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Abstract—The identification of a mathematical dynamics
model is a crucial step in the designing process of a controller.
However, it is often very difficult to identify the system’s govern-
ing equations, especially in complex environments that combine
physical laws of different disciplines. In this paper, we present a
new approach that allows identifying an ordinary differential
equation by means of a physics-informed machine learning
algorithm. Our method introduces a special neural network that
allows exploiting prior human knowledge to a certain degree
and extends it autonomously, so that the resulting differential
equations describe the system as accurately as possible. We
validate the method on a Duffing oscillator with simulation
data and, additionally, on a cascaded tank example with real-
world data. Subsequently, we use the developed algorithm in
a model-based reinforcement learning framework by alternately
identifying and controlling a system to a target state. We test the
performance by swinging-up an inverted pendulum on a cart.

Index Terms—Kalman filtering, Neural nets, Ordinary Differ-
ential Equations, Nonlinear approximation

I. INTRODUCTION

Identifying the characteristics and behavior of a system is

a vital step for predicting and controlling its future states.

In dynamic systems, the governing equation is often repre-

sented by means of an ordinary differential equation (ODE)

that contains derivatives with respect to time. However, in

many cases it is very difficult to derive the equations that

describe the underlying physical laws because large systems in

particular exhibit complex behavior. In this paper, we present

a new method that allows identifying a nonlinear ODE from

noisy input-output data, which is applicable in a model-based

Reinforcement Learning (RL) framework. Our method allows

human knowledge to be incorporated when available, making

it a hybrid machine learning approach.

In the following, we give a formal problem statement.

The state-space representation of a continuous-time, nonlinear,

dynamic, stochastic, and time-variant system of rank n ∈ N

is given by

ẋ(t) = f (x(t),u(t),w(t), t) , x(t0) = x0 ,

y(t) = g (x(t),u(t),v(t), t) ,
(1)

with the nonlinear ODE f(·) and the measurement function

g(·). x(t) ∈ R
n denotes the state vector with an initial
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value x0. u(t) ∈ R
p and y(t) ∈ R

q denote the input and

output signal with dimensions p, q ∈ N, respectively. The

vectors w(t) and v(t) denote white process noise and white

measurement noise, respectively, which are both assumed to be

zero-mean Gaussian with covariance matrices Q(t) ∈ R
n×n

andR(t) ∈ R
q×q , respectively. We assume that we can acquire

noisy measurements y(ti) of the system at N discrete time

steps ti with i = 1, . . . , N .

Depending on the use case, we distinguish three situations:

(i) f and g are known, apart from some real-valued param-

eters. (ii) f and g are partly known, which means that it

is possible to model single equation elements, but not the

system as a whole. (iii) f and g are unknown, apart from

the system states and the system rank. The aim of our method

is to identify f (·) and g (·) in such a way that

J =

N
∑

i=1

|y(ti)− y(ti)|F (2)

is minimal, with |·|F being the Frobenius norm.

In this paper, we present a new method to identify ODEs

that we call ODE-Learner. We use an extended Kalman-Bucy-

Filter (EKBF) (cf. Sec. III-A), which is a continuous-time

and nonlinear implementation of the famous Kalman filter,

consisting of two ODEs for estimating the mean value and

the covariance matrix of the system state. As f(·) and g(·)
are assumed to be (partly) unknown, the EKBF cannot be

applied directly. Instead, both ODEs of the EKBF are realized

as neural networks in a Physics-Informed Neural Network

(PINN)-framework (cf. Sec. III-B). The governing equation

of the ODE is learned using two further neural networks in

an Equation Learner (EQL)-framework (cf. Sec. III-C).

A field of application is model-based RL, where an agent

collects data in an environment and trains a model that allows

predicting the future system behavior. The model is then used

to calculate a reward-maximizing policy, which is applied to

the agent. Thus, more data can be gathered and the model is

re-trained to improve its accuracy until, finally, a target state

is reached. This procedure is often more data-efficient than

model-free alternatives [8]. We show how the ODE-Learner

can be used within continuous-time model-based RL to learn

the dynamics model of the agent. The key contributions of our

method comprise:
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• Identifying an ODE from noisy data and not directly

accessible system states by combining an EKBF with

PINNs and EQLs.

• Extending the EQL framework to create more shallow

networks.

• Allowing to incorporate human knowledge if available.

• Using the identified ODE in a model-based RL environ-

ment.

Please note that opposed to many existing methods, we do not

simplify the identification process by fitting a discrete-time

difference equation, but train in a fully continuous-time fash-

ion, which features several advantages. Firstly, model building

typically relies on physical equations that describe dynamics in

continuous time. The continuous-time identification approach

allows the direct integration of existing system knowledge

into the training algorithm. Secondly, continuous-time iden-

tification eliminates the need for a pre-defined sampling rate.

In contrast, discrete-time identification necessitates setting a

sampling rate, which must be large enough to accurately

reconstruct the system dynamics, yet not so large that the

resulting measurement data exceeds available memory limits.

II. RELATED WORK

As described in [1], the system identification process com-

prises five major steps: acquiring data, choosing a model

class, determining its structure, estimating the parameters and,

finally, validating the result. In the following literature review,

we will focus on the different model classes, since most other

identification steps depend on this crucial choice.

Input-Output Models. Popular approaches to identify non-

linear input-output behavior comprise for example radial basis

functions [29], Volterra-Series [12], or the usage of an arbitrary

nonlinear function in a nonlinear autoregressive model with

exogenous inputs (NARX) [15]. Another possibility is the

usage of established machine learning techniques, such as a

decision tree [27] or a Gaussian process to model a state space

representation of the system [26]. However, these methods are

not designed for identifying an ODE, but rather create a model

for the input-output behavior and, thus, can identify a discrete-

time difference equation at the most. Many control algorithms,

however, require an ODE instead of a discrete-time difference

equation.

Parameter Identification. Identifying single parameters in

an otherwise known ODE is mostly solved by using various

optimization algorithms. This task is sometimes referred to as

inverse problem and can be solved by gradient-based [18], [23]

or gradient-free [2], [24] optimization algorithms. However,

these algorithms often fail, if the ODE exhibits chaotic, stiff,

or highly nonlinear behavior, since it is necessary to solve the

ODE numerically in every optimization step. Machine learning

algorithms, such as PINNs allow a parameter identification

without calculating a numerical solution [11], [20].

Identification of a Partly Known System. In many cases

the governing ODE of a system is merely known to a certain

extent, but it is not sufficiently precise for a real-world

scenario. An example for this could be the modeling of a

motor without considering the friction. It is possible to use

a genetic algorithm to first estimate the parameters of the

known system part and then extend it by a Gaussian process to

model behavior, which goes beyond the scope of the governing

equation [4]. Another popular system identification method

is Sparse Identification of Nonlinear Dynamics (SINDy) [3].

It trains a matrix that comprises the coefficients of many

nonlinear operators, which are used to construct an ODE.

The algorithm is well-established and has been improved to

perform better under noise or in a control environment [9].

A similar approach is given by the so-called EQL, which

replaces the standard activation functions of a neural network,

like the hyperbolic tangent or a rectified linear unit, with

other nonlinear functions that frequently appear in physical

laws [25]. Both, the SINDy-method and the EQL can benefit

from prior system knowledge, by pre-conditioning the used

operators.

Identification of an Unknown System. If only the sys-

tem rank is known, the so-called subspace-based state-space

estimation allows an identification of a linear state-space

model by means of a QR-factorization as well as a singular

value decomposition [30]. Linear models can even be used

in reinforcement learning [5], but will suffer if the process

features a strong nonlinear behavior. A more recent approach

for identifying nonlinear models is the use of neural ODEs

[6], [16], which allow a neural network to approximate an

unknown ODE by embedding it into a numerical ODE-Solver

and use the resulting solution to adjust the network weights

based on training data. In [34], this method is combined

with an EQL, in order to allow the inclusion of symbolic

elements in a neural ODE-framework. However, this approach

depends on the step width of the numerical ODE-Solver and

the identification quality degrades severely if the necessary

step width becomes very small, hence, if the ODE’s solution is

stiff or highly oscillating. The inverse way of using integration

instead of differentiation to fit an ODE is presented in [17] and

is called Integrated Neural Network (INN).

III. FUNDAMENTALS

In this section, we present three fundamental methods,

which our approach combines in order to identify an ODE

from noisy measurements: The EKBF is a minimum variance

estimator that allows estimating a system’s states as precisely

as possible. A PINN allows approximating an ODE’s solution

without the usage of numerical solvers. Finally, an EQL

creates a special type of neural network, which uses operators

that appear frequently in differential equations. Besides these

three methods we briefly introduce model-based RL.

A. Extended Kalman-Bucy-Filter

A Kalman filter allows estimating the system’s state from

noisy measurements and a given state space model. While

the commonly known Kalman filter is limited to linear and

discrete-time systems, the EKBF performs state estimation

for continuous-time and nonlinear systems [14]. It does so

by establishing two initial value problems, which describe the



temporal evolution of the state’s estimated mean value and

covariance matrix. The mean value is given by

˙̂x(t) = f (x̂(t),u(t),0, t)

+K(t) · (y(t)− g(x̂(t),u(t),0, t)) (3)

with a known initial value x̂(t0) = x̂0 and a Kalman gain

K(t) = P̂ (t) · ĈT(t) · R̂−1(t) (4)

as well as its covariance matrix

˙̂
P (t) = Â(t)P̂ (t) + P̂ (t)Â(t)T

−K(t)Ĉ(t)P̂ (t) + Q̂(t) (5)

with a known initial value P̂ (t0) = P̂0 and linearized system

matrices

Â(t) =
∂f(x,u,w, t)

∂x(t)

∣

∣

∣

∣

∧

, Ĝ(t) =
∂f(x,u,w, t)

∂w(t)

∣

∣

∣

∣

∧

,

Ĉ(t) =
∂g(x,u,v, t)

∂x(t)

∣

∣

∣

∣

∧

, V̂ (t) =
∂g(x,u,v, t)

∂v(t)

∣

∣

∣

∣

∧

.

(6)

The ∧-symbol denotes that the linearization is performed

repeatedly for each new mean value x̂(t). The covariance ma-

trices of the process and measurement noise of the linearized

system are given by means of

Q̂(t) = Ĝ(t) ·Q(t) · ĜT(t) ,

R̂(t) = V̂ (t) ·R(t) · V̂ T(t) ,
(7)

respectively.

B. Physics-Informed Neural Network

PINNs are a subclass of neural networks, which constrain

the network’s output to some known physical dynamics,

which is usually given as a differential equation. They have

been introduced by Raissi et al. [21] for partial differen-

tial equations. In the following however, we define them

in accordance to the state space representation of (1). Let

Nπ(t,u|W ) : Rp+1 → R
n be a neural network, which maps

the time t and system input u to an estimated state vector x̃(t)
by means of x̃(t) = Nπ(t,u|W ). Then, the neural network’s

weights W are trained by minimizing the loss

JPINN =

N
∑

i=1

(

d

dt
x̃(ti)− f (x̃(ti),u, ti)

)2

+ (x̃(t0)− x0)
2
. (8)

Due to the time derivative of the neural network’s output

x̃(t) in (8), it is necessary that Nπ(t,u|W ) contains only

continuously differentiable activation functions, such as a

hyperbolic tangent, which leads to the whole network being

continuously differentiable. Note, however, that the original

PINN formulation does not consider any noise, neither process

noisew, nor measurement noise v, in the system. Additionally,

it assumes all states to be fully accessible and it does not

consider a measurement function g(·).

C. Equation Learner

The EQL, introduced by Sahoo et al. in [25], learns

equations that are suitable for extrapolation and control. The

authors show that the method allows identifying a discrete-

time state space model by creating a fully-connected neural

network, which does not contain the commonly used activa-

tion functions such as hyperbolic tangent or rectified linear

unit. Instead, they use continuously differentiable functions

that appear frequently in governing equations of dynamical

systems, such as sine, cosine, or multiplication. The last layer

is composed of a division function. In order to keep the

system continuously differentiable, the authors force the EQL

to output zero, if the denominator goes below a pre-defined

threshold and add a penalty term forcing the system’s output to

avoid discontinuities. To obtain a difference equation with as

few functional operators as possible, the authors also include

L1 and L0 regularizations, which are activated in different

phases of the training. However, the EQL does not learn a

continuous-time ODE, but a discrete-time difference equation.

Additionally, all system states are assumed to be directly

accessible. To address these limitations, we extend the EQL

in Sec. IV.

D. Model-based Reinforcement Learning

RL is a subtopic of machine learning, which addresses

the actions an agent has to take in an environment in order

to maximize a reward. The interaction between agent and

environment is defined by a Markov Decision Process (MDP),

which is a tuple (X ,U , ρ(xk+1|xk,uk), R(xk,xk+1,uk),x0)
with the set of states X and the set of system inputs U [31].

ρ(xk+1|xk,uk) describes a probability distribution to reach

the successor state xk+1, provided a current state xk and

input uk. R(xk,xk+1,uk) is the associated reward to this

transition. Both functions are not known in the RL context

and are learned implicitly.

The target is to find a control strategy (or policy) K(·) :
R
n → R

p with uk = K(xk), which maximizes the expected

reward V = E{
∑τ

i=k γ
i · R(xi,ui)} with a discount factor

γ ∈ (0, 1). In model-based RL, the discrete-time transition

function is explicitly trained by using data, which is gen-

erated by the agent exploring the environment. The routine

is described as follows: First, the agent performs random

actions in the environment and, thus, gathers data. Afterwards,

a dynamic model is trained and becomes utilized to find a

control function K(·), which is often realized as model-based

predictive controller (MPC) [33]. After applying the control

function to the system, new data is acquired, which is used to

improve the model’s accuracy and, thus, allows updating the

control law. In this work, we use an identified ODE to find an

optimal control function.

Note that RL typically considers purely discrete-time prob-

lems and models. However, our approach allows the identifi-

cation of a continuous-time model, which avoids the adverse

effects of temporal discretization during the design of a

controller.



IV. LEARNING ODES

In the following, we introduce our ODE-Learner framework,

which is the main contribution of this paper. Therefore, we

build a special EQL-architecture and include it in a PINN-

framework to identify the correct ODE. To handle noisy data

and modeling errors, we combine the approach with an EKBF.

Finally, we integrate several regularization terms in order to

acquire an ODE, which is as compact as possible.

A. ODE-Network

The overall target of our method is to identify the nonlinear

ODE ẋ = f(x,u,w, t) of (1). Therefore, we create a special

neural network Nζ , which we call ODE-Network, to fit the

unknown ground truth f(·) as correctly as possible. The

main difference between a conventional multi-layer perceptron

(MLP) and the ODE-Network is the usage of activation

functions, which appear frequently in dynamic systems, such

as trigonometric functions or polynomial elements. This idea

has first been introduced as EQL in [25] (cf. Sec. III-C). In

many systems, the true dynamics arises from the multiplication

of several nonlinear operators. To achieve this behavior in

the original implementation of the EQL, a very deep network

has to be trained. Instead, we create a special EQL-Neuron,

which we call operator-neuron. It allows building a rather

shallow network, at the expense of an increased width, i.e.,

an increasing neuron count. Afterwards, we combine several

operator-neurons to an ODE-Network. This aims at creating

an ODE, which is as compact as possible.

Let the operator-neuron’s input be denoted by z =
[1, z1, . . . , zO]

T ∈ R
O+1 with a bias in the beginning and

its output by o ∈ R. Additionally, we define an operator set

O = {op1(·), . . . , opK(·)}, which lists K different operators.

Note that every operator is required to be continuously dif-

ferentiable. Finally, the operator-neuron exhibits two weight

matrices W (1) ∈ R
I×K×(O+1) and W (2) ∈ R

I×(K+1). One

operator-neuron then performs a forward pass by calculating

o =

I
∏

i=1

(

W
(2)
i,K+1 +

K
∑

k=1

W
(2)
i,k · opk

(

O+1
∑

l=1

W
(1)
i,k,l · zl

))

.

(9)

The input to the neuron is weighted by the first weighting

matrix W (1) and summed. Afterwards, it is transformed by

the set of K operators. The result is then again weighted by the

second weighting matrix W (2) and a bias is added in order to

allow a constant activation, if necessary. The operator-neuron

performs these calculations I times in parallel and multiplies

the scalar results, respectively. Fig. 1a shows a sketch of

the calculations that are performed in (9). The final ODE-

Network is created by combining multiple operator-neurons

in a similar way to a fully-connected neural network with M
layers and Nj , j = 1, . . . ,M , neurons per layer. By using

operator-neurons of the proposed structure, a complicated

ODE can be built even with a shallow ODE-Network, because

of the possibility to directly include multiplication elements.

The last layer is composed of two weight vectors w(3) =

[

w
(3)
0 , . . . , w

(3)
NM

]T

∈ R
Nm+1, w(4) =

[

w
(4)
0 , . . . , w

(4)
NM

]T

∈

R
Nm+1, which we use to calculate the ratio

ẋ =

{

o
T
·w

(3)

o
T·w(4) if oT ·w(4) > δ

0 otherwise
, (10)

with the output of the preceding layer o = [1, o1, . . . , oNM
]T

and a hyperparameter δ > 0. This ensures that there is no

division by zero. Additionally, we include a penalty term

to the loss function, which leads to a higher loss if the

denominator is below δ (cf. Sec. IV-B). This idea has first

been introduced in [25]. Fig. 1b shows a sketch of the ODE-

Network’s architecture.

The usage of the ODE-Network features multiple benefits

over an MLP. The most important one is the possibility to

include prior existing system knowledge by the choice of an

operator set. E.g., if we want to model an inverse pendulum

system, it makes sense to include trigonometric operators, such

as O = {sin(·), cos(·)}. Using an MLP usually discards this

prior knowledge. Depending on our system understanding, it

is possible to go even further. In case of situation (i), we do

not use an ODE-Network at all, but simply use the known

ODE and only train the unknown parameters. Situation (ii) is

solved by pre-conditioning the weight matrices of the ODE-

Network, based on the existing system knowledge. During

the following training, the pre-conditioned ODE-Network is

adapted so it suits the provided data. “Adapted” means that the

given ODE can be extended by new equation elements and that

the initial ODE’s parameters can become readjusted. Hence,

we use the initial ODE as baseline and improve it continuously

during the training. Situation (iii) demands the most training

efforts, since, similar to solving a machine learning problem,

the architecture needs to be determined by trial-and-error and

the operators are set to the best of the user’s knowledge.

Nevertheless, even without knowing the system dynamics, it

is still often possible to make good guesses on the operator

set. Another benefit of the ODE-Network over an MLP is

the improved extrapolation behavior, which has already been

investigated in [25] for the EQL. This is especially important

for using the ODE-Network as a model in a model-based RL

framework in order to acquire a high reward after as few

iterations as possible.

The ODE-Network cannot be trained in a supervised fash-

ion, because it maps the state x, the input u, and the process

noise w on the state’s temporal derivative ẋ. However, ẋ

is not available in the measurement data and it also cannot

be precisely estimated by calculating the difference quotient,

especially if only noisy measurements are provided. To cir-

cumvent this problem, we use an ODE-Learner framework,

which is introduced in the following subsection.

B. The ODE-Learner Framework

The ODE-Learner framework allows fitting an ODE by

providing noisy data without simplifying it to a discrete-

time difference equation by combining a PINN-approach with
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Fig. 1: Sketches of the proposed architecture of a single operator-neuron (left) and of the whole ODE-Network (right).

t

Mean-network Nξ

ξ

d
dt

ξ̇AD

L2

t u

State-network Nζ

ξ̇

t

Covariance-network Nψ

ψ

d
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L3

Output-network Nη

L1y(t)

Fig. 2: Sketch of the ODE-Learner concept, describing the interactions of the first three loss functions. The different colors

indicate the influence of a network to the respective loss.

an EKBF. The approach to solve an EKBF in a physics-

informed way has first been introduced in [20] as Kalman-

Bucy-Informed Neural Network (KBINN), with the aim on

estimating unknown real-valued parameters in an otherwise

known state-space model. In this section, we extend the

KBINN by including the ODE-Network in order to identify a

continuous-time, nonlinear system with noisy measurements.

Here, the ODE-Network estimates the dynamics in the form

of a state-space representation. However, in order to fit a state-

space representation to data, the ODE of the state needs to be

solved, which is done by the KBINN.

We implement four neural networks in total as shown in

Fig. 2. The mean-network Nξ is a standard fully-connected

neural network that approximates the state’s mean vector by

means of x̂(t) ≈ ξ(t) = Nξ(t) with the network’s output

ξ(t). The covariance-network Nψ(t) is also a fully-connected

neural network, which approximate the state’s covariance

matrix by means of P̂ (t) ≈ ψ(t) = Nψ(t) with the network

output ψ(t). The state-network Nζ is an ODE-Network and

aims at approximating the ODE f(·) in (1) by using the

state’s estimated mean value according to ẋ = Nζ(x,u,w, t).

Finally, the output-network Nη is also an ODE-network and

approximates the system’s measurement equation g(·) by

calculating y(t) = Nη(x,u,v, t).
The idea is summarized as follows: We train the networks

in a PINN-framework, which is constrained by the differential

equations of an EKBF’s mean value and covariance matrix that

we introduced in (3) and (5). This approach allows including

measurement noise and process noise. Additionally, we do not

need every state to be directly accessible. Hence, we train the

ODE-Learner by minimizing a loss function that comprises

four terms according to

L =
1

N

N
∑

i=1

(α1L1,i + α2L2,i + α3L3,i + α4L4,i) , (11)

with weights αj > 0, j ∈ {1, 2, 3, 4} to adjust the influence

of the single components. The first term L1,i is a maximum-

likelihood function that keeps our identified system’s output

close to the measurements y(ti) according to

L1,i = −

q
∑

j=1

log
(

Lj
(

ξ(ti),ψ(ti); yj(ti)
))

, (12)



with the scalar output values yj(ti), j = 1, . . . , q of the

measurement vector y(ti) . Since the noise is assumed to

be Gaussian, Lj describes the normal probability distribution

function by means of

Lj(·) =
1

√

2πσ2
j (ti)

exp

{

(

yj(ti)− µj(ti)
)2

2σ2
j (ti)

}

(13)

The mean value µj(ti) and variance σ2
j (ti) are the first two

stochastic moments of the estimated state, when propagated

through the output network by means of

µj(ti) = mean (ηj(ti)) and

σ2
j (ti) = var (ηj(ti))

(14)

Here, ηj(ti) is acquired by propagating the estimated mean

value ξ and the estimated covariance matrix ψ through the

output-network η(ti) = Nη(ξ,ψ;u,v, ti). Then, the output’s

mean value and variance can be both calculated in closed-form

if the function Nη(·) is (piece-wise) linear, trigonometric, or

polynomial [13]. If the mean and variance cannot be calculated

in closed-form, an approximate calculation by sampling or a

numerical integration is required. Hence, it is advantageous to

constrain the output-network to the mentioned cases.

The second term L2,i is defined by means of

L2,i = ‖ξ(t0)− x0‖2 +
∥

∥

∥
ξ̇AD(ti)−Ξ(ξ, ti)

∥

∥

∥

2
(15)

with

Ξ(ξ, ti) = Nζ (ξ(ti),u,0, ti)

+K(ti) · (y(ti)−Nη(ξ(ti),u,0, ti)) . (16)

and the Kalman gain K(ti) = ψ(ti) · Ĉ
T(ti) · R̂

−1(ti). ξ̇AD

denotes the temporal derivative of ξ(t), acquired by automatic

differentiation. Note that (16) describes the mean’s temporal

evolution in an EKBF, which we introduced in (3). In its

essence, L2,i ensures that the state-network Nζ approximates

the derivative with respect to time of the mean-network Nξ,

while reducing the influence of measurement or process noise.

The third term L3,i is defined by means of

L3,i =
∥

∥

∥
ψ(t0)− P̂0

∥

∥

∥

F
+
∥

∥

∥
ψ̇AD(ti)−Ψ(ψ, ti)

∥

∥

∥

F
(17)

and

Ψ(ψ, ti) = Â(ti)ψ(ti) +ψ(ti)Â(ti)
T

−K(ti)Ĉ(ti)ψ(ti) + Q̂(ti) . (18)

The matrices in (18) are acquired by linearization in a similar

way to (6) by replacing f(·) with Nζ(·), g(·) with Nη(·) and x̂

with ξ. ψ̇AD is the temporal derivative of ψ(t), acquired by

automatic differentiation. Hence, the third loss enforces the

temporal evolution of the estimated covariance matrix ψ(t)
to be consistent with the estimated state-space models Nζ

and Nη .

Summarized, L1,i keeps the estimated system’s output

close to the measurement data, while L2,i and L3,i force

the estimated system to be compatible to the EKBF’s mean

and covariance matrix. The fourth loss L4,i is formed from

regularization terms, which are described in the following. We

want to enforce the network to only use the operators, which

are deemed necessary. At the same time, we do not want to

punish large coefficient values, since they might be necessary

for a successful identification. Thus, the first regularization

term is given by

R0(w) =
a1

1 + exp{−a2 · |w|+ a3}
+ a4 · |w| (19)

with constants a1, . . . , a4 and a scalar weight value w. The

regularization performs a very low punishment, if the weight

value is close to zero and increases heavily afterwards. For

larger values, the increase in regularization is marginal but

present, which avoids vanishing gradients.

As we already mentioned in Sec. IV-A, it is necessary to

punish an approach of the ODE-Network’s denominator to the

pole. Thus, we define another regularization term

R1(o,w) = max(0, δ − oT ·w(4)) , (20)

which is similar to the method used in [25]. The loss L4,i

from (11) is created from

L4,i = α4,1R0(w) + α4,2R1(w) (21)

with additional weights α4,1, α4,2 > 0 .

V. VALIDATION

We validate our method on three benchmarks. First, we

focus on pure system identification by training an ODE-

Learner and solve the resulting ODE numerically in order

to compare the predicted outcome to the ground truth. Af-

terwards, we embed our ODE-Learner in a model-based RL-

framework in order to reach a target state by using as little

data as possible. As it is mentioned in Sec. IV-A, the ODE-

Network can be substituted with a standard MLP. However,

this does neither allow the inclusion of prior knowledge,

nor can MLPs extrapolate very well. Nevertheless, in the

following experiments, we compare the results of using an

ODE-Network with a standard MLP. Additionally, we use

state of the art algorithms that allow identifying a continuous-

time ODE to compare it to our ODE-Learner framework. To be

more precise, we choose SINDy, which is well-established in

the system identification community, Mathwork’s neural state-

space, which is a Matlab-implementation of a neural ODE

and, finally, the INN, as a counter-part to the neural ODE

that does not rely on differentiation. We already introduced

all three algorithms in Sec. II. To obtain an implementation,

we use the publicly available GitHub-repositories for SINDy

[7] and the INN [17], respectively. The neural state-space

model is available in Matlab’s system identification toolbox

at version R2022b or later. We want to emphasize that we

have chosen the hyperparameters of the methods to the best

of our knowledge and belief. Furthermore, it is important

to note that the results may vary significantly with different

hyperparameters. In the following, we give an overview of our

experiments.
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A. Duffing Oscillator

The Duffing oscillator is a 2nd-order benchmark system,

which is very popular in the system identification community

[10], [32]. It contains nonlinear operators and has a chaotic

behavior, which means it is crucial to obtain a model that is

able to generalize well from the provided data. Its state-space

equation is given by means of

ẋ1(t) = x2(t)

ẋ2(t) = b1x2(t) + b2x1(t) + b3x1(t)
3 − b4 cos(ω0t)

y(t) = x1(t) + v(t) ,

(22)

with parameters b1, . . . , b4 ∈ R, which define the system

behavior, and the frequency of the input signal ω0 ∈ R. We

assume that we do not know the state-space equation in the

identification process, apart from the operators, and only use

(22) to synthesize data. Note, however, that we exacerbate the

usual problem by only making x1(t) measurable after adding

some zero-mean Gaussian-distributed noise v(t).
To prove the effectiveness of the ODE-Learner, we build

ten systems by sampling b1, . . . , b4, ω0 and the initial states

x1(0), x2(0) from a uniform distribution U(0, 1). Afterwards,

we simulate measurement data by using Euler’s method to

solve (22) numerically over a period of tend = 48 s with a

sampling time of ∆t = 0.02 s and add zero-mean Gaussian

noise according to v(t) ∼ N (0, 0.012). We use the first

40 s of measurement data as a training set and the last 8 s
to validate our model. We identify a 2nd-order ODE, which

corresponds to situation (iii) according to Section I, i.e., the

TABLE I: Root mean squared errors of the system identifica-

tion tasks for the Duffing oscillator and the Cascaded Tank.

Method Duffing oscillator Cascaded Tank

ODE-Learner 0.03± 0.06 0.61
MLP 0.11± 0.16 1.23
SINDy 0.43± 0.61 1.53
Matlab 0.06± 0.02 1.26
INN 0.27± 0.13 0.81 (0.41)1

1The eRMSE value of 0.41 was reported in [17].

Upper tank

x1(t)

Lower tank

x2(t)

Reservoir

u(t)

Water pump

Fig. 4: Sketch of the cascaded tank system.

entire ODE needs to be identified. The Operator-neuron allows

a cubic calculation. Afterwards, we use Euler’s method to

create a simulated trajectory of the states and feed them

through the output equation to obtain the estimated system

output ŷ(ti). The quality of the identification is then measured

by calculating the root mean squared error eRMSE between the

identification ŷ(ti) and the ground truth y(ti).
The results of all identification runs are shown in Fig. 3

as a boxplot. The ODE-Learner using an ODE-Network en-

ables a more precise identification than the other methods.

Substituting the ODE-Network with an MLP leads to a slightly

worse fit. In one out of the ten identification runs, we observe

an outlier, which is caused by a gradient being stuck in a

local minimum during the training. This could be corrected

by restarting the training with new weights, however we kept

the results in Fig. 3 unchanged. Additionally, we want to

emphasize that the Matlab method requires all states to be

accessible. Thus, we simplified the problem for Matlab and

used both states. Additionally, Table I shows the mean value

and standard deviation of the obtained identification errors.

B. Cascaded Tanks

In this paragraph we test the effectiveness of our method

on a real-world system identification benchmark [28]. It is

composed of two vertically arranged water tanks and a water

reservoir, which is placed below. Fig. 4 features a sketch of

the system.

A water pump transports the water from the reservoir into

the upper tank. Each tank features a small opening at its

bottom, allowing water to flow from the upper tank to the

lower one and, finally, from the lower tank into the reservoir.

However, both tanks do not have a lid. If the water pump’s

power is too high, both tanks can overflow. This behavior

is nonlinear and stochastic, since water from the upper tank

can flow partly into the lower tank or into the reservoir.

The benchmark authors provide an ODE, which describes the

state-space of the water flow by using Bernoulli’s equation

according to

ẋ1(t) = −k1
√

x1(t) + k4u(t) + w1(t)

ẋ2(t) = k2
√

x1(t)− k3
√

x2(t) + w2(t)

y(t) = x2(t) + v(t) ,

(23)
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Fig. 5: Plots of the simulated height for the cascaded tank problem. (a) shows the result of our identified ODE, obtained by an

ODE-Network and an MLP, compared to the original test data, while (b) shows state of the art system identification methods.

with x1(t) and x2(t) denoting the water level in the upper and

lower tank, respectively. u(t) denotes the system input and

k1, . . . , k4 are unknown system parameters. The benchmark

authors use a D/A-converter as system input, which controls

the pump’s power by setting a voltage. The system’s output

is the water level of the lower tank, which is measured by

a capacitive water level sensor. The measurement values are,

again, voltage values, this time from an A/D-converter. Neither

sensor nor water pump dynamics are provided, which are,

together with the overflow behavior and the initial state values

x0, subject to identification. Hence, this use case corresponds

to situation (ii) according to Section I, i.e., some segments

as well as all parameters of the ODE need to be identified.

The benchmark authors provide a training and a test data set

with 1,024 instances, respectively, which are each sampled

at ∆t = 4 s. We train an ODE-Learner by providing a pre-

conditioned ODE-Network according to the dynamics, given

in (23). We extend the network by nine operator-neurons

to model the unknown dynamics. The output network used

only performs a linear transformation, since we assume the

capacitive water level sensor to exhibit linear behavior.

The eRMSE of the identified systems are shown in Table I.

Note that we can perform this validation only once, since it

is a real-world example and we do not have multiple data

sets available. Fig. 5 shows the plots and error values of

the simulated outputs and the provided validation data for

each investigated method. It is visible that we identified an

ODE that shows the most similar behavior to the original

one. The INN is very close to ours. We hypothesize that

this is caused by the low sampling rate of only 4 s, which is

too coarse for differentiation-based methods, but better suits

methods that rely on integration. The authors of the INN-

method even reached a root-mean-squared error of 0.41 with

another hyperparameter setting. Replacing the ODE-Network

by an MLP leads to results being similar to SINDy and Matlab.

C. Inverted Pendulum on a Cart

The inverted pendulum on a cart is a frequently used

benchmark for controllers. A pendulum is mounted on a

movable cart, which has one degree of freedom. The control

target is to swing up the pendulum from its lower equilibrium

point and keep it stable in an upright position. The system has

a rank of n = 4 and a state vector x =
[

x ẋ θ θ̇
]T

with

the cart position x, the cart velocity ẋ, the pendulum angle

θ, and the angular velocity θ̇. The use case corresponds to

situation (iii) according to Section I. The pendulum is in an

upright position, when θ = 0.

In the literature, the control job is often split up into the

swing-up and the stabilization task [19]. Thus, we use an

MPC-algorithm to swing up the pendulum. When it reaches

its target state, a Linear Quadratic Regulator (LQR) keeps it

stable in an upright position. We define the reward function by

means of R = 1
d

∑N

i=N−d−|θ(ti)| with the pendulum angle

θ(ti) at time step ti and a time window length d ∈ N. We

consider the pendulum stable, if R > −0.2 . This allows a very

small oscillation of less than ±11.5◦ around the target position

to be counted as successful swing-up. The initial state of the

system is x0 =
[

0 0 −π 0
]T

. We perform the following

routine: First, we simulate training data by moving a cart with

a random input signal, which is capped at −25N < u < 25N.

Afterwards, we train a first ODE by using the randomly

gathered data. We then use this identified ODE in an MPC-

framework to perform an L-BFGS-B-optimization to calculate

the optimal input values, which we apply to the inverse

pendulum system. Each episode comprises a data sample of

tend = 2 s with a sampling rate of ∆t = 4ms. The MPC solves

an optimization problem of minimizing JMPC = −R(x) over

a prediction horizon of nph = 1 s. We switch from the MPC

to an LQR, as soon as the angle is close to the target position

for a short period. To be precise, |θ| < π/6 during 95% of

the last 0.2 s. When this switching criterion is reached, we use

the identified ODE and calculate an LQR.

Fig. 6a shows the obtained reward for different episodes

after six identification runs with different inital input values.

In three out of six cases, we could swing up the pendulum and

stabilize it after six episodes. In the remaining three cases, we

did not observe a swing-up in the first six episodes. With more

than six episodes, we obtained a large amount of training data,
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(b) Episode 1: Random actions
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(c) Episode 2: Pure MPC, because the switching criterion has
not been fulfilled.
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(d) Episode 3: MPC until t = 0.83 s. Afterwards an LQR
controls the input

Fig. 6: Achieved results for the inverse pendulum on a cart. The first plot shows a box plot of obtained reward after different

episodes for the investigated methods. The next three plots show the trajectory of the controlled cart for one showcase, where

we reached a swing-up at the third episode.

which becomes increasingly difficult to handle with the ODE-

Learner, which is why we refrained from performing further

episodes and considered these attempts as failed. We did not

observer a swing-up with the other methods. Note that we

capped the negative reward at Rmin = −6. Fig. 6b to 6d show

the trajectories of a successful swing-up after three episodes,

which we observed in another test run as a showcase.

VI. DISCUSSION

In this section, we want to list the strengths and limitations

of our method. As we showed in Sec. V, our method reliably

allows identifying an ODE, even when noisy data is provided.

Additionally, it is possible to include human knowledge, which

is not the case for methods like a neural ODE, the INN

or an MLP. The prediction error remains reasonably small

and our method is also applicable in a model-based RL

framework. Furthermore, it is possible to extract a differential

equation with a better root mean squared error than established

methods.

However, there are some drawbacks. Firstly, the training

time is rather high. We used an Nvidia A100 GPU with

training times between 45min for the duffing oscillator and

36 h for the complete run of the inverted pendulum task. This

is due to the need to linearize the state-network in order to

obtain the state matrix A in (18), which requires multiple

differentiation steps. If we do not manage a successful run

in the first few episodes of a model-based RL-problem, the

accumulated data grows to such an extent that the training time

becomes unreasonably high, which is what happened in the

inverted pendulum task. All other methods require significantly

less training time. Additionally, our method has a large number

of hyperparameters. Especially the architecture of all four

networks has a major impact on the result. The only way

to find the correct network architecture is by trial-and-error

or by utilizing a neural architecture search [22]. As is visible

in Fig. 3, the ODE-Learner sometimes shows an outlier. We

observe this behavior in approximately one in ten cases. We

suspect that the reason for this lies in the backpropagation

algorithm, which can get stuck in a local minimum. If we

restart the algorithm with new weighting matrices, the outlier

disappears. Nevertheless, we are still performing better than

the state of the art in terms of data efficiency, since there is no

method available that allows swinging up a pendulum after less



than 6 s of measurement data. Another drawback is the non-

interpretability of the identified ODEs. Despite experimenting

a lot with increasing the weight of the introduced regulariza-

tion terms, we were not able to identify ODEs, which are

compact enough to interpret the mathematical model and to

visually check, whether the model is correct. Finally, despite

identifying a continuous-time differential equation, the control

is performed by an MPC-algorithm, which discretizes the

identified ODE afterwards. Using a continuous-time control

law might leverage the advantages of continuous-time identi-

fication further.

VII. CONCLUSION AND OUTLOOK

We presented a new method to identify ODEs from noisy

measurement data that allows human knowledge to be incor-

porated and that does not demand every state to be directly

accessible. We showed that the identification works very pre-

cisely and proved that it is possible to embed it into a model-

based RL framework. For future work, we plan to optimize

the control strategy, in order to use the trained ODEs more

efficiently and reduce the data usage even further. Additionally,

we are working on training a nonlinear control function in

parallel to the identified ODE.
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Learning and Symbolic Regression for Discovering Parametric Equa-
tions, 2022.


	Introduction
	Related Work
	Fundamentals
	Extended Kalman-Bucy-Filter
	Physics-Informed Neural Network
	Equation Learner
	Model-based Reinforcement Learning

	Learning ODEs
	ODE-Network
	The ODE-Learner Framework

	Validation
	Duffing Oscillator
	Cascaded Tanks
	Inverted Pendulum on a Cart

	Discussion
	Conclusion and Outlook
	References

