, even when the entity is part of thHé most vulnerable To prove that Algorithn{1l finds the optimal solution we
entities. Second, we assume that< K, as otherwise the make the following two assertions: First, consider any tets s
selection ofC entities for hardening ensures that no entitiesD,,, and D,,,. It is implied from step 6 of Algorithni1 that
fail at all. Finally, as noted earlier, we assume that theofet D, N D,, = (. Second, consider an entity, ¢ A'U B’ is
K most vulnerable entities in the networkusique We now  hardened. Ifr, fails when entities ind’U B’ fails initially then
proceed to analyze the computational complexity of the ENHt would belong to some seb,,. Thus hardening, results

problem. in preventing the failure of entities that is a proper sulufet
D,,. Hence the entities to be hardened must belong’to B’
IV. COMPUTATIONAL COMPLEXITY ANALYSIS only. Owing to the two assertions it directly follows thattkwi

a given budgek, hardening: highest cardinality sets from the
setD ensures prevention of failure for the maximum number
%f entities. [ ]

For an interdependent netwafKA, B, 7 (A, B)) the IDRs
can be represented in four different forms. We analyze th
computational complexity of the ENH problem for each of
these cases separately.

B. Case Il: Problem Instance with One Minterm of Arbitrary

A. Case |: Problem Instance with One Minterm of Size One Size

The IDRs of Case | have a single minterm of sizeThis The IDRs of Case Il have a single minterm of arbitrary
can be represented as + y;, wherex; andy; are entities of ~ size. This can be representedaas— [[/_, y;, wherez; and
network A(B) and B(A) respectively. We show that the ENH y; are entities of networkd(B) and B(A) respectively and the
problem for Case | can be solved optimally in polynomial time size of the minterm i®. The Entity Hardening problem with

respect to Case Il is NP-complete and is proved in Theorem

Algorithm 1: Entity Hardening Algorithm for systems [2. An inapproximability proof for this case of the problem is

with Case | type interdependencies given in Theoreni 3
Data: An interdependent network(A, B, F(A, B)), set of Theorem 2. The Entity Hardening problem for Case Il is NP
K most vulnerable entities’ U B’, A’ C A, B’ C B, Complete
hardening budget and a set = (.
Result Set of hardened entitieX. Proof: The Entity Hardening problem for case Il is proved
1 begin . A . to be NP complete by giving a reduction from the Dengest
2 Eoieach entityr; € (AU B') compute the set of kill sets g,y nergraph problern [13], a known NP-complete problem.
={Cs,,Csy, ..., Car }, WhereC,, = KillSet(z;) ; . .
s Create a cOpD — { Dy, Day ..., Day. } Of SeLC ; An instance of the DensegtSubhypergraph problem includes
4 | for (i=1; i < K i++) do a hypergraplt; = (V, E'), a parametep and a paramete¥/.
5 for (=1, j #i; j < K; j++) do The problem asks the question whether there exists a set of
6 if Cz; C Cs, then vertices|V’| C V and|V’| < p such that the subgraph induced
7 L | Da; ¢ Da; \ Daj ; with this set of vertices has at leadf hyperedges. From an
instance of the DensegtSubhypergraph problem we create
8 Choose the top: sets fromD with highest cardinality ; an instance of the ENH problem in the following way. For
9 For each of theD,,, C D sets chosen in Step 8, each vertex); and each hyperedgg an entityb;, anda; are
H—HUx;, added to the seB and A respectively. For each hyperedgge
o [ return H with e; = {vm, v, vy} (Say) an IDR of forma; < b,,b,b, is

created. It is assumed that the valuefofis set of |V|. The

. . . values ofk and E'r are set tp and |V |+ |E| —p— M (where
Theorem 1. Algorithm[1 solves the Entity Hardening problem |A| = |V| and |B|F: E|) resc,lp))ectivlal)/'.ﬂ =» (

for Case | optimally in polynomial time.

Proof: It is shown in [9] that the kill set for all entities in - "
the interdependent netwgll can be computed{m?) where ~d€Pendent on entities of sét. Additionally the dependency
n = |A|+|B], thus computing the kill sets fdt entities takes for an ?nt'ty“i consists Xf cofnj_llmc_tlﬁn of .em'ltf'is n S?"I
O(Kn?). Step 4-7 of the algorithm runs i®(k2). Choosing .H.e.”‘fle or allln entitys; < h'toh ar, %'t er 'é ltse ﬁs to ?I'I
the &k highest cardinality sets can be found using any standar ttially or all entities to whicha, Is dependent on has to fail.

; ! : : : is to be noted that the entities in sBthas no induced failure
g)(r’tclr;%)algorlthm inO(Klog(KC)). Hence AlgorithnilL runs in i.e., there is no cascade. Following from this assertiorh wi

K = p, the solutionA’ = () and B’ = B would fail all entities
For two kill setsC,, andC,, it can be shown that either in set A U B. Moreover this is the single unique solution to
Cy, NGy, = 0 or Cp, N Cp, = Cy, o8 Cp;, NCy; = Oy the problem instance. This is because by including oneyentit

In the constructed instance only entities of sétare



a; in the initial failure set would result in not failing at ldgas setS we add an entityp; in set B. For all subsets i, say
one entityb; for a given budgef’ = p. Hence it won't fail S, S,,, S, which has the elemeny; there is an IDR of form
the entire set of entities idl U B. a; < by, + b, + b;. The values of positive integetsand Er
are set toM andm — M respectively. It is assumed that the

If an entity in setA is hardened then it would have no effect value of € — m.

in failure prevention of any other entities. Whereas hairgn

an entityb,,, € B might result in failure prevention of an entity With similar reasoning as that of Case Il it can be shown
a; € A with IDR a; < by,b,b, provided that entitie$,,,b,  that for £ = m the maximum number of node failures (i.e.
are also defended. With = p (andK < |V| = |BJ) it can be failure of all entities inA U B) would occur if A’ = § and
ensured that entities to be defended are from&et B’ = B. This is also the single unique solution to the problem

To prove the theorem consider that there is a solution to thirstance.
Densesp-Subhypergraph problem. Then there existertices The constructed instance also ensures that the entities to
which induces a subgraph which has at lekbthyperedges. be hardened are from s& (A’ not considered as it is equal
Hardening the entitiel; € B’ for each vertex; in the solution  to (). This is because protecting an entityc A would only
of the Densesp-Subhypergraph problem would then ensureresult in prevention of its own failure whereas protectimg a
that at leastM entities in setA are protected from failure. entity b; € B would result in failure prevention of its own and
This is because the entities in sdt for which the failure all other entities in sefd for which it appears in its IDR.
is prevented corresponds to the hyperedges in the induced

subgraph. Thus the number of entities that fail after harden To begin with the proof, consider that there is a solution
p entities is at mos{V| + |E| — p — M, solving the ENH to the Set Cover problem. Then there exigt subsets (or

problem. Now consider that there is a solution to the ENHE/EMENtS in sef) whose union results in the sét Hardening

problem. As previously stated, the entities to be harderigd w the entities in setB corresponding to the subsets selected

always be from seB’. So defending entities from setd’ would ensure that all entities in set are prevented from
would result in failure prevention of at leasf entities in set @ilure. This is because for the dependency of each entity
A such thatEr < |V| + |E| — p — M. Hence, the vertex % € A there exist at least one entity (in 98} that is hardened.

induced subgraph would have at ledst hyperedges when Hence the number of entities that fails after hardeningisi/
vertices corresponding to the entities hardened are ipdud Which is equal toEx, thus solving the ENH problem. Now,

in the solution of the DensestSubhypergraph problem, thus consider that there is a solution to the ENH problem. As
solving it. P ypergraph p discussed above the entities to be hardened should be from

set B’. To achieveElr = m — M with & = M, no entities
Theorem 3. For an interdependent netwolK A, B, (A, B))  in the setA must fail. Hence for each entity; € A at least
with n = [AU B| and 7 (4, B) having IDRs of form Case Il, one entity in sei3 that appears in its IDR has to be hardened.
it is hard to approximate the ENH problem within a factor of Thus, it directly follows that the union of subsets in st
m for some\ > 0. corresponding to the entities hardened is equal to theSset
- o A solving the Set Cover Problem. |
Proof: From Theoreni]2, DensegtSubhypergraph prob- L o .
lem has been shown to be a special case of the ENH problem 1) APproximation Scheme for Case [B this subsection we
with IDRs of form Case II. DensegtSubhypergraph problem provide an approximation algorithm for Case 3 of the problem

' i i ithi For an interdependent netwotk(A, B, F(A, B)) with the
is proved to be inapproximable within a factor e;‘JI(T)A D ) . A ) £ :
(A > 0) in [13]. Hence the theorem follows. 2 initial failed set of entities asd’ U B’ we defineProtection

Setof each entity as follows.

C. Case llI: Problem Instance with an Arbitrary Number of

Minterm of Size One Definition: For an entityz; € A U B the Protection Set is

defined as the entities that would be prevented from failure
The IDRs of Case Il have arbitrary number of minterm of by hardening the entity;; when all entities inA’ U B’ fails

size 1. This can be represented as < 22’:1 yq,» Wherez; initially. This is represented a®(z;|A’ U B’).

and y, are entities of networkd(B) and B(A) respectively

and the number of minterms aje The ENH problem with The Protection Set of each entity can be computed in
respect to Case Il is NP-complete and is proved in Theoren®((n + m)?) wheren andm are the number of entities and
@ number of minterms respectively in an interdependent ntwo

Z(A,B,F(A,B)) .

Theorem 5. For two entitiese;, z; € AUB, P(x;|A’UB")U

Proof: The ENH problem for case lll is proved to be NP P(z;|A’ U B") = P(x;,z;|A’ U B’) when IDRs are of form
complete by giving a reduction from the Set Cover ProblemCase IIl.
a well known NP-complete problem. An instance of the Set
Cover problem includes a sét= {z1,z2,...,x,}, a setS = Proof: Assume that defending two entities; and x;
{51, S2, ..., S} whereS; C S and a positive integeb/. The  would result in preventing failure aP(z;, ;| A’ U B’) entities
problem asks the question whether there exists at mést with |P(x;|A’ U B")U P(x;|A" U B’)| < |P(zy,z,;|A" UB')|.
subsets from se¥ whose union would result in the s§t From  Then there exist at least one entity ¢ P(x;|A’ U B') U
an instance of the set cover problem we create an instance &f(z;|A’UB’) such that it's failure is prevented only:f and
the ENH problem in the following way. For each element x; is protected together. So two entities andz,, (with z,,, €
in set.S we add an entity;; in set A. For each subse$; in  P(z;|A’UB’) andx,, € P(z;|A’UB’) or vice versa) have to be

Theorem 4. The ENH problem for Case Ill is NP Complete



presentin the IDR of,. As the IDRs are of form Case Il so if It is to be noted that the maximum number cascading steps is
any one ofz,, or z,, is protected them, is protected, hence upper bounded byA| + |B| — 1 = m + n — 1. The objective

a contradiction. On the other way rouré(z;,z;|A" U B’)  function can now be formulated as follows:

contains all entities which would be prevented from failure

if «; or z; is defended alone. So it directly follows that & n

[P(a,| 4’ UB') UP(x)|A' UB')| > |Plai,a;| A UB)| is min (Y imin-1) + D Yionin-1)) (1)
not possible. Hence the theorem holds. [ | i=1 j=1

Theorem 6. There exists an — l approximation algorithm L . . _
that approximates the ENH problem for Case . The objective in[(IL) minimizes the number of entities failed

after the cascading failure with the respective constsaiot

Proof: The approximation algorithm is constructed by the Entity Hardening problem as follows:
modeling the problem as Maximum Coverage problem. An
instance of the maximum coverage problem consists of &onstraint Set 12 Gz, + Z qy; =k, with gz, g5 € [0,1].
setS = {x1,z9,...,2,}, @ setS = {51, 53,..., S} where
S; € Sanda positive integel/. The objective of the problem
is to find a setS’” C S and|S’| < M such thatUg,csS;
is maximized. For a given initial failure set’ U B’ with
|A"|+|B’'| < K, let P(x;|A’"UB’) denote the protection set for
each entityx, € AU B. We construct a se¥ = AU B and for
each entityx; a setS,, C S such thatS,, = P(z;|A’ U B’).
Each set5;, is added as an element of a setThe conversion  ~ i oint Set 34, > 2. Vd1l<d<m+n—1 and
of the problem to Maximum Coverage problem can be done’ "> Vi,V 'z dl(i_#b’_F 1 i order to ensure
')'} %Olsyr\]/\?owlglrteg]rj.t i??;ht?g;ggﬂ?gﬁg'nSXassegint?gst't'eSthat for an entity which fails in a particular time step would
Hence, with the constructed sétsandS and éposiﬁve integer remain in failed state at all subsequent time steps.
M (with M = k) finding the Maximum Coverage would
ensure the failure protection of maximum number of entities
AU B. This is same as the ENH problem of Case Ill. As there
exists anl — % approximation algorithm for the Maximum
Coverage problem hence the theorem holds. |

If an entity x; (y,) |s defended then,, =1 (¢,, = 1) and0
otherwise.

Constraint Set 2:z;0 > gi — ¢z, and yio > hi — qy,.
This constraint implies that only if an entity is not defedde
andg; (h;) is 1 then the entity will fail at the initial time step.

Constraint Set 4 Modeling of the constraint to capture
the cascade propagation for IIM is similar to the constmint
Cestablished in[[9]. A brief presentation of this constramt
provided here. Consider an ID& <« b;b,b; + by,b,, + by Of
type Case IV. The following steps are enumerated to depict

the cascade propagation:
D. Case IV: Problem Instance with an Arbitrary Number of propag

Minterms of Arbitrary Size Step 1:Replace all minterms of size greater than one with a
variable. In the example provided we have the transformed
minterm asa; < c¢1 + c2 + by with ¢ < b;b,b; and

¢y = bmby, (c1,c9 € {0,1}) as the new IDRs. Note that after
transformation, the original IDR is in the form of Case llidan
the introduced IDRs are in the form of Case Il

The IDRs of Case IV have arbitrary number of minterm
of arbrtrary size. This can be represented as <«

v H ns1Yj., Wherez; andy;, are entities of network
A(B) and B(A) respectively and there age minterms each

of sizeq;, .
Theorem 7. The Entity Hardening problem for Case IV is NP Step 2:For each variable, a constraints is added to capture
Complete the cascade propagation. L&t be the number of entities

in the minterm on whiche is dependent. In the example

Proof: Case Il and Case Il are special cases of Casdor the variable c; with IDR ¢; <« b;b,b;, constraints
IV. Hence following from Theoreni]2 and Theoreh 4 the ¢y > LWLVl DTN gnd e,y < Yid—1) + Yp(a—1) +
computational complexity of the Entity Hardening problesn i ;4 1)Vd 1 < d < m + n — 1 are introduced (with
NP-complete in Case IV. B N = 3 in this case). If IDR of an entity is already in
form of Case Il, i.eq; < b;b,b; then constraintse;q >
Yi(d— 1)+Up(d DtYi@-1) — 4o, and Tig < Yi(d—1) +yp(d 1 +
Yia—1)vd, 1 <d <m+n—1 are introduced (WlthN =3).
These constraints satisfies that if the entity is hardened
We propose an Integer Linear Program (ILP) that solvesnitially then it is not dead at any time step.

the Entity Hardening problem optimally. L7, H] with i _
G = {g1,92,..,g9n} and H = {hy,ho, ..., h,} denote the Step 3:Let M be the number of minterms in the trans-

entities in setA and B respectively withh; = 0 (g; = 0) formed IDR as described in Step 1. In the given example
if entity a; (b;) is alive andh; = 1 (g; = 1) otherwise. With IDR a; < ¢ + ¢, + b, constraints of formz;q >
Given an integek: let [G, H] be the solution (with value of  Ci(a-1) + ¢2(a—1) + Yga—1) = (M — 1) — ¢z, and zjq <
corresponding to entities failed initially) that cause finam ~ “l=b*2@-nTa@-lyg | < < m +n — 1 are introduced.
number of entity failure. Two variables;; andy;q are used These constraints ensures that even if all the minterms; of
in the ILP with z;y = 1 (y;¢ = 1), when entitya; € A has at least one entity in dead state then it will be alive éf th
(b; € B) is in a failed state at time stefs and0 otherwise. entity is hardened initially. For all IDRs of type Case | and
The number of entities to be defended is considered té.be Case lll, the constraint discussed in this step is used.

V. SOLUTIONS TO THEENTITY HARDENING PROBLEM

A. Optimal Solution using Integer Linear Programming




B. Heuristic Algorithm 2: Heuristic Solution to the ENH Problem

In this subsection we provide a greedy heuristic solution to ~ Data: An interdependent network(A, B, 7(A, B)) (with
the Entity Hardening problem. For an interdependent nétwor S = AU B), set of entitiesd’ U B’ failed initially
Z(A, B, F(A, B)) with the initial failed set of entities as cgusmg/ maxw/num failure in the llnterdependent network
A’ U B’, Protection Setof each entity has been defined in Resulgvggt%f |h:r|fer|1e:d Ign?i?i(;l;ardenmg budget
the approximation scheme of Case Ill. To design the hearisti '

we defineMinterm Coverage Numbaesf each entity inA U B ; begllrrjlitialize S« AUB :
as follows: s | Initialize H = 0;

4 UpdateF (A, B) as follows — (a) letQ be the set of
Definition: For an entityx; € A U B the Minterm Coverage entities that does not fail on failinif’ entities, (b) remove
Number is defined as the number of minterms that can be IDRs corresponding to entities in s, (c) remove from
removed fromF (A, B) without affecting the cascading process minterm of entities not in seR all entities which are in

by hardening the entity; when all entities inA’ U B’ fails setq ;
5

3 A f UpdateS = S\ Q ;
initially. This is represented a8/ (z;|A’ U B’). . while (k entities are not hardenedjo

Similar to the computation ofProtection Sethe Minterm ! ;‘E[cjg‘?; entityr; < 5 compute the Protection Set
Coverage Numbeof each entity can be computed @((n + 8 Choose the entity; with highest cardinality of the
m)?). With these definitions the heuristic is given in Algorithm set|P(z4]S")|;

[2. The algorithm takes in as input an interdependent network o if (more than one entity has the same highest
Z(A, B, F(A, B)) with S = AUB. Step 4-5 is done to reduce cardinality value)then

the search space as it directly follows that the set of estiti 10 For each such entity; compute the Minterm
in Q@ wouldn't effect the hardening process. In each iteration Coverage Numbed (z;|S’) ; .

of the while loop an entityz, is greedily selected which ! Choose the entity:q with highest Minterm

when hardened would prevent failure of maximum number of Coverage Number. ;

entities. This ensures that at each step the number ofentiti 2 In case of a tie Cho?se arbitrarily;
failed is minimized. In case of a tie, among all entities iveal 13 UpdateS < S — P(zalS"); .
in the tie, the entity having the highest Minterm Coverage 4 Update. (A, B) by removing (i) IDRs corresponding

P : . P . L to all entities inP(x,4|S’), and (ii) occurrence of
Number is included in the solution. This gives a higher ptyor these entities in IDRS of entities not A(zaS"):

to the entity which when hardened, has more impact on failure15 if (2 € ') then
minimization in subsequent iterations of the while loopeTh L Gpdatesl — S — {wa};
interdependent network(A, B, F(A, B)) is updated in steps ’
13-16 of the algorithm. This takes into account the effect of *’ | UpdateH =H U zq ;
hardening an entity in the current iteration on entitiesdeaed 5 retyrn 7

in the following iterations.

Run Time Analysis of Algorithial 2For this analysis we
considern to be the total number of entities and to be
the total number of minterms. Updates in step 4 can be done

in O(m) and step 5 inO(n). The while loop iterates fok  |ocated within the geographic region formed the deand B
times. In each |tera2t|0n of the while loop step 7 and step 84ak respectively. Each region was represented by an interdiepen
at mostO((n +m)*) and O(nlog(n)) time respectively. On  nenworkZ(A, B, F(A, B)). We use the IDR construction rules

branching in step 9, step 10 and step 11 taken + m)?)  as defined in[9] to generat&(A, B).
and O(nlog(n)) time respectively. Updates in step 13 takes

O(n) time and in step 14 take®(n + m) time. Step 12,

16 and 17 runs in constant time. Hence Algorithin 2 runs in . . o
O(k(n +m)?) time. In all of our simulations IBM CPLEX Optimizer 12.5 to

solve ILPs and Python 3 for heuristic is used. To analyze
the Entity Hardening problem the value &f was set toS.
The ILP in [9] was used to compute thé most vulnerable

In this section we present the experimental results of th@odes in the network, and the set of failed entities due to
Entity Hardening problem by comparing the optimal solutionthe failure of theXC entities was also computed. For the five
computed using an ILP, and the proposed heuristic algorithnregions, when théC = 8 most vulnerable nodes failed, the
The experiments were conducted on real world power grid dateotal number of failed entities in the network were 28, 23, 28
obtained from Platts (www.platts.com), and communicatior28 and 27 respectively. With th€ most vulnerable nodes and
network data obtained from GeoTel (www.geo-tel.com) offinal set of failed nodes as input, the ILP and heuristic of the
Maricopa County, Arizona. The data consisted70f power  Entity Hardening problem are compared with= 1,3,5, 7.
plants and470 transmission lines in the power network, and The results of these simulations are shown in Fidudre 1. It is
2,690 cell towers,7, 100 fiber-lit buildings and42, 723 fiber  observed that the heuristic solution differs more from roji
links in the communication network. We identified five non- at higher values of (factor of 0.5 and 0.67 for Regions 1
intersecting geographical regions from the data set arelddb and 3 respectively wittk = 7). This is primarily because of
them from regions 1 through 5. For each of the regions, théhe greedy nature of Algorithm 2. However on an average the
entities of the power and communication network that wereheuristic solution differs by a factor ©f13 from the optimal.

VI. EXPERIMENTAL RESULTS
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Fig. 1. Comparison chart of the optimal solution (ILP) witketheuristic by varying number of entities hardened for ddehtified region

VII. CONCLUSION

(8]

In this paper we studied the entity hardening problem

in multi-layer networks. We modeled the interdependencies[9]
shared between the networks using IIM, and formulated the
the Entity Hardening problem in this setting. We showed that
the problem is solvable in polynomial time for some cases,
whereas for others it is NP-complete. We evaluated the effica [10]
of our heuristic using power and communication network data
of Maricopa County, Arizona. Our experiments showed that
our heuristic almost always produces near optimal results.
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