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as spike trains in a very compact form and can be taken as

independent information processors [8]. The encoding mecha-

nism of RGCs can be utilized to build up retinal prostheses that

perceive visual stimuli and generate simulated spike trains. It

can be applied to vision recovery, even virtual and augmented

reality through neural activity control [9]. Oppositely, neural

decoding of RGCs can assess the performance of neuropros-

theses, get deep insight into information compressed in spike

trains and then be applied to brain-machine interfaces [8].

Till now, there have been lots of researches on RGC spike

encoding. The existing methods contain the linear nonlinear

model (LN) and its cascaded version LN-LN, the generalized

linear model (GLM) taking spike history as feedback [10] and

kinds of machine learning techniques [11]. However, the above

methods only fit well on stimuli with simple artificial stimuli

and are easy to overfitting with natural scenes which have more

complicated distribution. These deficiencies are attributed to

the complex nonlinear processes in neural circuits of retinas

but relatively simple encoding models. To solve this problem,

several methods based on deep neural networks (DNN) have

been attempted, such as the convolutional neural network

(CNN) [12] [13] or the recurrent neural network (RNN) [14]

which have strong abilities to fit nonlinearity. These novel

studies prove that deep learning is a brand-new and feasible

way to mimic RGCs.

There has been some effort on RGC spike decoding. [15]

provided a nonlinear decoder but can only execute pixel-

by-pixel reconstruction of simple artificial stimuli. [16] used

simulated spike data to generate coarse intermediate images

firstly and refined them via a convolutional autoencoder. The

experiments were conducted on simulated spike data but not

experimental spike data. Due to imperfect encoding techniques

especially when applied to natural stimuli, experimental spike

data are more appropriate to assess the decoding method. [8]

proposed a simple but efficient decoding algorithm and applied

Abstract—Neural encoding and decoding of retinal ganglion 
cells (RGCs) have been attached great importance in the research 
work of brain-machine interfaces. Much effort has been invested 
to mimic RGC and get insight into RGC signals to reconstruct 
stimuli. However, there remain two challenges. On the one 
hand, complex nonlinear processes in retinal neural circuits 
hinder encoding models from enhancing their ability to fit the 
natural stimuli and modelling RGCs accurately. On the other 
hand, current research of the decoding process is separate from 
that of the encoding process, in which the liaison of mutual 
promotion between them is neglected. In order to alleviate the 
above problems, we propose a cross-modal dual deep generative 
model (CDDG) in this paper. CDDG treats the RGC spike signals 
and the stimuli as two modalities, which learns a shared latent 
representation for the concatenated modality and two modal-
specific l atent r epresentations. T hen, i t i mposes distribution 
consistency restriction on different latent space, cross-consistency 
and cycle-consistency constraints on the generated variables. 
Thus, our model ensures cross-modal generation from RGC 
spike signals to stimuli and vice versa. In our framework, the 
generation from stimuli to RGC spike signals is equivalent to 
neural encoding while the inverse process is equivalent to neural 
decoding. Hence, the proposed method integrates neural encoding 
and decoding and exploits the reciprocity between them. The 
experimental results demonstrate that our proposed method can 
achieve excellent encoding and decoding performance compared 
with the state-of-the-art methods on three salamander RGC spike 
datasets with natural stimuli.

Index Terms—dual learning, cross-modal generation, retinal 
ganglion cells, neural encoding, neural decoding

I. INTRODUCTION

Visual pathway starts from retina where the light energy is
transferred into neuronal signal, goes through lateral geniculate

nucleus (LGN) and terminates in the visual cortex. Research

has mainly focused on neural encoding and decoding of LGN

and primary visual cortex and has made significant progress

to date [1]–[7].

However, retinal ganglion cells (RGCs) are the only output

neurons of retinas given visual stimuli. RGCs represent stimuli



it on experimental data. The idea was similar with [16] but it

had no constraints on intermediate images. However, it is a

pure decoding model and doesn’t have the ability to encode

stimuli. Accordingly, the liaison of mutual promotion between

encoding and decoding is overlooked.

To our own knowledge, researches of RGC spike encoding

and decoding have been isolated to date. However, encoding

and decoding are dual processes. Simultaneous training can

make use of the reciprocity between them.

Considering the above relationship and inspired by cross-

modal generation, we propose a method called cross-modal

dual deep generative model (CDDG) to compensate for the d-

eficiencies of the current research. That’s to say, visual stimuli

and RGC spike signals are considered as two modalities. The

method learns latent representations not only for the concate-

nated modality but also for two modalities specifically. And

then, by forcing the distributions of three kinds of latent rep-

resentations to be close, it establishes the relationship between

image and spike modalities. Furthermore, cross-consistency

and cycle-consistency constraints which are inspired by the

concept of dual learning are forced onto generated variables

to ensure higher ability for cross-modal generation. Thus, our

model can achieve the generation from spike signals to stimuli

and the inverse process. Generating RGC spikes given visual

stimuli and generating visual stimuli given RGC spikes, are

equivalent to encoding and decoding, respectively. RGC spike

encoding and decoding are transformed into the bi-directional

cross-modal generation issue. The cross-modal generation

capability of CDDG supports the synchronic optimization and

the mutual promotion of RGC encoding and decoding.

Experimental results demonstrate that our method accom-

plishes simultaneous neural encoding and decoding ideally. On

three salamander RGC spike datasets with natural stimuli, it

shows that our method achieves great encoding and decoding

results compared with the state-of-the-art CNN-based RGC

population spike encoder [12] and the state-of-the-art spike

decoder [8].

In short, the main contributions of the paper are as follows.

• Inspired by the truth that our brains are bi-directional

information-processing devices, we deploy a dual deep

generative network to do simultaneous RGC spike en-

coding and decoding.

• We impose cross-consistency and cycle-consistency con-

straints on generated variables to obtain excellent cross-

modal-generation capacity.

• The experimental results demonstrate that our approach

can achieve excellent encoding and decoding perfor-

mances in comparison with the state-of-the-art methods

on three datasets with natural stimuli.

• Our work provides a new perspective and will inspire

more work on RGC population spike encoding.

II. RELATED WORK

A. Cross-modal generation

There has been a plenty of work on cross-modal gen-

eration. Automatic caption generation from images and the

inverse processes have been achieved [17]–[20]. The cross-

modal generation has also made progress in images, audio

and so on [21]–[23]. Deep canonically correlated autoen-

coders (DCCAE) propounded in [24] can learn a shared

representation through the correlation-based optimization and

then reconstruct each modal. However, it only preserves the

correlated information and abandons the uncorrelated one.

Thus, it is inappropriate for cross-modal generation. [25]

proposed JMVAE to do bi-directional cross-modal generation.

It learned modal-specific latent representations and a modal-

shared latent representations whose distributions were forced

to be close. However, it had no constraints on the cross-

modal generated variables and is flawed to do cross-modal

generation. In contrast, the merit of our model is that it takes

full-scale consistency constraints into consideration to acquire

better cross-modal-generation performance.

Synchronic mutual generation of two modalities can im-

prove the generation results of both directions but has not been

attached much importance. A crucial issue is how to drive the

performance of two generators to coevolve. An implicit form

of constraints called cycle consistency is utilized to achieve

this. Cycle consistency was first employed for dual learning

of machine translation [26]. It enables the use of unpaired data,

exploits the reciprocity of two generating processes and thus,

has widespread applications in cross-modal generation [27]–

[29]. In this paper, we resort to this idea for bi-directional

cross-modal generation.

B. Neural spike encoding and decoding

Neural spike encoding and decoding can be seen as process-

es of translation between stimuli and spike signals in different

directions. There have been many classic spike encoding

methods such as LN, LN-LN, GLM [10]. These methods use

receptive fields of RGCs as spatiotemporal filters. However,

the fitting abilities of them are limited especially on natural im-

ages. More complex models based on DNN learn the receptive

fields automatically and have higher encoding performance

[12]–[14]. The DNN-based encoding model inspires the CNN-

based encoding part of CDDG.

Researches on RGC spike decoding have shown good

results [8], [15], [16]; however, they have been isolated from

researches of spike encoding. In fact, it’s essential to integrate

spike encoding and decoding into one framework. Taking the

retinal neuroprosthesis as an example, the synchronic training

of encoding and decoding models can promote the perfor-

mance and the performance evaluation at the same time and is

helpful to obtain perfect neuroprostheses [30]. Our proposed

model CDDG builds up a closed-loop computation of spike

encoding and decoding which is the main difference compared

with the state-of-the-art spike encoding and decoding methods.

III. METHODOLOGY

A. Overview

As for the multi-modal generation issue, two modalities,

visual stimuli and RGC spike signals, are represented as

x ∈ R
N×P×P and s ∈ R

N×M , respectively. N,P and M
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Fig. 1. The schematic diagram of CDDG and related CNN architecture. (a) It depicts the network structure and constraints of CDDG. It’s made up of four
encoders and two decoders. And it has six outputs and four kinds of constraints. The black solid arrows denote the self-reconstruction processes and the
dotted arrows in red and blue denote the cycle-generation processes. The abbreviation KL means KL-divergence constraints. The wide gray arrows in the
right of the subfigure denote three constraints imposed on six outputs. See Section III for more details. (b) CNN architecture and specific parameter settings.
The architecture in upper blue trapezoid is used to build an image encoder. Oppositely, the architecture in upper green trapezoid is used to build an image
decoder.

denote the sample size, the image resolution, the number

of RGCs. The generated variables are represented as x or s

with a specific subscript meaning the generation routine. For

example, xsx is the stimuli x generated from the original spike

signals s.

The following section is divided into three parts with the

first two parts introducing the skeleton models that CDDG

in the third part is based on. The most basic one is called

the multi-modal deep generative model (MDG). The black

arrows in Fig. 1 (a) describe the generation of xxx, sss with

reconstruction and KL-convergence constraints. The polished

model called cross-modal deep generative model (CDG) adds

cross-modal-generation constraints for the sake of domain

alignments. It has additional outputs xsx, sxs. Inspired by dual

learning, we ameliorate CDG into cross-modal dual deep

generative model (CDDG) with additional cycle-consistency

constraints. The generation routines of xxx, sss, xsx, sxs, xxsx, ssxs

are presented by the black solid arrows, the blue and red dotted

arrows in Fig. 1 (a). Three kinds of constraints imposed on

the generated variables are shown on the right of Fig. 1 (a)

by thick gray arrows.

B. Multi-modal Deep Generative Model

The variational autoencoder (VAE) algorithm focuses on

single modality learning [31]. It’s made up of one encoder

qφ(·) and one decoder pθ(·), with φ and θ as their respective

network parameters. Given the i.i.d. observation variables x

and continuous latent variables z, the loss function of VAE is

LVAE = DKL(qφ(z|x)||p(z))− Eqφ(z|x)
[log pθ(x|z)] (1)

where z ∼ p(z) = N (0, I) and z ∼ qφ(z|x) = N (µ,σ2). The

first term in (1) represents a regularization on qφ(z|x) and the

second term in (1) represents reconstruction constraints on x.

The VAE also uses the reparameterization trick to change z

into z = µ+σ⊙ǫ where ǫ ∼ N (0, I). The applications of VAE

include reconstruction, unsupervised representation learning of

single modality.
VAE can be extended to multi-modal version with multiple

inputs and outputs. The inputs are the i.i.d. multi-modal dataset
(x, s) = {(x1, s1), (x2, s2), · · · , (xN , sN )}, where x, s, N are
told in Section III-A. The generating processes are represent-
ed as x, s ∼ p(x, s|z) = pθx

(x|z)pθs
(s|z). pθx

(·), pθs
(·) are

decoders of x and s corresponding to Decx,Decs in Fig. 1
(a) with θx and θs as their respective parameters. Inversely,
the inference processes are zx,s ∼ qφ(z|x, s) = N (µx,s,σ

2

x,s),
zx ∼ qφx

(z|x) = N (µx,σ
2

x ) and zs ∼ qφs
(z|s) = N (µs,σ

2

s ),
where qφx

(·), qφs
(·), qφ(·) are encoders of x, s and their con-

catenated modality (x, s) with φx, φs and φ as their respective
parameters. The encoders qφx

(·), qφs
(·) learn modal-specific

latent representations while qφ(·) learns a modal-shared latent
representation. The networks Encx2 ,Encs2 in Fig. 1 (a) are
corresponding to qφx

(·), qφs
(·), respectively. (Encx1 ,Encs1) are

taken as a whole encoding network that is equivalent to qφ(·).
The loss function of MDG is

LMDG = DKL(qφ(z|x, s)||p(z)) +DKL(qφ(z|x, s)||qφx(z|x))

+DKL(qφ(z|x, s)||qφs(z|s))

− α(Eqφ(z|x,s)[log pθx(x|z)] + Eqφ(z|x,s)[log pθs(s|z)]) (2)

where z ∼ p(z) = N (0, I) and α is the trade-off parameter.

The first three terms are intended to close the distributions

of z, zx, zs, zx,s. The last two terms in (2) are reconstruction

constraints on x and s respectively, which are similar to the

second term in (1).

In brief, MDG consists of three encoders and two decoders.

The encoder qφ(·) is disabled during testing because the

testing procedure generates x only from s and vice versa.

The inference processes during the testing stage only contains

zx ∼ qφx
(z|x) = N (µx,σ

2

x ) and zs ∼ qφs
(z|s) = N (µs,σ

2

s ).
This model has several advantages. The gap between two

modalities is easier to close using the concatenated modality



as an intermediate variable. Besides, the modal-specific en-

coders make the model supportive for datasets with incomplete

modalities.

C. Cross-modal Deep Generative Model

Nonetheless, the MDG model is flawed for cross-modal gen-

eration. The reason is that MDG only imposes reconstruction

constraints on xxx and sss which are generated from the modal-

shared latent representation zx,s ∼ qφ(z|x, s) but overlooks

constraints on xsx and sxs generated from zs ∼ qφs
(z|s) and

zx ∼ qφx
(z|x), respectively. Therefore, the above model is

only suitable for modality reconstruction, not for cross-modal

generation.
We introduce the cross-modal deep generative model (CDG)

with the following loss function to relieve the problem,

LCDG = DKL(qφ(z|x, s)||p(z)) +DKL(qφ(z|x, s)||qφx(z|x))

+DKL(qφ(z|x, s)||qφs(z|s))

− α(Eqφ(z|x,s)[log pθx(x|z)] + Eqφ(z|x,s)[log pθs(s|z)])

− β(Eqφs
(z|s)[log pθx(x|z)] + Eqφx

(z|x)[log pθs(s|z)]) (3)

where β is the trade-off parameter. The last two additional

terms play the role of minimizing the reconstruction errors

of xsx and sxs. The terms put constraints on cross-modal-

generation consistency and we call them cross-consistency

constraints.

In order to analysis the necessity of the added terms, we

consider the case in (2) and take the generation of xsx as an

example. Similar distributions are not equivalent to similar

decoding results. That is to say, sampling from the modal-

specific and the modal-shared latent representations zs and zx,s

which have similar distributions, the generated variables xsx

and xxx are not bound to be consistent even both generated

by pθx
(·). Therefore, there need extra constraints on generated

variables and the additional terms in (3) play the role. As a

result, the cross-consistency can help the domain alignment.

D. Cross-modal Dual Deep Generative Model

Inspired by dual learning, we input the generated variables

xsx and sxs into one more cross-modal generation and obtain

ssxs and xxsx with additional cycle-consistency constraints.
We further modify CDG model into CDDG model whose

second D represents the abbreviation of dual,

LCDDG = DKL(qφ(z|x, s)||p(z)) +DKL(qφ(z|x, s)||qφx(z|x))

+DKL(qφ(z|x, s)||qφs(z|s))

− α(Eqφ(z|x,s)[log pθx(x|z)] + Eqφ(z|x,s)[log pθs(s|z)])

− β(Eqφs
(z|s)[log pθx(x|z)] + Eqφx

(z|x)[log pθs(s|z)])

− γ(Eqφs
(z|sxs)[log pθx(x|z)] + Eqφx

(z|xsx)[log pθs(s|z)]) (4)

where γ is the trade-off parameter.

Taking xsx generated from s as an example, the added

constraints encourage xsx to generate ssxs aligned with the

original variables s through one domain-cycle (image → spike

→ image). The supplementary terms have lots of benefits.

On the one hand, some modal-specific features will be p-

reserved during the cross-modal generation for the purpose

of minimizing the corresponding reconstruction error in the

closed loop. On the other hand, as inspired by [32], the cycle-

consistency terms can mitigate the underconstrained cross-

domain generation issue and then, enable the learning of

cross-modal generation on modal missing datasets which are

common for neural data.
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Fig. 2. Diagrams of the compared methods. See Section IV-A for more details.

IV. EXPERIMENTAL RESULTS

In this section, we give an introduction on the compared

method, datasets, experimental settings and evaluation metrics

used in experiments. We also show experimental results via

figures and charts.

A. Compared Methods

The compared methods include both unidirectional and bi-

directional cross-modal generators. The diagram of each neural

decoding method is shown in Fig. 2.

• VAE-based regression (VAE-Reg) [33]: The model com-

bines the vanilla VAE and regression together and can

only generate images from spike singals. It learns the

image representation using VAE firstly. Then, it does

regression from the neural spike signals to zx. Finally,

zx reconstruct images through Decx.

• GAN-based regression (GAN-Reg) [6]: The GAN is

trained to generate images from random noise. After that,

parameters of GAN are fixed and a fully-connected (FC)

network is trained to estimate the latent space from neural

spike signals.

• Spike-Image Decoder (SID) [8]: The SID contains two

parts: spike-image converter and image-image autoen-

coder. The converter turns RGC spike signals into inter-

mediate images from which the autoencoder reconstructs

images next.

• DCCAE [24]: This is a deep multi-view algorithm ex-

tended from canonical correlation analysis (CCA) [34].

It designs one autoencoder for each modality and applies

CCA on the learnt latent representations.

• CNN-based [12]: It can only generate spike signals

from images. Images are encoded into spike signals by

CNNs and FC networks. [12] has proved that this neural

encoding method outperforms LN and GLM on natural

stimuli. The diagram can be found in [12].



B. Datasets

We use three datasets publicized in [35]. The RGC spike

signals were collected from isolated salamander retinas with

natural stimuli which contain static images and dynamic movie

clips. They are named by the type of the stimuli.

1) Natural Image: The stimuli contain 300 different gray

natural images. Each stimulus was shown to the retina for

200ms. Neural spike trains of 80 RGCs were recorded and

summed up to spike counts in bins of 200ms.

2) Natural Movie-I: The movie clip is 60s long and at a

frame rate of 30Hz. So, there are 1800 gray natural frames

in total. Neural spike trains of 90 RGCs were recorded and

binned in bins of 1000/30 ms.

3) Natural Movie-II: The movie clip is at a frame rate

of 30Hz and has 1600 gray natural frames in total. Neural

spike trains of 49 RGCs were recorded and binned in bins of

1000/30 ms.

Binning spike trains in bins can transfer spike trains into

spike counts which don’t have the temporal structure so that

to remove noise. All experimental processes resized stimuli

into 64 × 64 resolution except the DCCAE method in which

each image was flatten as a vector before fed into the network.

For the sake of fast converging, we normalized the pixels

of all stimuli to [0, 1]. As for every sample of s, it contains

average counts of each RGC over all trials to each stimulus. In

experiments, 90% data is used for training and the remaining

10% is for model testing.

C. Experimental Settings

All models used in the experiments except the DCCAE

exploit CNN and deconvolutional neural networks (De-CNN)

as image encoders and decoders, respectively. All image en-

coder modules and the discriminator in GAN-Reg model share

the same parameters of the layer design, kernel size, stride

and filter number. The same to all De-CNN decoder modules

and the generator in GAN-Reg model. The architecture of

the image encoder and decoder is shown in Fig. 1 (b). The

triples in each pair of parentheses represent the filter number,

kernel size and stride of each convolution operation. The

abbreviations BN and UpS denote batch normalization and

upsampling, respectively. The parameter settings and training

mode of all methods are written as follows.

• CDDG: For the sake of dimension consistency, an FC

network was used to reduce the dimension of zx,s to be

the same as the one of zx and zs. The number of layers

of the FC networks of spike encoder and decoder was

2 for static images and 3 for dynamic movie clips. The

training of CDDG model was end-to-end. In practice, the

trade-off parameters (α, β, γ) were set to (100, 100, 1)
and (1000, 1000, 10) for the static image dataset and the

dynamic movie datasets respectively. The dimension of

latent variables and the learning rate were set to 256 and

0.001.

• VAE-Reg: The dimension of latent variables and learning

rate were set to 256 and 0.001. Regression algorithms

Lasso and k-nearest neighbor (k-NN) were adopted for

static images and dynamic movies, respectively.

• GAN-Reg: The dimension of the latent space of the

GAN was set to 90. The learning rates when training

the GAN and the FC network were set to 0.0002 and

0.001, respectively.

• SID: The SID adopted end-to-end training with recon-

struction constraints. The learning rate was set to 0.001.

• DCCAE: It used FC but not CNN networks for compu-

tation acceleration. The latent space dimension was set to

16, 32, 16 for natural image, natural movie-I and movie-II

datasets respectively. The learning rate was 0.001.

• CNN-based: The number of layers of the FC networks

was 2. The learning rate was set to 1× 10−5.

D. Performance Evaluation

Here we denote the metrics used for performance evaluation

on our model and the compared methods.

1) Neural Encoding Quality Metrics: We encode the spike

signals into spike counts in our paper. Considering this data

property, we use mean square error (MSE) to evaluate the

encoding performance of our model, DCCAE and the CNN-

based RGC encoding model. The metrics reflect the level of

spike counting bias averaged on all cells of all samples.

2) Image Quality Metrics:

• Mean Square Error (MSE): MSE denotes the expectation

of the squared error between predicted and original pixel

values. The calculation of MSE for a pair of images

〈I1, I1〉 with the resolution of H ×W is

MSE =
1

H ×W

H∑

i=1

W∑

j=1

(I1(i, j)− I2(i, j))
2 (5)

Generally, the lower the MSE metric is, the better the

image quality is.

• Structural-Similarity Metric (SSIM): SSIM can conduct

structure comparison between two images. It was pro-

posed in [36] under the assumption that human vision

perceives image distortion by extracting structural in-

formation changes. The calculation of SSIM of images

〈I1, I2〉 is

SSIM =
(2µI1µI2 + c1)(2σI1I2 + c2)

(µ2

I1
+ µ2

I2
+ c1)(σ2

I1
+ σ2

I2
+ c2)

(6)

where µI1 , µI2 are mean of I1, I2, σ2

I1
, σ2

I2
are variance of

I1, I2 , σI1I2 is covariance of I1, I2, c1, c2 are constants

for computational stability.

SSIM metrics have a roughly positive relation with image

quality. There is another image quality metric called

Peak Signal to Noise Ratio (PSNR). It has approximately

opposite changes to MSE and so it’s a little redundant

to use. Here we use only MSE and SSIM as evaluation

metrics.



TABLE I
EVALUATION ON NEURAL ENCODING PERFORMANCE ON TEST SETS OF

THREE DATASETS WITH DIFFERENT METHODS. THE OPTIMAL VALUE ON

EACH METRIC IS HIGHLIGHTED.

Encoding Method
Natural Image Natural Movie-I Natural Movie-II
MSE MSE MSE

DCCAE 1.915 0.050 0.006

CNN-based 0.529 0.030 0.006

CDDG 0.527 0.030 0.004

E. Encoding Performance

The performances of three encoding methods are shown in

Table I. It can be seen that CDDG surpasses DCCAE and

the CNN-based neural encoding model on three datasets. Our

model achieves better encoding performance even in compared

with the CNN-based method which has much better encoding

ability than LN and GLM [12]. The CNN-based neural encod-

ing model can be taken as a single-modal generative model

while CDDG is a multi-modal generative model. Our model

achieves simultaneous neural encoding and decoding and then

utilizes the reciprocity of the dual processes. That’s the reason

why our model has superiority.

F. Decoding Performance

Examples of the decoding results on three datasets, Natural

Image, Natural Movie-I and Natural Movie-II, are shown in

Fig. 3. Images in the first row of each subfigure are original

images. Other rows list decoding results with their method

name marked on the left. Among these approaches, CDDG

and SID work best because they draw the outline of scenes in

Fig. 3 (a), reconstruct the eyes of the swimming salamanders

in Fig. 3 (b) and the face of the tiger in Fig. 3 (c) clearly.

Compared to SID, CDDG reconstructs the images in a more

sharp way with less blur especially in Fig. 3 (b) and (c). The

VAE-Reg depicts the light and shade parts of images in Fig. 3

(a) but the images look messy in Fig. 3 (b) and (c). Results

of GAN-Reg and DCCAE also have a lot of noise.

Table II shows the objective metrics on image quality. As

for Natural Image dataset, CDDG achieves the lowest MSE

and SID achieves the highest SSIM except for the VAE-Reg

method. However, it can be seen that the results of CDDG

and SID in Fig. 3 (a) are visibly better and more legible

than those of VAE-Reg. The phenomenon reflects that SSIM

has weakness in distinguishing the distortion level between a

blurred image and a low-noise image that has been discussed

in [37]. On the other two datasets, CDDG obtains the lowest

MSE and the highest SSIM among all methods except for SID.

It matches the state-of-the-art decoding method SID on every

dataset. In general, CDDG and SID are well-matched in both

the subjective perception and objective assessment.

In short, the proposed method CDDG is far superior to

the bi-directional cross-modal-generation method DCCAE in

term of spike decoding on all datasets. In addition, CDDG has

similar performance with SID which is the greatest unidirec-

tional cross-modal-generation approach among the compared

methods and the state-of-the-art RGC decoding method.

TABLE II
EVALUATION OF NEURAL DECODING PERFORMANCE ON TEST SETS OF

THREE DATASETS WITH DIFFERENT METHODS. THE OPTIMAL VALUE ON

EACH DATASET AND EACH METRIC IS HIGHLIGHTED.

Decoding Method
Natural Image Natural Movie-I Natural Movie-II
MSE SSIM MSE SSIM MSE SSIM

VAE-Reg 0.031 0.493 0.029 0.637 0.060 0.280

GAN-Reg 0.038 0.322 0.025 0.480 0.049 0.189

SID 0.029 0.391 0.008 0.763 0.031 0.408

DCCAE 0.030 0.331 0.027 0.546 0.048 0.246

CDDG 0.027 0.385 0.012 0.706 0.034 0.421

TABLE III
EVALUATION OF NEURAL ENCODING AND DECODING PERFORMANCE ON

TEST SETS OF THREE DATASETS WITH ABLATION EXPERIMENTAL

METHODS. THE OPTIMAL VALUE ON EACH METRIC IS HIGHLIGHTED.

Natural Image Natural Movie-I Natural Movie-II
MSEs MSE SSIM MSEs MSE SSIM MSEs MSE SSIM

MDG 0.671 0.031 0.343 0.039 0.020 0.612 0.006 0.045 0.331

CDG 0.558 0.031 0.350 0.030 0.015 0.687 0.005 0.032 0.430

CDDG 0.527 0.027 0.385 0.030 0.012 0.706 0.004 0.034 0.421

G. Ablation Experiments

We conducted series of ablation experiments on three

datasets to prove that every additional term in (4), cross-

consistency and cycle-consistency, makes positive effect on

our model performance. First of all, we used the function

in (2), the standard loss of MDG. Secondly, we used E-

quation (3) of CDG model as the loss function that has

two added cross-consistency constraints to encourage domain

alignment. Finally, we added two cycle-consistency constraints

to encourage that a sample from one modality could still

keep consistency with itself after two rounds of cross-modal

generation. Equation (4) of CDDG was used as the objective

function.

The results are shown in Table III. To distinguish it from

the MSE of images, we denote the MSE of spike signals

as MSEs As for both encoding and decoding metrics on

all datasets, CDG outperforms MDG. It is obvious that the

cross-consistency can help the improvement of the model

performance. CDDG surpasses or is equal to CDG on almost

all metrics. The improvement from CDG to CDDG is not

very significant. However, the advantages of our model for

semi-supervised learning with modal missing data cannot be

ignored.

V. CONCLUSION

Inspired by the state-of-the-art DNN-based neural spike

encoding and decoding methods, we propose a cross-modal

dual deep cross-generative model into consideration to do bi-

directional cross-modal generation between visual stimuli and

spike signals of retinal ganglion cells. It’s the first attempt

to integrate the RGC encoding and decoding processes into

one framework for reciprocity. CDDG performs well compared

with other neural decoding methods on different datasets with

natural stimuli. It matches with the state-of-the-art RGC spike

decoder well. Meanwhile, it has higher ability to encode RGC

spike compared with the state-of-the-art RGC spike encoding

method. To summarize, our method achieves the promotion



(a)

(b)
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Fig. 3. Examples of decoding results on three datasets with CDDG and compared methods. (a) Results on the Natural Image dataset. (b) Results on the
Natural Movie-I dataset. (c) Results on the Natural Movie-II dataset.



on neural spike encoding while keeping excellent decoding

performance as a result of simultaneous training.

In the future, we will extend our method into semi-

supervised learning on datasets with incomplete modalities.

Besides, we expect to utilize RNN to reconstruct video stimuli.

As for concrete applications, we plan to use our model to

develop and evaluate retinal prostheses with the support of

more neuroscience knowledge.
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