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Abstract To achieve high throughput in wireless networks,
smart forwarding and processing of packets in access routers
is critical for overcoming the effects of the wireless links.
However, these services cannot be provided if data sessions
are protected using end-to-end encryption as with IPsec, be-
cause the information needed by these algorithms resides
inside the portion of the packet that is encrypted, and can
therefore not be used by the access routers. A previously pro-
posed protocol, called Multi-layered IPsec (ML-IPsec) mod-
ifies IPsec in a way so that certain portions of the datagram
may be exposed to intermediate network elements, enabling
these elements to provide performance enhancements. In this
paper we extend ML-IPsec to deal with mobility and make it
suitable for wireless networks. We define and implement an
efficient key distribution protocol to enable fast ML-IPsec
session initialization, and two mobility protocols that are
compatible with Mobile IP and maintain ML-IPsec sessions.
Our measurements show that, depending on the mobility pro-
tocol chosen, integrated Mobile IP/ML-IPsec handoffs result
in a pause of 53–100 milliseconds, of which only 28–75 mil-
liseconds may be attributed to ML-IPsec. Further, we provide
detailed discussion and performance measurements of our
MML-IPsec implementation. We find the resulting protocol,
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when coupled with SNOOP, greatly increases throughput
over scenarios using standard TCP over IPsec (165% on
average). By profiling the MML-IPsec implementation, we
determine the bottleneck to be sending packets over the wire-
less link. In addition, we propose and implement an extension
to MML-IPsec, called dynamic MML-IPsec, in which a flow
may switch between plaintext, IPsec and MML-IPsec. Using
dynamic MML-IPsec, we can balance the tradeoff between
performance and security.
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1 Introduction

Data confidentiality and integrity are two critical issues for
wireless, mobile networks. These issues are of growing im-
portance as wireless service providers attempt to increase
wireless data traffic by providing mobile VPN services. The
most widely accepted method for ensuring data confidential-
ity and integrity is to pass encrypted data end-to-end using a
mechanism such as IPsec [14].

For wireless networks, smart forwarding and process-
ing of packets are also critical for overcoming the effects
of the wireless links, especially highly variable delay and
error rates. Several studies have shown that techniques such
as smart scheduling with respect to the type of data being
sent and regulation of TCP acknowledgment information,
can greatly improve end-to-end performance in a wireless
network [2, 6]. However, these services cannot be provided
if end-to-end encryption is used, such as in IPsec, because
the information needed by these algorithms resides inside
the portion of the packet that is encrypted, and can therefore
not be used by mobile routers.
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Previous work, called Multi-layered IPsec (ML-IPsec)
[22] applies a modified version of IPsec so that certain por-
tions of the user information may be exposed to particular in-
termediate network elements in a route. In this way, portions
of a datagram may be encrypted end-to-end, while portions
may be read and operated upon by network elements provid-
ing performance enhancements. However, the ML-IPsec as
defined in [22] is designed for static environments and does
not examine mobility.

In this paper we extend ML-IPsec to deal with mobility
and make it suitable for wireless networks. We call our re-
sulting protocol Mobile ML-IPsec (MML-IPsec). We make
the following four contributions: (1) we define and present
performance measurements of an efficient key distribution
protocol to enable fast MML-IPsec session initialization; (2)
we define and present performance measurements of two
mobility protocols that maintain MML-IPsec sessions; (3)
we provide detailed discussion and performance measure-
ments of our MML-IPsec implementation to quantify its
performance impact compared to non-secure communica-
tion and communication using IPsec; and (4) we provide a
detailed discussion and performance measurements of our
implementation of SNOOP, and SNOOP executing over
MML-IPsec to quantify the benefits of using MML-IPsec
to enable performance enhancing algorithms in a wireless
environment.

Our measurements in a wireless environment show that,
depending on the mobility protocol chosen, integrated
Mobile IP/ML-IPsec handoffs result in a pause of 53–
100 milliseconds, of which only 28–75 milliseconds may
be attributed to MML-IPsec. We found MML-IPsec only
marginally reduced throughput compared to scenarios in
which no encryption is used (9%), or those in which IPsec
is used (4%), and when coupled with SNOOP, greatly in-
creased throughput over scenarios using standard TCP end-
to-end (50% on average), or using TCP over IPsec (165%
on average). Our conclusion, based on these results, is that
MML-IPsec is a worthwhile protocol to pursue because it en-
ables large performance improvements while providing end-
to-end secure transfer of user data. By profiling the source
code, we determine the bottleneck in MML-IPsec to be send-
ing packets over the wireless link.

For many applications, security may be provided without
encrypting all the packets. For example, in video stream-
ing service, certain frames contain more information than
others. In this case, applying MML-IPsec to only the high
quality frames will provide more efficient transport without
sacrificing security. Using MPEG-2 [1] video streaming as
an example, we can choose to only encrypt the I-Frames and
transmit the remaining frames, i.e., P-Frames and B-Frames,
without encryption. As another example, if a MH determines
that it has a high signal strength, and therefore likely has a
reliable wireless link, it may not require a performance en-

hancing algorithm in the access network. In this case, it may
choose to run IPsec end-to-end, and disable MML-IPsec.

Based on this observation, we propose and implement
an extension to MML-IPsec, called dynamic MML-IPsec,
in which a flow may switch between plaintext, IPsec and
MML-IPsec. Using dynamic MML-IPsec, we can balance
the tradeoff between performance and security.

The rest of this paper is organized as follows. In Section
2 we present an overview of related and previous work,
including a description of ML-IPsec. In Section 3 we discuss
our design of MML-IPsec, our model for integrating Mobile
IP with IPsec and MML-IPsec, the software platform on
which we base our implementation, and the test bed used
to evaluate the performance of the protocols. In Section 4
we present our key distribution protocol, our two mobility
protocols, and characterize their performance. In Section 5
we present our implementations of MML-IPsec and SNOOP
and their performance. The source code of MML-IPsec is
profiled to identify the bottleneck of the infrastructure. We
also present the design and evaluation results of dynamic
MML-IPsec. Section 6 concludes the paper.

2 Background

Several studies have shown that the performance of classic
data communication protocols can be quite poor when used
over wireless links. In particular, the performance of TCP,
the reliable Internet transport protocol, can be degraded by
the loss and delay characteristics of a wireless link. Conse-
quently, there have been several efforts aimed at improving
the performance of TCP on wireless links. Two of the more
promising works do not require any modifications to TCP,
but instead perform smart processing (forwarding, filtering,
scheduling) on TCP/IP packets based on information gleaned
from observing packet flows. In [2], the authors show that by
snooping on TCP/IP packets at the wireless edge, determin-
ing when packet loss has occurred by detecting duplicate ac-
knowledgments, and performing fast local retransmissions,
TCP performance can be greatly improved.

More recently in [6], it was uncovered that TCP perfor-
mance is adversely affected by the highly variable delay
experienced on the 3G wireless links. The effect is that TCP
acknowledgments sent on the uplink tend to be compressed
causing them to arrive at transmitters back-to-back. The com-
pression of acknowledgments results in transmitters sending
bursts of data. These bursts of data can overflow buffers at
the wireless edge resulting in high packet loss. The solu-
tion proposed is to regulate the flow of acknowledgments to
ensure that buffers do not overflow.

In both of these proposals, the node at the wireless edge
must observe information in the TCP header to execute
their algorithms. The need to have nodes inside the network
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examine packet payloads to perform smart packet process-
ing or perform packet classification is in direct conflict with
the current Internet model of security implemented by the
IPsec protocol suite [11–14]. IPsec supports a variety of
operational modes including packet authentication, packet
encryption, or both. In the most secure mode, tunnel mode,
the entire IP packet is encrypted and encapsulated with a
new IP packet header. Therefore, intermediate nodes in the
network do not have access to the original IP header infor-
mation, nor the information contained in any of the transport
layer or application layer protocols. This precludes the net-
work from performing smart packet processing and packet
classification to improve end-to-end performance.

There are several possible solutions to this problem. Pro-
tocols such as TLS [7] and SSL [8] provide security above the
transport layer. With their use, user payloads are encrypted,
but the TCP and IP headers are in the clear. Therefore, inter-
mediate nodes may access required information to perform
many of the performance enhancements discussed above.
The main drawback is that the TCP and IP header informa-
tion is in the clear throughout the entire network allowing
for possible eavesdropping to determine communication pat-
terns and traffic characterizations. Also, these protocols do
not enable application layer packet classification for proto-
cols such as RTP.

A more flexible solution is defined in the ML-IPsec pro-
tocol [22]. This protocol allows a user to define zones within
an IP packet. Each zone is encrypted and authenticated with
its own security association (SA). Each zone may be ac-
cessed (decrypted) by different network elements. This re-
quires SAs to be established between a client and several
nodes in a network, each of which can decrypt a certain por-
tion of the IP packet while being unable to view the entire
packet.

For example, consider the wireless network of Fig. 1. In
this example, the corporate firewall acts as a Mobile IP Home
Agent (HA). Foreign Agent (FA) 1 requires access to TCP/IP
header information to perform smart packet processing. Us-
ing IPsec, secure communication would entail running an
IPsec tunnel between the HA and Mobile Host (MH), in
which case FA1 would not have access to the TCP/IP header
information. Using ML-IPsec, this header information would
be included in Zone A which is accessible to FA1. However,
the user payload would be placed in Zone B which is not ac-
cessible to FA1. In this way, the user information is protected
end-to-end and the TCP/IP header information is protected
from all nodes except FA1 which may perform smart packet
processing.

While ML-IPsec is a promising start, it has limitations
and several unknowns. First, it requires that SAs (secret keys,
algorithms, parameters, etc.) be established between multi-
ple elements for a single data session. This requires an effi-
cient key distribution algorithm which has yet to be defined.
Second, mobility is not supported. The mobility requires that
new SAs be established as a mobile host moves during a data
session. For example, in Fig. 1, if the mobile host moves from
base station 1 (BS1) to BS2, SA1 must move from FA1 to
FA2. These modifications must be performed quickly so that
sessions are not disrupted during a handoff. This is more
complex than mobility in basic Mobile IP [18] because in
this MML-IPsec system, multiple SAs exist that operate on
the user data.

Third, there is no data available on the performance trade-
offs between the overhead of supporting multiple zones ver-
sus the benefits of packet classification or smart packet pro-
cessing. Specifically, mobile access routers, e.g., FAs, will
have hundreds of flows passing through them, so the over-
head of the key distribution and initialization, handoffs, and
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per packet processing, must be kept low to achieve high
performance.

IKE [9,11] supports key distribution and mutual authenti-
cation between two nodes but requires extensions to support
the multiple SAs used in ML-IPsec and is not suitable for
mobility. Support for key distribution in mobile networks is
the focus of [20]. An efficient method of key distribution
and authentication between a home network, security server
in a foreign network, and a mobile host is presented. How-
ever, this work does not address the distribution of multiple
keys required for a ML-IPsec, does not account for mobility,
and does not provide any implementation or performance
insights.

3 Mobile multi-layered IPsec - services and software
platform

In the following subsections we present background on
ML-IPsec and how to make it suitable for wireless networks;
then we propose solutions to integrate IPsec and mobile IP;
the last two subsections describe the software platform on
which we base our implementation, and our test bed.

3.1 Protocol services

The original ML-IPsec [22] is defined to allow network
layer packets to be segmented into zones, each of which
is protected, i.e., encrypted, authenticated, or both, indepen-
dently. Corresponding hosts have access to all zones and
can therefore authenticate and decrypt the entire packets.
Selected intermediate nodes are given access to one or more
selected zones, and may therefore decrypt and authenticate
only these portions of the packet. Before communication can
commence, a set of SAs, called a composite security associ-
ation (CSA), must be established, one for each zone in each
node for which access to the zone is permitted. As defined
in [22], the number of zones and the number of intermediate
nodes with access to at least one zone are not limited. Also,
there is no limit on the number of zones in a packet, and
zones are not required to cover contiguous bits in a packet.

We have somewhat restricted the definition of ML-IPsec
to meet the needs of the known methods of enhancing wire-
less system performance, while keeping the processing com-
plexity low. First, we limit the number of allowed interme-
diate nodes to a single node, specifically the Mobile IP FA.
We choose this node because the vast majority of wireless
enhancements operate on a node close to, or supporting a
wireless link, and do not require changes to any other por-
tion of the network. Second, we limit the number of zones to
two, one for the packet header and one for the payload. The
rationale is that most algorithms require access to TCP/IP

header information, and not packet payload. This restriction
can be easily relaxed.

Finally, we define zones as contiguous portions of the
packet to ease processing. Certainly we can let a zone con-
sist of a collection of sub-zones (i.e., continuous blocks)
distributed over the whole datagram. We define each zone as
one continuous block for two reasons. First, in our settings,
it is nature to have only two continuous blocks: one is the IP
head and the other is the payload. Second, it eliminates the
need for maintaining sub-zone information for each zone.
With reduced processing complexity, our protocol is more
practical and efficient at core devices such as routers.

In addition to these changes, we have also defined a key
distribution protocol for MML-IPsec and two mobility pro-
tocols (Section 4).

3.2 Integrating mobile IP, IPsec, and MML-IPsec

We assume that if the basic IPsec is used, the IPsec tunnel
extends between the HA and the MH. If MML-IPsec is used,
the MML-IPsec tunnel includes the HA and the MH, while
the FA has access to the header part of the TCP/IP packet. In
addition, we assume reverse tunneling [17] is used for data
transmitted from the MH so that packets in both directions
are consistently encrypted.

Several research projects [3, 4] have proposed solutions
to integrate Mobile IP and IPsec. SecMIP [4] is based on the
configuration in which the MH uses the DNS/DHCP service
to get the COA (Care-of-address). Without using the FA,
the MH gets a new collocated COA using DHCP. SecMIP
uses the IPsec tunnel to protect the Mobile IP tunnel. While
this is a simple scheme to provide security in Mobile IP, the
handoff delay is high because the MH must re-establish the
IPsec tunnel on every handoff.

Secure Mobile networking (SMN) project [3], by Port-
land State University, establishes an IPsec tunnel between
the HA and the MH. When the MH moves to the foreign
network, it has to register its COA to the HA. However, the
established IPsec tunnel prevents the Mobile IP registration
message from reaching the FA because every packet, in-
cluding the Mobile IP registration packet, is encrypted with
IPsec. In order to solve this problem, the client software
is changed so that the Mobile IP packet is not encrypted.
The re-establishment of IPsec tunnel on every handoff will
degrade the end-to-end performance because it incurs high
handoff latencies.

We propose a different integration model for Mobile IP
and IPsec which is then largely re-used for integrating Mo-
bile IP and MML-IPsec. This model is similar to SMN, but
does not require changes to the client software, and does not
require IPsec tunnels to be re-established after each handoff.
To enable Mobile IP registration messages to be received by
the FA when an IPsec tunnel is in place between the MH and
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Fig. 2 Integrating Mobile IP
and MML-IPsec/IPsec

HA, we add an additional routing entry in the MH and lever-
age the fact that route selection chooses the route having
the longest prefix match among multiple matched entries.
When an agent advertisement is received by a MH, it adds
a route entry for the FA. The new route entry specifies the
FA address as the gateway for all packets destined to the FA.
After adding this route, the Mobile IP registration message
addressed to the FA will match the new route, and therefore
be sent directly to the FA, instead of using the old entry
through which packets are encrypted.

To eliminate the need to re-establish IPsec tunnels after
each handoff, we leverage the fact that when using Mobile
IP, while the COA of the MH changes after each IP layer
handoff, the IP addresses of the MH and HA remain con-
stant. Therefore, the IPsec tunnel may remain intact. In our
model, during Mobile IP registration, the HA simply updates
the routing entry for IPsec packets destined to the MH to be
forwarded through the new Mobile IP tunnel. This does not
require any message beyond the standard Mobile IP regis-
tration.

Figure 2 depicts this integration model which can be ap-
plied to both IPsec and MML-IPsec. The MML-IPsec tun-
nel is established between the HA, FA and MH, within the

Mobile IP tunnel. An advantage of our model is that it does
not restrict the scheme of obtaining a COA as that in SecMIP,
and provides a seamless integration between Mobile IP and
ML-IPsec. Table 1 shows the overall handoff flow between
the HA, FA, and MH. This illustrates that our proposed model
seamlessly integrates Mobile IP with ML-IPsec.

Next, let us consider the the data traffic flow from the
MH to the correspondent node (CN). The FA receives the
encrypted traffic through the MML-IPsec tunnel or IPsec
tunnel. The outer IP header has the source address as the MH
IP address, and the destination address as the HA IP address.
The FA routes this data traffic into the Mobile IP tunnel based
on the reverse tunnel of the Mobile IP. Next, let’s consider
the traffic from the CN to the MH. This traffic is intercepted
by the HA. The HA encrypts the traffic and encapsulates
it within the Mobile IP tunnel, which has the outer header
source address as the HA IP address, and the destination
address as the FA IP address. If IPsec is used, when receiving
the encapsulated traffic, the FA decapsulates the Mobile IP
outer header and transmits the encrypted traffic to the MH. If
MML-IPsec is used, the intermediate node decrypts the first
zone (packet header), performs some processing, re-encrypts
this zone, and forwards the data.

Table 1 Overall handoff flow
of Integrated Mobile IP and
MML-IPsec

MH
− Receive an Agent Advertisement (from a new FA)

1. change routing table to set the new FA as a default router
2. send Mobile IP Registration message to the new FA

− Receive a Mobile IP Registration Reply message
1. Finished

FA
− Receive a Mobile IP Registration message

1. initiate key distribution∗

2. send Mobile IP Registration message to the HA
− Receive a Mobile IP Registration Reply message

1. add a new Mobile IP tunnel into routing table for the MH
2. activate MML-IPsec for the MH
3. forward the Mobile IP Registration Reply to the MH

HA
− Receive a Mobile IP Registration message

1. reset the previous configuration (MML-IPsec and Mobile IP tunnel)
2. change local configurations to map MML-IPsec into a new Mobile IP tunnel
3. send a Mobile IP Registration reply message to the FA* Optional based on key

distribution protocol.
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Fig. 3 Mobile Multi-Layered IPsec test bed

3.3 Software platform

Our implementation is based on Linux FreeS/WAN version
1.99, an open source IPsec implementation available free on
the web (under GNU license term), on Linux kernel version
2.4.21. The FreeS/WAN system has two major components:
the Pluto Daemon and the Kernel IPsec Support (KLIPS).
The Pluto Daemon implements the IKE protocol [9,11]. We
modified portions of the Pluto Daemon to implement our key
distribution protocols and to support the interface between
the key distribution protocols and the MML-IPsec transport
module. We made major modifications to KLIPS to integrate
IPsec and SNOOP.

3.4 Test bed

To evaluate the performance of our protocols, we set up a
test bed as shown in Fig. 3. The base stations are DELL
Pentium desktops (P4 2.4 GHz), and the MHs are DELL
Pentium laptops (Mobile P4 2.4 GHz). These are equipped
Orinoco Prism 802.11b wireless cards configured in ad hoc
mode so that the desktop machines act as base stations. All
these machines are running RedHat 9.0 with Linux kernel
version 2.4.21.

4 Key distribution and mobility management

In this section we present efficient automatic key manage-
ment protocols for MML-IPsec integrated with Mobile IP.
We include procedures for session initialization and mobil-
ity management. Our goal is to enable fast handoffs while
maintaining MML-IPsec sessions. In our model, the nodes
involved in the MML-IPsec session are the MH, HA, and
FA. The MH and HA have access to both zones in the MML-
IPsec packets; the FA serves as the intermediate node and has

access to the first zone of the packet containing the TCP/IP
header. The key management protocols are responsible for
establishing the required SAs between these nodes, and for
enabling mobility.

The key management protocols have two phases. In the
first phase, a MML-IPsec session is established using the
initialization procedure. This includes determining if a FA
will be involved in the secure session, and hence requires
the use of MML-IPsec. The second phase of the protocols
supports mobility. We propose two protocols for this pur-
pose. The first, called Proactive Key Distribution (PKD),
pre-establishes SAs with not only the current FA, but its
neighbors as well. Therefore, when a MH moves to a new
FA, the SA already exists. The second, called Dynamic Key
Migration (DKM), requires SAs to migrate between FAs as
a user moves.

In the following subsections we first discuss MLIKE Ini-
tialization, PKD, and DKM. Our description is based on
IKE version 2.0 (IKEv2) [11]. We implemented key distri-
bution protocols in both IKE version 1.0 (IKEv1) and IKEv2.
These implementations are separate packages since IKEv1
and IKEv2 are not compatible. We present our implementa-
tion and performance results.

4.1 Initialization

When a MH leaves its home network, it executes Mobile IP
registration procedures. In addition, Initialization is invoked.
Figure 4 shows the Initialization flows between the HA, FA
and MH, with the Mobile IP registration.

The Initialization phase begins after the HA has sent the
Mobile IP registration reply to the FA. First, the HA estab-
lishes an IKE SA [9, 11, 15] with the FA and MH so that
session key information may be exchanged securely. Note
that the establishment of the IKE SA between the FA and
HA occurs in parallel with sending the Mobile IP registration
reply to the MH.

The second step of the Initialization is to establish the
CSAs in the MH, HA and FA. The CSA has two elements,
a zone map and a zone list. The zone map states the start
and stop positions of the zones in the IP datagram. The zone
list contains the SAs for all the zones. The HA, FA, and
MH create and keep an instance of the CSA. The source and
destination (HA and MH) store a complete list of SAs. The
FA has a non-null SA in the zone list for the zone that it
supports, and a null SA for the zone that it does not support.

The HA and MH setup a MML-IPsec CSA using the
MLIKE AUTH SA Exchanges (flow (7) in Fig. 4). During
these exchanges, the MH and HA exchange the complete
zone map and SAs to compose a CSA. We define a new
payload type called “Zone Map” which delivers the zone
map information. In addition, we modify the key exchange
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MH FA HA
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Mobile IP Registration Reply(3)
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IKE SA Establishment(6)

IKE SA Establishment(5)
Mobile IP Registration Reply(4)

MLIKE KEY_DISTRIBUTE(8)

MLIKE AUTH SA(7)

Fig. 4 Mobile IP registration
and MML-IPsec key
initialization

protocol to allow for multiple SAs to be included. The secret
key values for all zones are decided in the MML-IPsec AUTH
SA Exchanges.

Once the CSA is established between the MH and HA,
the HA delivers the CSA to the FA, using the IKE SA with
the FA. For the zone to which the FA has access, i.e., the
zone covering the TCP/IP header, the HA sends the corre-
sponding non-null SAs to the FA (flow (8) in Fig. 4) with the
corresponding symmetric key values. A new payload, called
“SECRET”, delivers the symmetric key values.

Upon completion of the Initialization procedure, data
transmission using MML-IPsec may take place.

4.2 Proactive key distribution (PKD)

The goal of PKD is to enable a fast handoff by pre-
distributing keys in FAs that are neighbors of the current
FA, so that very little overhead is incurred during the real-
time handoff. For example, in Fig. 1, SA1 is placed in both
FA1 and FA2 when the session is established. The distri-
bution of the CSA information to these neighboring FAs is
performed after the Initialization exchange is complete, so

the Initialization overhead will not be increased by PKD.
The disadvantage of this approach is that the active key in-
formation must be stored in more nodes than are actively
being used, thus creating a higher chance of the session key
being compromised.

Figure 5 shows the PKD protocol flow. The FA, when
finished Initialization, notifies the HA of its neighbor FAs
(flow (1) in Fig. 5). The HA establishes an IKE SA to each
neighboring FA to transmit ML-IPsec CSA securely (flows
(2) and (4) in Fig. 5). The HA distributes the MML-IPsec
CSA information established via IKE SA to the neighbor
FAs (flows (3) and (5) in Fig. 5).

PKD can be performed in two ways: (a) point-to-point
sequential key distribution; (b) multicast key distribution. In
this paper, we use the former to simplify the implementation.

When the MH moves to a new FA, the handoff latency
is low because the MML-IPsec CSA information is already
loaded in the new FA. When the new FA receives a Mobile IP
registration reply from the HA, the FA internally activates the
MML-IPsec CSA. The HA only changes the internal binding
of the MML-IPsec tunnel to the new Mobile IP tunnel with
the neighbor FA.

HA

IKE SA Establishment (2)

FA

IKE SA Establishment (4)

PKD KEY_DISTRIBUTE (3)

PKD KEY_DISTRIBUTE (5)

Fig. 5 Proactive key
distribution protocol flow
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Previous FA

Mobile IP Registration Reply(5)
Mobile IP Registration Reply(6)

IKE SA Establishment(3)

Fig. 6 Directed key migration
protocol flow

4.3 Directed key migration (DKM)

Unlike PKD, in DKM the CSA information is only stored
in the FA that is actively serving the MH. Therefore, when
a MH changes FAs, the CSA must be migrated from the
old FA to the new FA in a secure manner. For example, in
Fig. 1, SA1 must be moved from FA1 to FA2. This method
only requires that the CSA be stored in a single intermediate
node, but incurs a higher latency than PKD because more
signaling is required during the handoff. After a handoff,
rekeying may take place as described in Section 4.4, so that
only one FA has the current CSA.

Figure 6 shows the DKM protocol flow. When a MH
moves to a new FA, it detects the movement using standard
Mobile IP techniques. We modify the Mobile IP Registra-
tion [18] by adding an extension to include the previous
FA address, as is done in Mobile IP with Route Optimiza-
tion [19].

First, the MH transmits a Mobile IP registration message
with the previous FA information to the new FA (flow (1)
in Fig. 6). The new FA uses the previous FA information
to decide where to retrieve the MML-IPsec CSA informa-
tion. The new FA initiates the DKM protocol, and relays the
Mobile IP registration message to the HA simultaneously.

In DKM, if there is no IKE SA established between the
previous FA and the new FA, the new FA establishes an
IKE SA with the previous FA so the key information is
transferred securely. Once this IKE SA is established, the
new FA transmits the MML-IPsec CSA information request
to the previous FA (flow (4) in Fig. 6). The previous FA
authenticates the new FA and sends the response to the new

FA. The response message includes the MML-IPsec CSA
including the secret key values.

Note that the DKM protocol is processed in parallel with
the Mobile IP registration between the new FA, HA and MH.

4.4 Rekeying and revocation

There are several reasons why rekeying or key revocation
may take place when using MML-IPsec. For example, if a
CSA lifetime expires, or a CSA is determined to be insecure,
it may be revoked, or if secure communication is still de-
sired, rekeying may take place during which a new CSA is
established. Further, key revocation may take place when a
Mobile IP tunnel is deleted, for example when a MH returns
to its home network or powers off. Finally, rekeying may
take place after a handoff, if the number of FAs that share
the CSA exceeds a threshold value. Note that in DKM the
threshold value is one since only the current FA has the CSA.

IKEv2 [11] defines rekeying procedures so that the peers
can initiate the establishment of a new IPsec SA, while the
old IPsec SA is active. This minimizes the interruption of
data transmission. In the same way, a new MML-IPsec CSA
is established while the old one is being used. Once the new
CSA is established, the MH, FA and HA change to use the
new CSA for data transfer, and the old CSA is deleted.

Figure 7 shows the CSA rekeying which is triggered when
MML-IPsec CSA lifetime expires. Either a HA or a MH
initiates the rekeying (flow (1) in Fig. 7). The HA distributes
the new CSA to the current FA in which the MH resides
(flow (2) in Fig. 7).

MN HA

MLIKE_CREATE_CHILD_SA (1)

FA
Fig. 7 MML-IPsec rekeying by
lifetime expiration
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PKD KEY_DISTRIBUTE (4)
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Fig. 9 MML-IPsec rekeying/revocation in PKD

In DKM, a new FA retrieves a MML-IPsec CSA from
the previous FA. If the secret information remains with the
previous FA, it increases the vulnerability of an attack. To
address this vulnerability, the HA and the MN reestablish
a new MML-IPsec CSA, where only the key values for the
header zone are changed. The HA distributes this new CSA
to the new FA. The new FA uses the old CSA until the new
CSA is established. After establishing the new CSA, the HA
revokes the old CSA from the previous FA.

Figure 8 shows the rekeying and revocation procedures
in DKM. After retrieving the MML-IPsec CSA from the
previous FA, a new FA requests rekeying to the HA (flow
(2)). The HA initiates rekeying (flow (3)) and, in the same
way as Fig. 7, distributes the new CSA to the new FA

(flow (4)). The old CSA is deleted from the previous FA
(flow (5)).

In PKD, as a MH moves, the MML-IPsec CSA is dis-
tributed to more FAs. As the number of FAs with the CSA
increases, the less secure MML-IPsec is. To address this
problem, the HA initiates rekeying when the number of FAs
having the MML-IPsec CSA exceeds a threshold (a system
parameter). First, the HA rekeys the MML-IPsec CSA with
the MH, where only the keys for the header zone are changed
(flow (2) in Fig. 9). Second, the HA distributes the MML-
IPsec CSA to a new set of neighboring FAs (flows (3)–(6)
in Fig. 9). Finally, the HA exchanges INFORMATIONAL
(flows (7) and (8) in Fig. 9) to delete the previously dis-
tributed CSA from S = {a set of FAs |A − B}, where A =
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{a set of existing neighboring FAs} and B = {a new set of
current FA’s neighboring FAs}.

4.5 Implementation

We implemented the key distribution protocols (MLIKE
Initialization, PKD, and DKM) on the test bed shown in
Fig. 3. We implemented MML-IPsec key distribution pro-
tocols based on IKEv1 and IKEv2. We describe the IKEv2
implementation. The Dynamic Mobile IP Linux implementa-
tion developed by Helsinki University of Technology (HUT)
[10] was used in the test bed. Each subnetwork has a dif-
ferent set of wireless configuration parameters such as essid
and channel number. The handoff occurs when the wireless
configuration parameters are changed. We manually trigger
handoffs through a shell script to run controlled experiments.

The implementation consists of several blocks: ML-IKE,
PKD, DKM, Key Management, and the interface to MML-
IPsec transport which will be described in the next section.
The communication between these blocks is via the Unix
Domain Socket in Linux.

ML-IKE manages, negotiates, and establishes the MML-
IPsec CSA for Initialization, while PKD and DKM support
mobility. ML-IKE also manages the state machine of the
protocols.

The Key Management keeps the establishment state of
both IKE SA and MML-IPsec CSA based on the source
and destination addresses. Using the connection status, it
coordinates Mobile IP and ML-IKE. If there is already an
established MML-IPsec CSA in the case of PKD, the key
management activates MML-IPsec through adding the route
entry and IPsec binding. Otherwise, it initiates the establish-
ment of the IKE SA if necessary.

To implement the interface between the key exchange pro-
tocols and the MML-IPsec module, we modified the Pluto
Daemon by adding a new user interface to construct the CSA.
The interface constructs a newly-defined zone message and
sends the message to the PF KEYv2 [16] socket. PF KEYv2
is a new socket protocol family used by trusted privileged key
management applications (e.g., ML-IKE, PKD and DKM) to
communicate with the operating system’s key management
internals (i.e., FreeS/WAN’s Security Association Database
(SADB)). We have modified the PF KEYv2 source code
to handle the newly-defined zone message. The PF KEYv2
socket will construct the CSA when it receives a zone mes-
sage.

To implement these protocols based on IKEv1, we ex-
tended the IKE of FreeS/WAN [21], which is running in the
Pluto Daemon, to include the new exchange types described
previously. Furthermore, we implemented IKEv2 and key
distribution protocols, using only a small part of Free/SWAN
since FreeS/WAN does not support IKEv2.

Table 2 Message processing time

Processing time

Message flow Initiator Responder Total

IKE SA establish 13.3 ms 13.42 ms 26.72 ms
MLIKE CSA establish 53.2 ms 29.1 ms 82.3 ms
MLIKE CREATE(rekey) 1.3 ms 1.35 ms 2.65 ms
MLIKE key distribution 0.4 ms 0.2 ms 0.6 ms
PKD key distribution 0.3 ms 0.2 ms 0.5 ms
DKM key distribution 0.3 ms 0.2 ms 0.6 ms
Neighbor notification 2.0 ms 7.3 ms 9.3 ms

4.6 Performance

In this section, we discuss the performance of the key man-
agement protocols measured on our test-bed. We imple-
mented and tested MML-IPsec key distribution protocols
based on IKEv1 and IKEv2. In this section, we show the
performance of IKEv2-based implementation. We tested the
performance of our integrated IPsec/Mobile IP solution as a
baseline.

In Table 2, we show the message processing time mea-
sured by the gettimeofday system call in Linux. The results
in Table 2 measure the processing time on receiving a mes-
sage or event, excluding the pre-processing, post-processing
and transmission time over the media. The node initiating
the message flow is the “Initiator,” and the recipient is called
the “Responder”. For example, in DKM, the Initiator is the
new FA and the Responder is the previous FA providing the
CSA information. In Initialization, the MH is the Initiator
and the HA is the Responder.

In order to measure the handoff latency, we evaluate the
time delay from the point that the MH sends a Mobile IP
registration message until it finishes establishing the MML-
IPsec CSA or IPsec SA. Table 3 shows the handoff delay
for the pure Mobile IP, Mobile IP integrated with IPsec, and
Mobile IP integrated with MML-IPsec.

The Mobile IP registration is necessary for all cases. The
pure Mobile IP handoff comprises only the Mobile IP reg-
istration overhead and shows almost the same delay for the
initialization and handoff phases. In the case of Mobile IP
with IPsec, the initialization time consists of the Mobile
IP registration and IPsec secure connection establishment
between the HA and MH.

Similarly, the initialization of MML-IPsec takes between
539–542 milliseconds depending on if PKD or DKM is used.
This includes the Mobile IP registration and MML-IPsec es-
tablishment with the key distribution to the FA or FAs. The
MML-IPsec initialization time is made up of three com-
ponents. First, the message processing time, including IKE
SA establishments, MLIKE AUTH SA Exchanges, MLIKE
Key Distribution, and Mobile IP registration procedures, is
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Table 3 Handoff delay

MIP with MML-IPsec
Pure MIP with

Phase MIP IPsec PKD DKM

Initialization 26 ms 197 ms 539(219) ms 542(222) ms
Handoff 25 ms 54 ms 52.7 ms 100.0 ms

Note. MIP is an abbreviated form of Mobile IP.

measured at approximately 220 milliseconds. Second, the FA
runs four shell scripts to create local connections and bind the
local connections into MML-IPsec interfaces when receiving
the Mobile IP registration reply. The four shell scripts take
320 milliseconds to execute. Finally, there are transmission
and internal communication latencies which are responsible
for the remaining of the delay. These shell commands, and
their additional overhead, may be eliminated if the source
code for the various initialization procedures are modified to
interact directly, a change planned for our next version.

In Table 3, we show the total latency for the Initializa-
tion (latency in parenthesis if the shell script overhead is
eliminated), and handoff delay.

The MIP with IPsec column in Table 3 shows the ini-
tialization and handoff delay without performance enhance-
ment functions in the FAs. The initialization of Mobile IP
with IPsec takes 197 milliseconds, which includes Mobile
IP registration (26 milliseconds), processing time of IKE SA
and session SA establishment (109 milliseconds in the total
shown in Table 2), IPsec message transmission delay, and
internal configuration in the HA and MH. Here, the handoff
delay takes only 54 ms.

However, if IPsec is integrated into FAs to deliver the
performance enhancement and security functions together,
the handoff may take at least as long as the initialization
(197 ms). The performance enhancement functions require
FAs to use the partial information (e.g. TCP/IP header) of
the encrypted packet. In order to use the partial information,
the FA must access the information in plaintext. Therefore,
whenever a MH moves to a new foreign network, IPsec
should be re-established between the HA and new FA, and
between the new FA and MH.

On the other hand, the handoff in the MML-IPsec only
takes 52.7 ms and 100 ms in PKD and DKM respectively.
Thus, the MML-IPsec improves the overall handoff delay
in an integrated setting of performance and security func-
tions. The MML-IPsec Initialization in IKEv1 takes about
110 milliseconds more than in IKEv2. The handoff delay
measurements show that a handoff using PKD incurs an
additional 28 milliseconds of delay, while a handoff using
DKM incurs an extra 75 milliseconds of delay. The handoff
delays with IKEv1 are similar to IKEv2. These results are
encouraging when we consider that these are well within the
range of a TCP time-out value.

5 MML-IPsec transport implementation and evaluation

In this section, we first present our detailed implementations
of the MML-IPsec protocol and SNOOP [2], and their inte-
gration. Then, we present the experimental methodology and
the performance evaluation results. To improve performance,
we propose an additional update to MML-IPsec called
dynamic MML-IPsec in which a flow may switch between
plaintext, IPsec and MML-IPsec. Some preliminary results
in terms of throughput and overhead are discussed.

5.1 Implementation details

5.1.1 The implementation of MML-IPSEC

We follow the high-level design outlined in [22] to imple-
ment MML-IPsec. As discussed in Section 3, we modified
this design to make it suitable for wireless networks, and to
account for the fact we used Linux FreeS/WAN version 1.99
while in [22], version 1.1 was used.

In KLIPS, we introduce two new concepts as discussed
in Section 3 and [22]: a zone and a CSA. A CSA has two
elements: a zone map and a list of SAs for all the zones.

One SA in the SA list is chosen to be the designated SA.
The designated SA is responsible for maintaining parameters
at the IP datagram level and representing the CSA in security
processing [22]. The designated SA must be consistent across
all nodes involved in a CSA, and all nodes must have access
to the corresponding zone. In our case, all the authorized
nodes, including end hosts and authorized FAs, have access
to the first zone; i.e., the TCP/IP header portion of the packet.
Thus, we always choose the first zone’s SA as the designated
SA.

We create two new data structures, called zone and sub-
zone, to accommodate the zone concept. The data structure
for SAs is modified to accommodate the concept of CSA.

Figure 10 shows the modifications to the FreeS/WAN
source code for realizing MML-IPsec. We modify three
procedures: ipsec rcv(), ipsec rcv 1(), and ipsec tunnel
start xmit().

ipsec rcv() is used to authenticate (and/or decrypt) incom-
ing packets before forwarding them to the transport layer. We
extended it to handle multiple zones. For outgoing processing
when sending a packet, ipsec tunnel start xmit() is modified
to perform encryption and authentication on two zones in-
stead of the entire packet. ipsec rcv 1() is a procedure added
by us, which is used for forward packet processing. More
specifically, when an authorized FA receives a MML-IPsec
packet for which it has a valid SA, it uses ipsec rcv 1() to
decrypt the first zone of the packet. At this point, the FA
may perform any smart processing, which may need the in-
formation contained in the packet header. Once this is done,
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the first zone of the packet is re-encrypted and the packet is
forwarded to the next hop.

5.1.2 The implementation of SNOOP

The SNOOP protocol was first defined in [2]. SNOOP exe-
cutes in a base station and monitors the TCP header within
the packet it is forwarding. The idea behind SNOOP is to
detect errors incurred by the wireless link at the base station,
and perform local retransmissions to recover from the errors
locally. In this way, the TCP sender will not see the trans-
mission error, resulting in a larger average window size and
hence higher throughput. SNOOP detects errors by observ-
ing duplicate acknowledgments. If a duplicate acknowledg-
ment is observed, SNOOP retransmits the subsequent TCP
segment from its local buffer, and deletes the duplicate ac-
knowledgment from the traffic stream. In this way, the lost
segment is recovered without an end-to-end TCP retransmis-
sion. For details, please refer to [2].

The SNOOP protocol was first implemented in BSD/OS
2.0. In this work, we ported the code from user space and
implemented it in the Linux kernel. To achieve this goal, we
carried out three major modificiations. First, we designed a
complete set of timer management functions to replace those
in BSD (which are not supported in Linux). Second, we re-
implemented the protocol using sk buff, the data structure for
memeory buffer management in Linux kernel, replacing the
implementation based on mbuf in BSD. We also carefully
re-designed SNOOP using the features of the sk buff data
structure. For example, in order to avoid copying the whole

data packet when caching the packet at the base station, we
use pskb copy() to copy and save the data packet, which is
similar to the reference counting mechanism in mbuf. In this
way, we also get a private sk buff header in which we can
modify the TOS (Type of Service) field of the IP header
to send a locally retransmitted packet with a higher prior-
ity. Lastly, we implemented a Poisson-distributed bit-error
model. This model is used to generate errors (similar to that
in [2]) and to evaluate the performance of SNOOP in a con-
trolled settings.

5.1.3 Integration of MML-IPsec and SNOOP

The integration of MML-IPsec and SNOOP occurs at the
authorized intermediate routers. In our test bed, these are the
routers acting as base stations and FAs.

Figure 11 shows how the Linux kernel is modified to inte-
grate MML-IPsec and SNOOP. From the figure, we can see
that before the packet is forwarded, ipsec rcv 1() is called to
decrypt the first zone of the packet. The ipsec snoop ctrl()
function is then called, which has access to the TCP/IP head-
ers in plain text, and the SNOOP protocol is executed. If
the packet should be forwarded, the first zone will be re-
encrypted before it is transmitted to the next hop.

5.2 Dynamic MML-IPsec: an extension to MML-IPsec

To reduce the processing overhead at the FA, we propose
an extension to MML-IPsec, called dynamic MML-IPsec,
which allows MML-IPsec tunnel endpoints (either a MH or
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a HA) to dynamically switch modes between MML-IPsec,
IPsec, and plaintext. This strategy is desirable in several
situations. For example, certain applications (such as MPEG-
2 [1] video streaming) have certain frames containing more
information than others. In these cases, applying MML-IPsec
only to the high quality frames will provide more efficient
transport without sacrificing security. More specifically, for
the video streaming case, we can choose to encrypt the I-
Frames and transmit the remaining frames—i.e., P-Frames
and B-Frames—in clear text. As another example, if a MH
determines that it has a high signal strength, and therefore
likely has a reliable wireless link, it may not need to run
a performance enhancing algorithm at the FA. In this case,
it may choose to run IPsec end-to-end, and disable MML-
IPsec.

Using dynamic MML-IPsec, a flow (or TCP/IP connec-
tion) may switch between plaintext, IPsec, and MML-IPsec.
Switching from plaintext to MML-IPsec is simple: one entity
just sends packets in MML-IPsec mode instead of in plain-
text. When the other entity receives the first MML-IPsec
packet, it knows that it should switch back to the MML-
IPsec mode and starts to send packets in MML-IPsec mode
accordingly. In a similar way, one can switch from plain-
text to IPsec. This is also true for switching from IPsec to
MML-IPsec.

Switching from MML-IPsec to plaintext, however, in-
volves negotiating the parameters for dynamic MML-IPsec
(between the two entities). The parameters may include how
long they will communicate in plaintext, or in what inter-
val the packets should be encrypted (such as for the video
streaming case), etc. The two parties can use the secured
MML-IPsec channel to negotiate these parameters. Then,
based the negotiated parameters, both of them can switch into
plaintext mode synchronously. Switching from MML-IPsec
to IPsec (or from IPsec to plaintext) can be implemented in
a similar way as above.

In this work, we present a simple design for dynamic
MML-IPsec. That is, a tunnel endpoint can enable and dis-
able MML-IPsec encryption periodically. In other words,
instead of encrypting the packets all the time, we only en-
crypt the every i-th packet. The performance of dynamic
MML-IPsec in such a design is evaluated in Section 5.5.

5.3 The experimental setup

We use the test bed shown in Fig. 3 to evaluate the per-
formance of MML-IPsec and SNOOP. To validate our im-
plementation of SNOOP, we transferred a large file from a
fixed host to a MH with SNOOP running on the base sta-
tion. A 5 MB file was transferred from ftp.redhat.com to the
MH, with and without SNOOP running on the base station.
Figure 12 shows the results for an average of five runs for
different bit error rates, comparing the performance of TCP
Reno and TCP Reno with SNOOP. These results match
closely with that in [2].

Since we cannot implement MML-IPsec in
ftp.redhat.com, and we want to run experiments in a con-
trolled environment, we modify our test bed as shown Fig. 13.
The laptop, named TLP1, acts as a MH. One desktop, named
NETS, is configured as the base station for the MH. Another
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desktop, named METS, is configured as a FTP server. NETS
and METS are connected using a 100M bps Ethernet. MML-
IPsec is installed in TLP1, NETS and METS. We installed
NIST Net [5], a network emulation package that runs on
Linux, in KNICKS. NIST Net allows a Linux PC to be set up
as a router to emulate a wide variety of network conditions.
In our experiments, we use it to insert packet transmission
delays between NETS and METS to emulate a wide area
network. For example, to emulate downloading a file from
a remote ftp site (e.g., ftp.redhat.com) with 50 ms delay, we
insert 50 ms transmission delay using NIST Net. As shown
in Fig. 13, all the traffic between TLP1 (the ftp client)
and METS (the ftp server) are configured to route through
KNICKS, where packet transmission delays are inserted.

SNOOP is installed in NETS and is integrated with MML-
IPsec. We limit the raw bandwidth of the wireless link to 2M
bps so that we can compare the results to that in [2]. The
TCP data packet size in our experiments is 1,460 bytes when
MML-IPsec is not running. When MML-IPsec is running,
because of the additional IPsec headers (such as ESP header
and IP over IP header if IPsec tunnel mode is in use), the
TCP data packet size is smaller than 1,460 bytes. For exam-
ple, in our experiments, where we use the tunnel-mode ESP
protocol to encrypt the packet, the TCP data packet size is
1,391 bytes.

5.3.1 System parameters

We list the test bed’s configuration parameters in Tables 4
and 5. Table 5 shows the parameters we use to test SNOOP,
and Table 5 shows the parameters in evaluating MML-IPsec.
In Table 4, the SNOOP Maximum Window, which is the
data buffer size in the SNOOP module at the base station, is
set to 50. This is large enough to buffer all the data packets
sent from the sender so that the SNOOP module is never
overloaded.

Table 4 SNOOP-related TCP module parameters

Maximum segment size (bytes) 1,460
Sender buffer size (bytes) 65,535
SNOOP maximum window 50
SNOOP maximum connections 64
Fast transmit Enabled
Fast recovery Enable
Selective ACK (SACK) Disabled
Karn’s algorithm Enabled
SNOOP retransmission threshold 4
SNOOP initial RTO (ms) 100
SNOOP minimum RTO (ms) 100
SNOOP persist timeout (ms) 1,000
SNOOP Garbage timeout (ms) 10,000
NIST net transmission delay (ms) 100

Table 5 MML-IPsec parameters

IPsec tunnel mode Enabled
Encryption Enabled
Authentication Disabled
ML-IPsec overhead (bytes) 69
Maximum segment size (bytes) 1,391
Number of zones 2

First zone Second zone

Zone size (bytes) 40 Variable
Encryption protocol ESP ESP
Encryption algorithm 3DES 3DES

In the SNOOP module, three timers are running: the local
retransmission timer, the persist timer and the garbage timer.
The SNOOP Initial RTO (Retransmission TimeOut) is used
to set the initial timeout value for the local retransmission
timer. The persist timer will expire if the SNOOP module
does not receive any packets from either the receiver or the
sender for a long period of time. When it expires, it will
retransmit all the un-acknowledged data packets in its buffer.
We set the persist timer to 1 s. The garbage timer is used to
clear the buffer for a connection if there is no activity in that
connection for a very long period of time. We set the garbage
timer to 10 s in our implementation.

When testing MML-IPsec, we establish a MML-IPsec
connection between TLP1 (the MH) and METS (the ftp
server). The packets transmitted in this connection are en-
crypted using the tunnel-mode ESP encryption protocol. The
IP packet is divided into two zones each of which is en-
crypted separately. As shown in Table 5, the first zone is 40
bytes, which includes the 20 byte IP header and 20 byte TCP
header (not including the TCP Options and Padding fields);
and the second zone covers the remainder of the packet.
Both zones are encrypted with the ESP 3DES encryption
algorithm using different SAs, each of which has different
encryption/decryption keys. NETS has the SA for the first
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zone and decrypts the TCP/IP header of the packets so that
it can execute SNOOP if enabled.

Five configurations have been tested: pure TCP Reno,
TCP Reno over SNOOP, TCP Reno over IPsec, TCP Reno
over MML-IPsec, and TCP Reno over SNOOP integrated
with MML-IPsec. To evaluate these configurations under
different wireless link conditions, we use the Poisson-
distributed bit-error model to generate a wide range of bit-
error rates. We test these configurations by transferring a
10 MB file from METs (the ftp server) to TLP1 (the MH)
with different bit-error rates. For each configuration, we ex-
ecute the transfer five times. Our comparison is based on the
average throughput of the five runs.

5.4 Performance evaluation results

We use throughput as the metric to evaluate the performance
of different configurations. To further explain the reason be-
hind these results, we also illustrate the TCP congestion
window size and the TCP sequence number of different con-
figurations.

5.4.1 Throughput

Figure 14 compares the throughput of different configura-
tions under different bit-error rates. From the figure, we see
that SNOOP greatly improves the performance of TCP Reno
when the error rate is high. For example, when the bit-error
rate is 1.53 × 10−5 (1-bit error in 64 K bits), the through-
put with SNOOP is three times higher than that without
SNOOP. In fact, TCP Reno with SNOOP always achieves a
higher throughput regardless of the bit-error rate. Even when
the bit-error rate is very small, e.g., 1.19 × 10−7 (1-bit error
in 8 M bits), SNOOP achieves 10% higher throughput than
regular TCP Reno.

From the curves of IPsec and MML-IPsec, we can see
that when no error exists, the overhead of these two proto-

cols are about 5% and 9%, respectively. As the bit-error rate
increases, the throughput of both protocols drops dramati-
cally. It is interesting to see that when the bit-error rate is
higher than 4.77 × 10−7 (1-bit error in 2 M bits), the through-
put of IPsec and MML-IPsec is almost the same in most
cases. For example, when the bit-error rate is 1-bit error per
2 M bits, the throughput of both approaches drop by 27%.
When the bit-error rate is 1-bit error per 64 K bits, their
throughput drops by 62%. This is because the overhead in-
curred by the error is more significant than the overhead
incurred by encryption/decryption.

When SNOOP is integrated with MML-IPsec, the
throughput is higher than either TCP Reno over MML-IPsec
or IPsec. SNOOP integrated with MML-IPsec can deliver
as much as five times higher throughput than that without
SNOOP. Even when the error rate is low, SNOOP integrated
with MML-IPsec can improve the performance by 19% and
14% compared to TCP over MML-IPsec and IPsec, respec-
tively.

From the figure, we can also see that in an error-prone
environment, SNOOP over MML-IPsec always achieves
higher throughput than TCP Reno alone. The improvement
increases as the bit-error rate increases. Figure 14 shows that
SNOOP over MML-IPsec increases the throughout by 3%
to 108% for different bit-error rates.

These results conclusively show that in a wireless error-
prone environment, by integrating performance enhancing
algorithms such as SNOOP with MML-IPsec we can achieve
security and performance simultaneously.

5.4.2 TCP sequence number

Figure 15 shows the evolution of TCP sequence number ver-
sus time with different configurations when the bit-error rate
is 1.9 × 10−6 (1-bit error in 512 K bits). From the figure, we
can see that if SNOOP is running, the sequence number pro-
gresses much faster than that without SNOOP. For instance,
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when SNOOP is integrated with MML-IPsec, the sequence
numbers increase at twice the rate of TCP with IPsec.

5.4.3 TCP congestion window size

Figure 16 shows the size of the congestion window versus
time at the ftp server with a bit-error rate of 1.9 × 10−6

(1-bit error in 512 K bits). This figure compares three con-
figurations: pure TCP Reno, TCP Reno over SNOOP, IPsec,
MML-IPsec, and SNOOP integrated with MML-IPsec.

From the Fig. 16(a), we see that SNOOP maintains a much
larger congestion window than pure TCP Reno. On average,
the congestion window size of SNOOP is about 35 while
TCP Reno’s is about 6. This can be explained as follows. In
SNOOP, the base station caches all the data packets before
forwarding them to the MH over the wireless link. When
the base station detects a packet loss, it will retransmit the
packets to the MH from its local cache and suppress the du-
plicate ACKs. In this way, the sender’s congestion control
mechanisms, such as fast retransmit and fast recovery, will
not be invoked. Thus, SNOOP prevents the congestion win-
dow from shrinking. In the case of pure TCP Reno, wireless
loss will be treated as congestion in the network. Whenever
a packet is lost or three duplicate ACKs are received, the
transmitter will drop the congestion window size to half and
then increase the window size gradually.

Figure 16(a) also shows that the congestion window size
of SNOOP drops to two on several occasions. This is because
of timeouts at the sender. Sender timeout occurs when the
congestion window is very large and there are several packet
losses in the same sending window. When the congestion
window size is large, for example 40, a packet loss will
generate as many as 39 duplicate ACKs if all the packets after
the lost packet are received correctly. Our tests shows that
to process all these duplicate ACKs requires up to ten times
of the normal packet processing time. Therefore, packets
transmitted after the lost packet will experience a long round-
trip time and it is possible that the timer for these packets
will expire before getting acknowledged. In such cases, the
sender will fall back to the slow start phase and reduce the
congestion window to two.

From Fig. 16(b), we can also see that when integrated
with MML-IPsec, SNOOP has a much larger congestion
window size than pure MML-IPsec, which can be also ex-
plained as above. The figure shows that the integration of
SNOOP increases the average congestion window size of the
MML-IPsec protocol by a factor of five, from 5 to 26. The
improvement in the congestion window size shown here also
explains the dramatic performance improvement achieved in
Fig. 14, which shows that the throughput of MML-IPsec with
SNOOP is increased by 170% compared to without SNOOP,
when the bit-error rate is 1.9 × 10−6 (1-bit error in 512 K
bits).

5.4.4 Code profiling measurements

To identify the processing bottleneck of our implementation
of MML-IPsec, we profiled the source code. The purpose is
to check whether we can further improve the performance
by improving the coding.

In MML-IPsec, KLIPS performs encryption and decryp-
tion based on the security association negotiated by the Pluto
Daemon. The code profiling is done in the KLIPS part by
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Table 6 Processing time of MML-IPsec (in microseconds)

Caller function Callee function Total time

ipsec rcv 44
decapsulation* 32
memmove 0
others 12

ipsec tunnel start xmit 104
ipsec findroute 0
encapsulation* 104
ip route output 0

ip send 3
decapsulation* 32

policy check 0
lifetime check 0
authentication 5
decryption 7
discard espheader 0
ip fast csum 0
policy check 0
others 20

encapsulation* 104
cal headroom 2
strip hardheader 0
encryption* 91
ipsec findroute 0
others 11

Note. the functions with ‘*’ are operations instead.

measuring the processing time of the functions that carry out
the encryption and decryption process. In KLIPS, a packet is
encrypted using the function ipsec tunnel start xmit() before
sent. At the receiving side, it is decrypted by calling the func-
tion named ipsec rcv(). Table 6 shows the processing times of
this two functions, by calculating the processing times of all
the functions it has called. We measure them at the HA. In the
table, “others” shows the total processing time incurred by
the other functions, which are not showed in the table. If the
processing time is 0, it means that the processing time is less
than 1 microsecond. The processing time for ip send() is also
included in this table. This value is small because the packet
is transmitted through the fast Ethernet interface, which is
100 M bps.

From Table 6, we can see that, compared to IPsec,
MML-IPsec introduces an extra 6 microseconds ((5+7)/2
= 6) in ipsec rcv and 46 microseconds (91/2 = 46))in
ipsec tunnel start xmit. In our MML-IPsec implementation,
each packet has two zones, and we need to do encryp-
tion/decryption and authentication twice for each packet.
Considering the total processing time of encryption or de-
cryption is within 1 millisecond, we claim that the overhead
incurred by an extra zone is affordable.

We also measure the processing time of SNOOP in the in-
termediate node (i.e., FA) to quantify the snooping overhead.

Table 7 Processing time of SNOOP (in mi-
croseconds)

Function Total
ipsec rcv 1 42
ipsec tunnel start xmit 0
ip send 547
snoop ctrl 13
snoop getconn 1
snoop untimeout 0
snoop freebuf 1
snoop wired clear 0
snoop done 14
snoop addconn 3
snoop conninit 7
snoop gargage timeout 22
snoop data 0
snoop wired 4

Table 7 shows the processing time of different functions in
the SNOOP module.

Among the SNOOP functions, ipsec rcv 1 is called to
decrypted the first zone of the packet. snoop ctrl shows the
average processing time used to snoop a packet, which is 13
microseconds. This shows that the overhead of SNOOP at the
intermediate node is negligible. The function ip send takes
547 microseconds because this time the packet is sending
out through the slow (2 M bps) wireless link.

The code profiling shows that sending the packet through
the wireless link is the bottleneck of our MML-IPsec in-
frastructure. Encryption, decryption and snooping operations
only add tolerable delay to the system, thus they are fairly
efficient. Since the bottleneck is a physical limitation, we
claim that the performance of MML-IPsec cannot by im-
prove much by optimizing the coding.

5.5 Dynamic MML-IPsec measurements

In the following, we evaluate the performance of dy-
namic MML-IPsec by enabling and disabling MML-IPsec
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encryption periodically. Figure 17 shows the throughputs of
MML-IPsec when we encrypt the packets following a certain
packet interval. That is, we encrypt every second, third, fifth
packet and so on. The figure shows that, when we encrypt
all the packets, the throughput is about 1.25 M bps. The
throughput increases as we encrypt fewer packets.

Figure 18 shows the overhead of dynamic MML-IPsec.
From the figure we can see that, if we encrypt all packets,
the overhead is about 7%, compared to pure IPsec. The over-
head decreases as we increase the encrypting interval. For
example, if we only encrypt every the 10th packet, we only
introduces 0.75% overhead compared to IPsec. This shows
that using dynamic MML-IPsec is beneficial in applications
where it is applicable.

6 Conclusions and future work

In this paper we have presented a simplified version of ML-
IPsec, an efficient key distribution protocol for initializing
secure wireless sessions, and two protocols for managing
mobility for these secure sessions. We call this suite of pro-
tocols MML-IPsec. We showed through extensive perfor-
mance testing of our implementations of these protocols that
MML-IPsec successfully enables performance enhancing al-
gorithms to be introduced into wireless networks. Specifi-
cally, we also support revoking keys in nodes that are no
longer in an active route and rekeying without disrupting
data transfer. In particular we showed that when SNOOP
is integrated with MML-IPsec, impressive throughput gains
are achieved over pure TCP, or if a secure session is desired,
TCP over IPsec.

The MML-IPsec source code is profiled to identify the
bottleneck of the implementation. It turns out that sending
the data packet through the wireless link is the bottleneck.
We also proposed an enhancement to MML-IPsec, called
Dynamic MML-IPsec, which can achieve a tradeoff between
performance and security. In addition, we showed that the
mobility protocols add only a small amount of delay to the

handoff time, significantly less than a typical TCP time-out
value.

The compromise incurred when using MML-IPsec is that
a single intermediate node inside a network is able to access
TCP/IP header information in plain text; note that no other
node in the network can view this information and that the
user payload is still encrypted end-to-end. We believe these
results justify the use of protocols such as MML-IPsec and
motivate further work to improve the security aspects of this
protocol.
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