
Provisioning Resilient, Adaptive Web Services-based Workflow: A Semantic
Modeling Approach

Chintan Patel, Kaustubh Supekar, Yugyung Lee
School of Computing and Engineering
University of Missouri - Kansas City
{copdk4, kss2r6, leeyu}@umkc.edu

Abstract

Web Services are emerging technologies that en-
able application-to-application communication and
reuse of autonomous services over the Web. Recent ef-
forts, OWL-S, model the semantics of Web Services that
includes the capabilities of the service, the service in-
teraction protocol, and the actual messages for service
exchanges. However, there is a need to automate discov-
ery, selection and execution of OWL-S services. Further, a
framework that meets the quality of service (QoS) require-
ments for ad hoc Internet based services is rarely provided.
In this paper, we have proposed a rule-based frame-
work, called SemWebQ, which manages workflows com-
posed of Semantic Web Services. SemWebQ is capable of
conducting QoS-based adaptive selection as well as dy-
namic binding and execution of Web Services according
to the semantics of workflow, thereby rendering a re-
silient and adaptive Web based service flow. A series of
experiments performed on the SemWebQ with real Web Ser-
vices have confirmed the effectiveness of proposed frame-
work with respect to adaptive selection and execution of
the Web Services in Web based workflows.

1. Introduction

Web Services have been used to provide interoperability
between heterogenous applications over the Web. The Web
Services standards include Web Services Description Lan-
guage (WSDL), Universal Description, Discovery and In-
tegration (UDDI) [1], and Simple Object Access Protocol
(SOAP) [2]. Even though current Web Services technolo-
gies show much progress, the current services are mainly
limited to atomic services. Thus, it is not adequate to handle
the autonomous and complex services in realistic settings.
For this problem, some research work [3] have developed
languages to compose individual Web Services into transac-
tions or workflows. Web Services Flow Language (WSFL)

was designed for service compositions in a form of work-
flow [4], or XLANG to delineate the behavior of a single
Web Services. However, these work are still short of pro-
viding adaptive Web Services for a given context.

Recently, OWL-S [5] has emerged with the objective of
automatic selection, composition and interoperation of ex-
isting Web Services by a software agent. The OWL-S ontol-
ogy is an agent-interpretable description of a Web Services,
which adds semantics to the service profile, the process
model, and the service grounding on the existing SOAP-
WSDL architecture. However, too high a level of abstrac-
tion is difficult to work for Web Services invocation, com-
position, and monitoring of service flow. Thus, the imple-
mentation of the OWL-S specification through a pragmatic
approach is required. However, there is no genuine effort
to provide the automatic or semi-automatic management of
service flow over the Web. Automatic management of Web
Service flow requires subsequent processes of (1) discov-
ery of Web Services considering specified constraints (2)
composition of new services through automatic selection
(3) execution of an identified service by an agent verifica-
tion of service properties (4) execution monitoring of com-
posite tasks performed by a set of services. A serious lim-
itation to continued advances in automatic management of
service flow is a lack of comprehensive framework for se-
mantic modeling of services in Web based workflow.

In this paper, we enhance the Web Services based work-
flow modeling process using OWL-S ontology and expert
system. The proposed framework, called SemWebQ, lever-
ages the Web Services discovery, automatic selection and
execution according to the OWL-S specification and QoS
model. It dynamically binds the services with the underly-
ing workflow, and performs the refinement of existing ser-
vices through continuous monitoring of service execution.
In order to support the workflow modeling, an OWL-S ed-
itor is developed to provide an interface for OWL-S ontol-
ogy generation and visualization of the flow.

2. Related Work

Workflow technology has been around for a decade and
has been successful in automating many complex business
processes. A significant amount of work has been done in
this field, which deal with different aspects of workflow
technology viz process modeling, dynamic workflows, dis-
tributed workflows [7]. Process modeling languages such
as IDEF, PIF, PSL and frame based models of services were
used to design process typing, resource dependencies, ports,
task decomposition and exception.

Current research on Web Services paves way for re-
alizing Web based Information Systems, which have
obvious advantages pertaining to scalability, heterogene-
ity, reuse and maintenance of services. Major issues in
such a inter-organization workflow are service composi-
tion,service discovery,service contracts and the overall ser-
vice quality(QoS) . Web Services Flow Language (WSFL)
was proposed to describe compositions of services in the
form of a workflow, which describes the order of service in-
vocation [4]. Service composition aids such as BizTalk
[10] were proposed to overcome the limitations of tradi-
tional workflow tools which manually specify the compo-
sition of programs to perform some task. Other industrial
initiatives such as BPEL4WS [11], XLANG concen-
trate on service representation issues to tackle the problem
of service contracts, compositions and agreements. Cur-
rent efforts [12] are to automate the complete process
of service discovery, composition and binding using ma-
chine understandable languages. [13] focuses on modeling
QoS of workflows, [14] defines a QoS based middle-
ware for services associated with the underlying workflow,
but it doesn’t take into account QoS factors related to Inter-
net based services.

Although our approach for Web Services composition
using rule-based expert system is similar to [16], our ef-
forts concentrate on using a OWL-S based approach, which
is emerging as a widely accepted standard for modeling
Semantic Web Services. Other efforts strive to achieve
DAML-S based semantic matchmaking [17] of services,
however, little has been to done to manage the quality of
such a inter-organizational workflow that uses third party
web services.This requires critical QoS management and
dynamic modification of the workflow to realize a fairly sta-
ble and efficient Web Information System. Our framework
provides a comprehensive solution to achieve a resilient, ef-
ficient and adaptive Web Information System. SemWebQ
realizes this by employing a OWL-S Web Services model
and a dynamic QoS management through a hierarchial rule-
based model.

3. SemWebQ Framework

3.1. Architecture

The SemWebQ framework depicted in Figure 1 is com-
prised of gamut of collaborative components that render a
resilient, adaptive Web based workflow. We first illustrate
various phases of workflow management in SemWebQ.

QoS

Management

Expert System

Semantic

Matching

Workflow

DAML-S

Workflow

specification

Instance

Rule

Modeler

Monitor

Service KB

Domain KB

QoS Log KB

Service Constraints

QoS Requirements

Knowledge Base

Rule Repository

Semantic

Match

Agent

Semantic

UDDI

Task Execution

Figure 1. The SemWebQ Architecture

Phase 1: Workflow Modeling A workflow is defined, us-
ing OWL-S [5], as a collection of tasks that can either be
accomplished by in-house services-components or through
third party services.
Phase 2: Constraints Specification and Rule Modeling
In this phase transactional and QoS constraints associated
with the workflow are explicitly specified. Task specific
input and output preconditions are expressed in OWL-S
profile ontology, high level QoS constraints are specified
by <owl:Property rdf:ID=”qualityRating”>. Limitations of
OWL-S in expressing all the QoS requirements and service
conditions demands a comprehensive model for constraint
specification. In this phase, additional QoS and service spe-
cific constraints are elicited in a multilevel rule hierarchy.
Section 3.3 provides a detail description of our QoS model
and multilevel rule approach.
Phase 3: Initialization SemWebQ fetches set of Web Ser-
vices from Semantic UDDI for every task in the underlying
workflow. OWL-S ontology associated with the pre fetched
Semantic Web Services is converted into JESS Knowledge
base, we use DAMLJessKB1 for the conversion. Unspeci-

fied QoS parameters are assigned a uniform value. It could
be noted here that absence of apriori knowledge about third
party services calls for assignment of uniform value.
Phase 4: Execution and Monitoring In the execution
phase load (number of requests) per task is divided across
m selected Web Services associated with that task. Ratio-
nale behind selecting best m Web Services and load dis-
tribution methodology is discussed in [18]. Task is accom-
plished on execution of selected Web Services. During ex-
ecution associated QoS parameters are monitored, recorded
and asserted as facts in Knowledge Base.
Phase 5: Dynamic and adaptive Web Services Selec-
tion The process of continuous monitoring of workflow un-
der execution updates related QoS parameters. Deteriorat-
ing QoS of the selected Web Services triggers rules that
forces de-selection of that Web Services and re-selection
of new set of m best services. The dynamic selection pro-
cess accounts for the adaptability of the framework to an ad-
hoc environment where quality of a Web Services changes
stochastically.

In the following discussion we elicit role of each compo-
nent in various phases. Workflow,the process under execu-
tion, is a collection of tasks that can either be accomplished
by in-house services or through third party services. OWL-
S [5] specification is used to specify workflow. Semantic
Match Agent queries the Web for services that would ac-
complish a particular task. Essentially it uses information
stored in Semantic UDDIs across the Web to retrieve list-
ing of task specific Web Services. OWL-S ontologies as-
sociated with the selected Semantic Web Services are con-
verted and stored as facts in JESS Knowledge Base. QoS
Management ensures a QoS oriented adaptive workflow
management. Monitor is responsible for monitoring, mea-
suring and asserting facts about newly calculated-observed
values of general, task-specific and Internet service spe-
cific QoS parameters . It calculates various values on the
basis of mathematical underpinnings of our proposed QoS
model. Rule Modeling component allows the workflow
designer to specify the QoS requirements in a multilevel
rule hierarchy. Task Execution Component manages and
co-ordinates execution of tasks that are part of underly-
ing workflow. The component utilizes OWL-S [5] encoded
information about the workflow to co-ordinate the execu-
tion of tasks, providing input to a task, binding and exe-
cution of a Web Services associated with the task, routing
the request to appropriate task depending upon the output
obtained. Expert System allows assertion of facts in the
knowledge base depending upon the rules fired. SemWebQ
uses JESS 2 based on Rete 3, a low complexity algorithm,

1 http://plan.mcs.drexel.edu/projects/legorobots/design/software/DAMLjesskb/
2 Java Expert System Shell, http://herzberg.ca.sandia.gov/jess/
3 Rete Algorithm, http://herzberg.ca.sandia.gov/jess/docs/52/rete.html

reduces the overhead associated with dynamic selection and
binding of Web Services to a task at runtime. Knowledge
Base is a repository of facts about the Semantics and QoS
of Web Services - input, output, preconditions, reliability,
latency, execution time and performance. Rule Repository
collects rules used to specify service constraints, user spe-
cific QoS requirements, available workflow QoS and elici-
tation of steps to be taken for achieving specified QoS re-
quirement. We use a multi-level approach wherein firing of
a set of atomic rules leads to composite rule being executed.

3.2. Modeling of Semantic Web Services

We now discuss the OWL-S Ontology modeling for dy-
namic discovery and subsequent composition of Web Ser-
vices in the workflow that imparts the desired resilient be-
havior. Recently, efforts are underway to develop an Ontol-
ogy (OWL-S) which describes the semantics of Web Ser-
vices along with the pragmatic service description which
provides grounded information of the Web Services. OWL-
S [5] defines a service ontology composed of (1) Service
Profile, describing Web Services parameters and auxiliary
features, (2) Process specifications and model, describing
detailed process execution flow and (3) Service grounding
with WSDL [8]. As described in [5], the process specifica-
tions for Web Services has been derived from work on stan-
dardizations of planning languages and emerging standards
in process modeling and workflow technology such as PSL
and Workflow Management Coalition [19]. Hence we be-
lieve that OWL-S Process Ontology meets the requirements
of modeling processes in a Web-based system comprising
Web Services as well as in-house components.

Although designing OWL-S Ontology is a quite chal-
lenging task, the goal of achieving automated Web Services
selection, composition and execution is well worth the effort
invested to build such Ontology. Furthermore, it is a chal-
lenging task to make the system capable of dynamically ad-
justing to the fluctuating QoS of Web services and the un-
derlying workflow. Our solution to this problem is to use
a Rule-based approach for automatic discovery, composi-
tion and subsequent execution of the service flow for given
OWL-S specifications [5]. Following sections give an ac-
count of our approach of specifying Ontology and perform-
ing service matching and subsequent grounding of Web Ser-
vices to execute them in the workflow.

3.2.1. Workflow Specification An abstract model of the
workflow is designed using a OWL-S editor (Figure 2) by
specifying required information including the pre and post
conditions for the services. The editor generates the nec-
essary OWL-S specifications describing the inputs-outputs
constraints as well as the constructs for the flow control.
Consider the following flow of a travelling service (refer to
[18] for the details).

Figure 2. OWL-S Workflow Editor (a) the Workflow Designer supplies inputs-outputs, the pre-
conditions and the effects of a particular task in the workflow (b) the Class Editor to define the
class of pre-conditions and the effects (c) the Workflow design as viewed in the OWL-S Editor

GetRoadTravelInfoGetAirFareQuote

GetCarRentInfo

GetWeatherInfo

TravelAgent

split

sequence

Figure 3. The Workflow Diagram

Corresponding to the designed flow (Figure 3), the ed-
itor tool will generate workflow specifications in OWL-S
process ontology as given below:

<process:CompositeProcess rdf:ID=”TravellersServiceFlow”>
. . . <process:Split>. . .
<process:AtomicProcess rdf:about=”#GetAirFareQuote” />
<process:AtomicProcess rdf:about=”#GetRoadTravelInfo” />

. . .
</process:CompositeProcess>

TravelAgent is a composite service which splits into two
processes GetAirFareQuote and GetRoadTravelInfo, which
is a complex service that consists of invoking a service to
calculate car rental cost for travelling by road between given
locations, and then retrieves the weather information for the
specified date of travel. Due to space limitation, we omit the
details of the OWL-S specifications.

<process:CompositeProcess rdf:ID=”GetRoadTravelInfo”>
. . . <process:Sequence>. . .
<process:components rdf:parseType=”Collection”>
<process:AtomicProcess rdf:about=”#GetCarRentInfo” />
<process:AtomicProcess rdf:about=”#GetWeatherInfo” />

. . .
</process:CompositeProcess>

OWL-S also provides important process control con-
structs such as split, split-join, concurrent, choice, parallel-
sync etc. beside If-then and sequence constructs.

3.2.2. Service Discovery Semantic UDDI hosts profiles
of Semantic Web Services, from where the Semantic Match
making Agent (SMA) can retrieve the Service ontologies.
In accordance with the OWL-S specification of the given
workflow, Web Services matching is defined as rules for the
selection, binding and execution of the appropriate services
considering various criteria: (1) Input-Output TYPE match-
ing (2) Resolving constraints on pre and post conditions (3)
Matching special service requirements (e.g., QoS from the
Service Ontology <owl:Property rdf:ID=”qualityRating”>
). We employed DAMLJessKB tool to convert the OWL-S
Ontologies into knowledgebase JESS rule-based expert sys-
tem to specify the corresponding rules.

(defrule matchServGetWeatherInfo
(ServKB (service ?serv)

(?INPUT < rdfs : subClassOf > < owl : ZipCode >)
(OR(?OUTPUT< rdfs : subClassOf >

< owl : Weather >)
(?OUTPUT < rdfs : subClassOf >

< owl : Temperature >))
(<owl:property> <owl:qualityrating> ?QOS)
(test (> QoS 3))

=> (store WEATHER ?serv)

The above mentioned rule, MatchServGetWeatherInfo is
defined using JESS syntax which denotes, if a particular ser-
vice has input which is subclass of class ZipCode AND out-
put is subclass of Weather OR Temperature AND the QOS
is greater that 3 (assuming star rating) then select this Web
Services for the task of GetWeatherInfo. We coupled a Do-
main Ontology during matching process to assist the sys-
tem in disambiguating concepts and terminologies thereby
allowing high precision.

3.2.3. Service Grounding After the relevant service set is
selected from the service discovery process, the Semantic
Matching Agent (SMA)retrieves the location of the WSDL
services from the OWL-S grounding specification and also
maps the OWL-S parameters specified in the Ontology to
the corresponding actual inputs and outputs in the WSDL.

(defquery WSDLServLoc
(declare (variables ?LOCATION))

(?serv<grounding:wsdlOperation>
<owlsp:#GetWeatherInfo>)

(?serv <grounding:wsdlDocument>
?LOCATION)

The above mentioned JESS query, WSDLServLoc re-
trieves the WSDL location for the service which performs
operation defined in OWL-S process as GetWeatherInfo.
Using Dynamic Java Web Services Invocation API 4 we in-
voke the service given the location of WSDL file.

During execution of the workflow, if a particular service
fails or dwindles below the desired QoS constraints then
the Semantic Match Agent (SMA) will dynamically search
for another suitable matching service to complete the task
without interrupting the workflow, thereby imparting re-
silient behavior to the workflow. Moreover, SMA can asyn-
chronously perform a periodic search for newly available
services on the UDDI, and add the service for the match-
ing task.

3.3. QoS Modeling

3.3.1. QoS Specification The proposed QoS model dy-
namically selects the best among the available services and
performs parallel execution of services. The goal of the dy-
namic, adaptive selection and execution is to maximize the
overall QoS. For the purpose, we carefully reviewed QoS
parameters and classified them into the following three cat-
egories: General (Table 1), Internet Service Specific (Table
2) and task specific QoS parameters (Table 3). In order to
model the Quality of Service for Web Services based work-
flow, multiple perspectives of the stakeholders of the system
were considered. This task can be achieved by maintain-
ing separate set of QoS management rules per user per task
node, which would sum up to meet the overall desired QoS
requirements. The QoS model should be flexible and exten-
sible enough to capture the fine granularity of requirements
that could arise in any given domain. [14] considers only
generalized QoS features for traditional Workflow Manage-
ment Systems, an Internet based Service Workflow requires
a comprehensive QoS model that also incorporates task spe-
cific QoS requirements.

4 JavaTM Web Services Developer Pack 1.1,
http://java.sun.com/webservices/webservicespack.html

3.3.2. Rule-based Modeling In SemWebQ frame-
work, we developed a multi-level rule model (Figure 4)
to achieve dynamic QoS management wherein firing of
a set of atomic rules leads to composite rule being exe-
cuted. The underlying motivations for the approach are (1)
to handle large number of input QoS parameters, (2) to ef-
ficiently handle complex QoS requirements , (3) to allow
asynchronous firing of rules to adapt changes in ser-
vice requirements and (4) to dynamically change the
underlying services for a task without changing exist-
ing rules.

 s

 a1 a2

 Reliability Throughput NoOfInput Latency

 Figure 4. The Multi-level Hierarchy

First we define several terminologies used in the multi-
level approach.
Definition 1: Base Parameter defines individual QoS pa-
rameter described in Section 3.3.
Definition 2: Hyper Parameter defines a combined QoS pa-
rameter denoted as symbols a1, a2,.... Role of the hyper pa-
rameter is to reduce the complexity of overall model - giv-
ing flexibility to the user. Hyper parameter a can be ex-
pressed as a = f (wi) 1 < i < N where f is a rule to
compose parameters and N is the number of QoS parame-
ters wi is ith base QoS parameter or a hyper parameter.

For a sample QoS requirement, two hyper parameters
can be defined as follows: a1 = f (throughput, availability,
input size) and a2 = f (latency, input size).
Definition 3: Atomic Rule composes hyper-parameter as a
function of base parameters.

Atomic Rule AR1:
(defrule selServ1

(QoSDB (throughput ?t) (availability ?avlb) (input ?N)
(test (> t 5000) (> ?avlb 0.8)(test (> N 20))
=> (store ”a1” 0.7));

AR1 describes that if the throughput (?t) is greater than
5000 and availability (?avlb) is greater than 0.8 and the
number of inputs (?N) is greater than 20, then assign a1

= 0.7.

Atomic Rule AR2:
(defrule selServ2

(QoSDB (latency ?l) (input ?N)
(test (< ?l 1500)(test (< ?N 40))
=> (store ”a2” 0.8));

QoS Parameter Description Measure
Performance The time taken to deliver tlatency = to/p(X) − ti/p(X),
(Latency) services between service ti/p(X) is the timestamp when

requestors and providers the service X is invoked and
to/p(X) is timestamp
when the service X is delivered.

Performance The number of requests served tthroughput = Number of service
(Throughput) in a given period [14]. invocations in time T
Reliability This parameter is related to R = 1 − P (success)

the number of failures of a where P (success) is
service in a time interval. as probability of successful executions,

P (success) =
Num of successful executions/N ,
N : Total number of invocations

Cost The cost of the service execution C = C(Enactment) + C(Licensing)
including the enactment cost
(management of workflow system
and monitoring [14]) and
licensing fees of Web Services.

Table 1. General QoS parameters

QoS Parameter Description Measure
Availability The probability that the Pavailability = C(X)/N ,

service will be available at some C(X): Num of Successful executions
period of time. An associated N : Total number of invocations
parameter is time-to-repair, TTR = trestart(X) − tfailed(X),
the time taken to repair a service where TTR represents Time To Repair,
[15]. tfailed is timestamp when the service

X failed, trestart is timestamp
when service was restarted.

Security Confidentiality, non repudiation Values assigned by
message encryption and access the workflow designer
control [15]. depending upon the strength of

the Encryption technology used,
PKI, Kerberos etc.

Accessibility Instances when a particular service Paccessibility = Pavailability

is not accessible even if its at Time T = t
available because of high volume
of requests.

Regulatory A quality aspect which deals with Specific in-house ratings by
issues of conformance of service the workflow designer at design time.
with the rules, the law, compliance
with standard, and the established
Service Level Agreement [15].

Table 2. Internet-Service Specific QoS

QoS Parameter Description Measure
Task specific Related to the quality E(TaskQoS) = w1 ∗ f(p1) + w2 ∗ f(p2)

of the output or + . . . + wn ∗ f(pn) where f(pi) refers
the type of service to the probability function that maps
offered etc. the output of parameter pi to a specific

value depending upon how close
the output is to the desired value
wi is the weight assigned to pi.

Table 3. Task Specific QoS

AR2 describes that if the latency (?l) is greater than 1500
and the number of inputs (?N) are greater than 40, then as-
sign a2 = 0.8.Using hyper parameters a1 and a2, service se-
lection rules can be designed as follows: If (a1 > 0.9) then
select services that handle large number of inputs with high
reliability. If (a1 < 0.4) then select services which perform
badly with increase in number of inputs. If (a2 > 0.7) then
select service that provide faster execution - lower latency
for less number of inputs.
Definition 4: Composite Rule articulates complex rules us-
ing hyper parameters. A composite rule is to specify com-
plex task specific requirements. For example, a specific QoS
requirements can be expressed as a composite rule.

Composite Rule CR1:
(defrule selServ3

(QoSDB (a1 ?a1) (a2 ?a2) (Service ?s)
(test (> a1 0.5) (> ?a2 0.5))
=> (store ?s));

CR1 expresses a QoS rule to select a service that sat-
isfies requirements of large number of inputs with low la-
tency and high reliability. ?s is the service or set of services
which satisfy the given requirements.

In summary, multi-level rule approach provides flexibil-
ity in expressing complex QoS requirements by introducing
hyper parameters and composite rules in combining multi-
ple criterions in a systematic way.

4. Implementation and Experimental Results

As a proof of concept we implemented and deployed a
Java based prototype of the proposed framework. Our ma-
jor goals were to test the following requirements a. Generate
workflow specifications in OWL-S to model complex sce-
narios. b. Achieve dynamic service matching and binding to
the underlying workflow. c. Adaptive and resilient workflow
QoS management using hierarchical rule-based approach

We developed a OWL-S Editor tool to assist the work-
flow designer in modeling OWL-S specifications for the
workflow, which in addition provides a graphical inter-
face to model the abstract concepts. The Service Match-
ing Agent (SMA) handles the task of matching the Web
Services for given specifications and the service match-
ing rules as described in Section 3.2. The task execution
component was constructed through Java implementation
(HP Jena Toolkit5) which reads the process specifications in
OWL-S to execute the appropriate Web Services from a ser-
vice pool associated with each task. Monitor component as-
serts QoS measurements in the logKB - JESS Knowledge
base. JESS Rules, measures of QoS requirements, are trig-
gered by deteriorating Quality of Service. Dynamic service

5 HP Labs Jena 2 Toolkit, http://www.hpl.hp.com/semweb/index.html

selection via SMA leads to the refinement of the workflow
for maximizing the overall QoS. Java Web Services toolkit
(JAX-RPC)6 was used for implementing the in-house Web
Services and for interactions with third party Web Services.

We conducted relevant experiments to validate the pro-
posed idea of adaptiveness and resilience via rule-based
QoS management of Web Service based workflows. Due to
lack of availability of OWL-S based service we wrapped
the existing available services on Internet with OWL-S
wrappers to allow the SMA to perform service matching
and binding. The tests were performed on existing services
available on the Internet(Table 4). We focussed on a sin-
gle task in the underlying workflow. The GetWeatherInfo
task was singled out as the basis of all our experiments. The
choice of task was dictated by the amount of freely avail-
able third party services for that task. The main goal of the
tests was to illustrate how the dynamic service refinement
process renders an efficient, high performance and a fault
tolerant workflow.

We validate the proposed QoS approach, a set of Web
Services (depicted in Table 4) were tested rigorously across
Internet and their QoS parameters were measured over a pe-
riod of time. In these tests, we monitored a subset of QoS
parameters - latency, throughput, and availability.

QoS requirements (specified in a multilevel rule hierar-
chy in Section 3.3) on selecting the task node were services
which a) provide maximum throughput, b) are highly avail-
able, and 3) handle large number of inputs . The experi-
mental results (Figure 5a, 5b, 5c) at instances t = t1 and
t = t2 show the associated QoS parameter values for Web
Services WS1, WS2, WS3 and WS4 at time t1 and t2 re-
spectively. The number of inputs(load) at time t = t1 were
30 and t = t2 were 50. JESS Rules, measure of aforemen-
tioned QoS requirements, were triggered to select services
WS1, WS3 (m=2) at t = t1 and WS1, WS2(m = 2) at
t = t2. It is important to note here that the failure of ser-
vice WS3 that was selected at time t = t1 doesn’t effect
quality of the underlying workflow. It is because our dy-
namic Web Services selection at t = t2 leads to selection of
the new set of best m (=2) services, WS1 and WS2.

Our results confirmed that Performance is an important
parameter for selection for the service. Tests revealed a large
amount of variation in the performance of the Web Ser-
vices. For Web Services WS2 (mean latency = 800ms) and
WS3(mean latency = 775 ms) we observed high values of
variance, 110 ms and 132 ms respectively. Hence in such
unpredictable Internet environment, creating workflow de-
mands strict performance monitoring and subsequent dy-
namic modification of the workflow execution.

6 JavaTM Web Services Developer Pack 1.1,
http://java.sun.com/webservices/webservicespack.html

7 The services were used for just experimental analysis, we do not in-
tent to endorse or discriminate between providers.

ID Provider7 WSDL
WS1 www.xmethods.net http://www.xmethods.net/sd/2001/TemperatureService.wsdl
WS2 www.ejse.com http://www.ejse.com/weatherservice/service.asmx?WSDL
WS3 www.juice.com http://webservices.juice.com:4646/temperature.wsdl
WS4 FastWeather http://ws2.serviceobjects.net/fw/FastWeather.asmx?WSDL

Table 4. Input Web Services for GetWeatherInfo

Figure 5. Experimental Results: (a) Throughput (b) Availability (c) Throughput

5. Conclusions

We proposed a semantic framework, SemWebQ, for re-
silient and adaptive Web Services-based workflows. The
dynamic service discovery, matching and composition of
the Web Services is represented using OWL-S and imple-
mented using expert system.The results obtained from the
experiments conducted with our QoS model also confirmed
the effectiveness of the framework in rendering a dynamic
and resilient workflow. We believe that SemWebQ frame-
work provides a comprehensive solution towards evolving
Web based Information Systems.

References

[1] UDDI technical white paper,
http://www.uddi.org/pubs/Iru UDDI Technical
White Paper.pdf, 2000

[2] D. Box et al., Simple object access protocol (SOAP),
www.w3.org/TR/SOAP, 2000

[3] V. Benjamins et al., Ibrow3: An intelligent brokering service
for knowledge-component reuse on the world-wide web, In
The 11th Banff Knowledge Acquisition for knowledge-Based
System Workshop (KAW98), Banff, Canada, 1998.

[4] F. Leymann, Web Services Flow Language, TR WSFL 1.0,
IBM Software Group, May, 2001.

[5] OWL-S Specifications, http://www.daml.org/services/
[6] P. Kammer, G. A. Bolcer, R. N. Taylor, M. Bergman, Tech-

niques for Supporting Dynamic and Adaptive Workflow,
Vol 9, Journal of Computer Supported Cooperative Work
(CSCW), 269-292.

[7] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H.
Singh. WebWork: METEOR 2 ’s web-based workflow man-
agement system. Journal of Intelligent Information Systems,
10(2):185-215, 1998

[8] E. Christensen and F. Curbera and G. Meredith and S. Weer-
awarana, Web services description language (WSDL) 1.1,
www.w3.org/TR/wsdl, 2001

[9] M. Klein and A. Bernstein, Searching for services on the se-
mantic web using process ontologies, Proceedings of the In-
ternational Semantic Web Working Symposium, 2001

[10] Biztalk http://www.microsoft.com/biztalk/
[11] Business Process Execution Language for Web

Services, Version 1.0, July 2002 http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[12] S. McIlraith and T. Son and H. Zeng, Semantic Web ser-
vices, IEEE Intelligent Systems (Special Issue on the Seman-
tic Web), 16(2), 46-53, 2001.

[13] J. Cardoso, A. Sheth, J. Miller, Workflow Quality Of Service
(2002)

[14] A. Sheth, J. Cardoso, J. Miller, K. Koch, QoS for Service-
oriented Middleware (2002) ”Web Services and Grid Com-
puting,” Proceedings of the Conference on Systemics, Cyber-
netics and Informatics, 2002.

[15] A. Mani, A. Nagarajan, Understanding qual-
ity of service for Web services, http://www-
106.ibm.com/developerworks/library/ws-quality.html

[16] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit
for Web Service Composition. The Eleventh World Wide Web
Conference, 2002.

[17] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Ka-
tia P. Sycara: Semantic Matching of Web Services Capabili-
ties. International Semantic Web Conference 2002: 333-347

[18] C. Patel, K. Supekar, Y. Lee, Adaptive Workflow Manage-
ment for Web Service using QoS Framework, Technical Re-
port TR030103, University of Missouri - Kansas City, 2003.

[19] Workflow Management Coalition,
http://www.aiim.org/wfmc.

