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Abstract 
 
 
Evolution is a key problem in software engineering and exacts huge costs. Industrial 
evidence even hints that companies spend more resources on maintaining and 
evolving their software than on the initial development. In managing the change and 
guiding evolution, considerable emphasis is placed on the architecture of the 
software system as a key artifact involved. One of the major indicators of the success 
(failure) of software evolution is the extent to which the software system can endure 
changes in requirements, while leaving the architecture of the software system intact. 
We refer to the presence of this “intuitive” phenomenon as architectural stability. 
  
We highlight the requirements for evaluating architectural stability. We pursue an 
economics-driven software engineering approach to address these requirements. We 
view evolving software as a value-seeking activity: software evolution is as a process 
in which software is undergoing a change (an incremental) and seeking value. The 
value is attributed to the flexibility of an architecture in enduring likely changes in 
requirements. To value flexibility, we contribute to a novel model that builds on an 
analogy with real options theory. The model examines some likely changes in 
requirements and values the extent to which the architecture is flexible to endure 
these changes. The model views an investment in an architecture as an upfront 
investment plus “continual” increments of future investments in likely changes in 
requirements. The objective is to provide insights into architectural stability and 
investment decisions related to the evolution of software architectures.  
 
We support the model with a three-phase method for evaluating architectural 
stability. The method provides guidelines on eliciting the likely changes in 
requirements and relating architectural decisions to value. The problem of valuing 
flexibility of an architecture to change requires a comprehensive solution that 
incorporates multiple valuation techniques, some with subjective estimates, and 
others based on market data, when available. To introduce discipline into this setting 
and capture the value from different perspectives, the method outlines a valuation 
points of view framework as a solution. The framework is flexible enough to account 
for the economic ramifications of the change on both structural (e.g., maintainability) 
and behavioral (e.g., throughput) qualities of an architecture and on relevant 
business goals (e.g., new market products).  

 
We report on our experience in using the model and its supporting method with two 
case studies. In the first case, we show how the model and its supporting method can 
be used to assess the worthiness of re-engineering a “more” stable architecture in 
face of likely changes in future requirements. We take refactoring as an example of 
re-engineering. In the second case, we show how the model and its supporting 
method can inform the selection of a “more” stable middleware-induced software 
architecture in the face of future changes in non-functional requirements.  
 
We critically discuss and reflect on the strengths and the limitations of our 
contribution. We conclude by highlighting some open questions that could stimulate 
future research in architectural stability, relating requirements to software 
architectures, and architectural economics.      
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Chapter 1 
 
 
Introduction  
 
 
1.1 Problem Definition 
 

Software requirements, whether functional or non-functional, are generally volatile; 

they are likely to change and evolve over time. The change is inevitable as it reflects 

changes in stakeholders’ needs and the environment in which the software system 

works. Software architecture is the earliest design artifact, which realizes the 

requirements of the software system. It is the manifestation of the earliest design 

decisions, which comprise the architectural structure (i.e., components and 

interfaces), the architectural topology (i.e., the architectural style), the architectural 

infrastructure (e.g., the middleware), the relationship among them, and their 

relationship to the other software artifacts (e.g., low-level design, testing etc.). One of 

the major implications of a software architecture is to render particular kinds of 

changes easy or difficult, thus constraining the software’s evolution possibilities 

[Jazayeri, 2002].  A change may “break” the software architecture necessitating 

changes to the architectural structure (e.g., changes to components and interfaces), 

architectural topology, or even changes to the underlying architectural 

infrastructure. It may be expensive and difficult to change the architecture as 

requirements evolve [Finkelstein, 2000]. Conversely, failing to accommodate the 

change leads ultimately to the degradation of the usefulness of the system. Hence, 

there is a pressing need for flexible software architectures that tend to be stable as the 

requirements evolve. By a stable architecture, we mean the extent to which a 
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software system can endure changes in requirements, while leaving the architecture 

of the software system intact. We refer to the presence of this “intuitive” 

phenomenon as architectural stability.  

 

Developing architectures which are (a) stable in the presence of change and (b) flexible 

enough to be customized and adapted to the changing requirements is one of the key 

challenges in software engineering [Garlan, 2000]. Ongoing research on relating 

requirements to software architectures has considered the architectural stability 

problem as an open research challenge and difficult to handle [van Lamsweerde, 

2000; Nuseibeh, 2001]. In particular, van Lamsweerde [2000] acknowledges that “the 

conflict between requirements volatility and architectural stability is a difficult one to 

handle”. Nuseibeh [2001] notes that many architectural stability related questions are 

difficult and remain unanswered. For example, what software architectures (or 

architectural styles) are stable in the presence of the changing requirements, and how 

do we select them? What kinds of changes are systems likely to experience in their 

lifetime, and how do we manage requirements and architectures (and their 

development processes) in order to manage the impact of these changes?  

 

Meanwhile, evolution is still a key problem in software engineering and exacts huge 

costs [Jazayeri, 2002; Lehman et al., 2000]. Empirical evidence even hints that 

companies spend more resources on maintaining and evolving their software than 

on the initial development [Boehm and Sullivan, 2000; Jazayeri, 2002; Bennet and 

Rajlich, 2000; FEAST 1-2]. In managing the change and guiding evolution, 

considerable emphasis is placed on the architecture of the software system as the key 

artifact involved [Garlan, 2000; Jazayeri, 2002]. Cook, Ji, and Harrison note that “In 

many software systems, the architecture is the level that has the greatest inertia when 

external circumstances change and consequently incurs the highest maintenance costs when 

evolution becomes unavoidable” [Cook et al., 2001]. An established route to manage the 

change and guide evolution is a universal “design for change” philosophy, where the 

architecture is conceived and developed such that evolution is possible [Parnas, 

1979]. Parnas’s notion of the “design for change” is based on the recognition that 

much of the total lifecycle cost of a system is expended in the change and incurred in 

evolution. A system that is not designed for evolution will incur tremendous costs, 
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which are dispropionate to the benefits [Lientz and Swanson, 1980]. For a system to 

create value, the cost of a change increment should be proportional to the benefits 

delivered [Parnas, 1972]. “Design for change” is thus promoted as a value-

maximizing strategy provided one could anticipate changes [Boehm and Sullivan, 

2000]. The “Design for change” philosophy is believed to be a useful heuristic for 

developing flexible architectures that tend to be stable as requirements evolve. 

However, there is a general lack of adequate models and methods, which connect 

this technical engineering philosophy to value creation under given circumstances 

[Boehm and Sullivan, 2000]: 

 

From an economic perspective, the change in requirements is a source of uncertainty 

that confronts an architecture during the evolution of the software system. The 

change places the investment in a particular architecture at risk. Conversely, 

designing for change incurs upfront costs and may not render future benefits. The 

benefits are uncertain, for the demand and the nature of the future changes are 

uncertain. The worthiness of designing or re-engineering an architecture for change 

involves a tradeoff between the upfront cost of enabling the change and the future 

value added by the architecture, if the change materializes. The value added, as a 

result of enabling the change on a given architecture, is a powerful heuristic which 

can provide a basis for analyzing: (i) the worthiness of designing for change, (ii) the 

worthiness of re-engineering the architecture, (iii) the retiring and replacement 

decisions of the architecture or its associated design artifacts, (iv) the decisions of 

selecting an architecture, architectural style, middleware, and/or design with desired 

stability requirements, and/or (v)  the success (failure) of evolution.   

 

Therefore, to cope with uncertainties, incomplete knowledge in an evolutionary 

context, and to mitigate risks in the investment, there is a critical need for evaluating 

architectural stability. Evaluating architectural stability aims at assessing the extent to 

which the system of a given architecture is evolvable, while leaving the architecture 

and its associated design decisions unchanged as the requirements change. The 

evaluation shall address the economic interplay between designing flexible 

architectures, evolving requirements, impact of the requirements change on the 

architecture, and their long-term cost and value implications. Such interplay is 
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critical for proactively understanding the architectural stability problem and many of 

its associated research questions, from an economics-driven software engineering 

perspective [EDSER 1-7, 1999-2005]. The evaluation has the promise to answer the 

following challenging key question: How much is “buying” flexibility to facilitate 

future changes and support the development (evolution) of potentially stable 

architectures worth? 

 

The research questions being addressed in this thesis include the following [Bahsoon, 

2003]: How can we systematically evaluate the stability of software architectures in 

the face of the changing requirements, taking an economics-driven approach? What 

are the requirements for such evaluation and how can we address these 

requirements? What are the implications of the pursued approach on some 

architecture-centric cases, with essential or desirable stability requirements? 

Subsequent Sections and Chapters develop these questions. 

 

1.2 The Research Perspective  
 

Sullivan et al. [1997] note that the important book of Shaw and Garlan on software  

architecture begins, “As the size and complexity of software systems increase, the design 

and specification of overall system structure become more significant issues than the choice of 

algorithms and data structures…” [Shaw and Garlan, 1996].  Sullivan et al. [1997] add, 

“This statement is true, without a doubt. The problem in the field is that no serious attempt is 

made to characterize the link between structural decisions and value added”. That is, the 

traditional focus of software architecture is more on structural and technical 

perfection than on value added. In addressing the architectural stability problem, our 

perspective aims at providing a compromise through linking structural decisions to 

value creation.  

 

In particular, the thesis adopts an economics-driven software engineering 

perspective [EDSER 1-7, 1999-2005] to evaluate the stability of software architectures 

in the face of changing requirements. Traditionally, engineering software has been 

primarily a technical endeavor with minimal attention given to its economic context 
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[Boehm and Sullivan, 2000]. Design and implementation methods are proposed 

based on technical merits without making adequate links to the economic 

considerations. This is in stark contrast to the reality of software engineering. 

Engineering seeks to create value relative to the resources invested. Regardless of 

how we define “value”, engineering software is essentially an irreversible capital 

investment [EDSER 1-7, 1999-2005]. Developing and evolving software, thus, should 

add value to the enterprise, just as any other capital expenditure. As such, the costs 

of developing and evolving software should not outweigh the returns from the 

product to achieve a net benefit.  

 

In this perspective, the thesis adopts the view that software design and engineering 

activity is one of investing valuable resources under uncertainty with the goal of 

maximizing the value added [Baldwin and Clark, 1999; Sullivan 1996; EDSER 1-7, 

1999-2005]. This view approximates to much industrial practice. In particular, the 

thesis views evolving software as a value-seeking and value-maximizing activity: 

software evolution is a process in which software is undergoing an incremental 

change and seeking value [Bahsoon and Emmerich, 2004a]. The thesis attributes the 

added value to the flexibility of the architecture in enduring changes in requirements. 

Means for achieving flexibility are typical architectural mechanisms or strategies that 

are built-in or adapted into the architecture with the objective of facilitating 

evolution and future growth. This could be in response to changes in functional (e.g., 

changes in features) or non-functional requirements (e.g., changes in scalability 

demands). For example, consider functionality that is likely to change and evolve 

over time: “componentizing” the functionality and hiding it behind negotiable and 

configurable interfaces is a simple example of such a mechanism. As we are 

assuming that the added value is attributed to flexibility, arriving at a “more” stable 

software architecture requires finding an architecture which maximizes the yield in 

the embedded or the adapted flexibility in an architecture relative to the likely 

changing requirements [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich 

2000b]. Optimally, a stable architecture is an architecture that shall add value to the 

enterprise and the system as the requirements evolve. By valuing the flexibility of an 

architecture to change, we aim at providing the architect/analyst with a useful tool 

for reasoning about a crucial but previously intangible source of value.  This value 
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can be then used for deriving “insights” into architectural stability and investment 

decisions related to evolving software.  

 

1.3 The Research Objectives 
 

The goal of the thesis is to develop a framework for systematically evaluating the 

stability of software architectures in the face of changes in requirements, taking an 

economics-driven approach. By taking an economics-driven approach for evaluating 

architectural stability, we intend to proactively assess the complexity and the 

economic ramifications of the likely critical changes in requirements and their impact 

on the software architecture. The evaluation aims at understanding (i) the tradeoff 

between the upfront cost of enabling a change on the architecture of the software 

system and the long-term future benefits as a result; (ii) the trade-off between the 

architectural “intactness” and the cost-effectiveness of amending the architecture to 

accommodate a change; (iii) the cost and the value implications of evolving the 

requirements of the architecture; (iv) the economics of flexibility, inflexibility, and 

over-flexibility of the architecture relative to a change; and/or (vi) the cost-

effectiveness of the technical design and reengineering decisions for a change. 

 

The framework aims at providing a basis for analyses supporting many architecture-

centric approaches to evolution, with desirable or essential stability requirements. By 

architecture-centric approaches to evolution, we refer to approaches, which pursue 

the software architecture as the appropriate level of abstraction for reasoning about, 

managing and guiding the evolution of complex software systems, and 

“synchronizing” the software requirements with its detailed design and 

implementation. A distinctive feature of these approaches is that they explicitly 

account for the non-functional requirements, the so-called quality attributes. As the 

quality attributes comprise the most substantial properties of the system, the 

evolution of such properties can be best reasoned about and managed at the 

architectural level. For example, the current trend is to build distributed systems 

architectures with middleware technologies such as Java 2 Enterprise Edition (J2EE) 

and the Common Object Request Broker Architecture (CORBA), resulting in the so-
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called middleware-induced architectures [Di Nitto and Rosenblum, 1999]. 

Middleware-induced architectures follow an architectural-centric approach to 

evolution, as the emphasis is placed on the induced architecture for simplifying the 

construction of distributed systems by providing high-level primitives, which shield 

the application engineers from the distribution complexities, managing systems 

resources, and implementing low-level details, such as concurrency control, 

transaction management, and network communication. These primitives are often 

responsible for realizing many of the non-functional requirements (e.g., scalability, 

fault tolerance, etc.) in the architecture of the system induced and facilitating their 

evolution over time. Another example is from product-line architectures. Product-

lines, a family of products sharing the same architecture, inherently require domain-

specific variation and evolution of various products. Due to the higher level of 

interdependency between the various software artifacts in a product-line, software 

evolution is too complex to be dealt with at the code level. As the focus is on the 

architecture for “easing” and guiding evolution, architecture-centric approaches to 

evolution place considerable emphasis on the flexibility of the architecture in 

responding to change. In this context, the framework intends to answer the following 

key question: how much is it worth “buying” flexibility to facilitate future changes 

and support the development (evolution) of potentially stable architectures? 

 

The benefit of this work is that it provides the analyst/architect with “insights” into 

architectural stability and investment decisions related to the evolution of software 

architectures. The objective is to assist the analyst/architect in strategic “what if” 

analyses involving: valuing the long-term investment in a particular architecture; 

analyzing the trade-offs between two or more candidate software architectures for 

the long-term value; analyzing the strategic position of the enterprise- if the 

enterprise is highly centered on the software architecture (as is the case in web-based 

companies); valuing the worthiness of designing or reengineering for the change; 

and valuing the flexibility of the architecture and its associated artifacts relative to 

the change. The intellectual framework is most critical; it demonstrates that with 

value-based reasoning we can improve our ability to evaluate for architectural 

stability and develop software systems that need to adapt to the inevitable evolving 

requirements. 
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1.4 Assumptions 
 
The major assumptions underlying the thesis are as follows: 

 

− Changes in requirements could be predictable in advance. Chapter 5 of the 

thesis provides guidelines for eliciting likely changes in requirements that are 

critical for evaluating architectural stability.    

− The cost of re-engineering or re-architecting an architecture for the change 

can be predicted a long time in advance using a similar development or an 

evolution experience. However, the prediction needs not be accurate as the 

framework we propose provides treatment to the uncertainty of the 

prediction.  

− Adapting flexibility into the architecture of the software system is often a 

costly option: For example, flexibility often come with a price (e.g., through 

the provision of primitives for facilitating the change). Furthermore, the 

adapted flexibility might be underutilized to reveal a net benefit upon 

exercising the change.    

− We look at systems that are intended to evolve. In Lehman’s concept [FEAST 

1-2], there are two types of systems: these are E-type systems and S-type 

systems. E-Type systems that are embedded in real world applications  and  

are used by humans for everyday business functions. Examples might be 

customer service, order entry, payroll, operating systems, databases engines. 

S-Type systems are executable models of a formal specification. The success 

of this software is judged by how well it meets the specification. For E-Type 

systems the “real world” is dynamic and ever changing. As the real world 

changes the specification changes and the E-Type systems adapt to these 

changes. Hence, E-Type systems are evolvable. For S-Type systems the 

specification becomes invalid in the presence of change. In Lehman’s 

terminology, we look at E-type systems.  
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1.5 Thesis Contribution  
 

The Contribution in Brief  
 

This thesis advances the understanding of the architectural stability problem from an 

economics-driven software engineering perspective [EDSER 1-7, 1999-2005]. The 

merits of such a contribution can not be overstated: revealing a new practical 

perspective in tackling an unaddressed problem; stimulating; and possibly 

motivating future research in architectural stability and related problems. 

Accordingly, this thesis should be regarded as a culmination of four years of 

independent “make a way” challenge into the concept and the problem, in the 

absence of very closely related research.  The thesis makes the following specific 

contributions: 

 

− Surveys research work on architecture evaluation and discusses their limitations 

in addressing architectural evaluation for stability. 

_  Highlights the requirements for evaluating architectural stability in the face of 

changing requirements from an economics-driven perspective. 

− Describes a novel approach and devises a real-options based model, referred to 

as ArchOptions, for valuing the flexibility of an architecture to change. The 

model builds on a sound theory in financial engineering to provide insights into 

architectural stability and investment decisions related to the evolution of 

software architectures. 

− Complements the model with a three-phase method for conducting an 

architectural evaluation for stability. The problem of valuing flexibility of an 

architecture to change requires a comprehensive solution that incorporates 

multiple valuation techniques, some with subjective estimates, and others based 

on market data, when available. To introduce discipline into this setting and 

capture the value from different perspectives, the method outlines a valuation 

points of view framework as a solution. The framework addresses the problem 

that valuing the flexibility of an architecture to likely changes in requirements is a 

multi-perspectives valuation problem. The framework is flexible enough to 

account for the economic ramifications of the change on the structural (e.g., 
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maintainability) and behavioral (e.g., throughput) qualities of an architecture and 

the associated business goals.  

_ Applies the approach to two architecture-centric evolution case studies, with 

desirable stability requirements. These applications demonstrate novelty in the 

use of real options theory in software engineering and draw some preliminary 

observations, lessons, and insights that could stimulate future research in the 

area of relating requirements to software architectures. The applications also aim 

at verifying the thesis-related claims (outlined in the next Subsection).  

_  Highlights some open questions that could stimulate future research in 

architectural stability, relating software requirements and architectures, and 

architectural economics.   

 
 
The Thesis “Storyline”  
 

A survey [Bahsoon and Emmerich, 2003a] of architectural evaluation methods 

indicates that current approaches to architectural evaluation focus explicitly on 

construction and only implicitly, if at all, on the phenomenon of software 

“evolution”. Despite their concern with “change”, these methods do not address 

stability. When these methods address qualities like modifiability, they do not 

predict and measure the capability of the architecture to withstand change. 

According to Cook, Ji, and Harrison, the provision of such measure is important, 

because, for example, ”it assists the objective assessment of the lifetime costs and benefits of 

evolving software, and the identification of legacy situations, where a system or component is 

indispensable but can no longer be evolved to meet changing needs at economic cost” [Cook 

et al., 2001]. Moreover, existing methods ignore any economic considerations and are 

driven by ways that are not optimal for long-term value creation.  Factors such as 

flexibility often have impact on value creation [Boehm and Sullivan, 2000]. 

 

To bridge the gap, this thesis proposes an economics-driven approach for evaluating 

architectural stability in face of changing requirements [Bahsoon, 2003]. It is assumed 

that the software architecture’s goal is to facilitate the system’s evolution. Software 

evolution is viewed as a process in which a software system is undergoing a change 
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incrementally and seeking a value. The thesis highlights the requirements for 

evaluating architectural stability from an economics-driven software engineering 

perspective [EDSER 1-7, 1999-2005; Boehm and Sullivan 2000]. The thesis then claims 

that using strategic value-based reasoning we can address these requirements. In 

particular, the thesis argues that real options theory [Myers 1977; Myers 1987] is suited 

to assist in the evaluation. However, this begs the question: Why real options theory? 

Real options theory argues that flexibility under uncertainty can be viewed as values in 

the form of real options [Schwartz and Trigeorgis, 2000]; the value of these options 

lies in the enhanced flexibility to cope with uncertainty. This perspective is appealing 

to the architectural stability problem: unfortunately, future changes in software 

requirements are uncertain, as the demand for change, its nature, and its likelihood 

are often uncertain. Hence, change is the likely source of uncertainty that confronts 

the architecture during its lifetime. In the face of uncertainty, there is a pressing need 

for architectures, which are flexible enough to cope with change. This gives the need 

to value the flexibility of the architecture in the face of change. This value can then be 

used as a metric for predicting architectural stability [Bahsoon and Emmerich, 2004a, 

Bahsoon and Emmerich, 2004b, Bahsoon and Emmerich, 2003b]. The importance of 

the idea cannot be overemphasized: it gives the architect an ability to reason about a 

crucial but previously intangible source of value and to use it in the evaluation of 

architectural stability.  

 

To value the flexibility of an architecture in the face of changing requirements, the 

thesis contributes to a novel model that exploits Black and Scholes (Nobel Prize 

winning) financial options theory [Black and Scholes, 1973]. The model is referred to 

as ArchOptions [Bahsoon et al., 2005, Bahsoon and Emmerich, 2004a, Bahsoon and 

Emmerich, 2004b, Bahsoon and Emmerich, 2003b]. In ArchOptions, investment 

opportunity in an architecture amounts to an upfront investment for developing the 

system of a given architecture plus “continuous” future investments for evolving the 

software in response to likely future changes in requirements. Briefly, ArchOptions 

examines critical likely changes in requirements and values the extent to which the 

architecture is flexible enough to withstand these changes. ArchOptions draws on a 

simple and intuitive analogy with Black and Scholes [1973] for valuing this 

flexibility. ArchOptions assumes that the architecture is the appropriate level of 

abstraction at which to reason about and analyze the evolution value, costs, and 
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investment opportunities. The model builds on a sound theory in financial 

engineering to provide insights into architectural stability, investment decisions 

related to the evolution of software architectures, and a basis for analyses for many 

architecture-centric evolution problems. The thesis describes how we have derived 

the ArchOptions model: the assumptions and the analogy made, its formulation, its 

sensitivity, and report on its possible interpretations and uses.  

 

The thesis complements the model with a three-phase method for conducting an 

architectural evaluation for stability. The method provides guidelines on eliciting the 

likely changes in requirements; it pursues scenarios as a possible solution to describe 

the likely future changes in requirements that are critical to the evaluation. To trace 

the likely future change in requirements to the architecture, goals are extracted from 

scenarios [Anton, 1997] and then refined (e.g., [Dardenne and van Lamsweerde, 

1993]) using guidance on how they could operationalized by the architecture. The 

objective is to trace the change and quantify the flexibility of the architecture in 

withstanding the scenario. The valuation using ArchOptions requires a 

comprehensive solution that incorporates multiple valuation techniques, some with 

subjective estimates, and others based on market data, when available. The problem 

associated with how to guide the estimation in this setting, we term as a multiple 

perspectives valuation problem. To introduce discipline into this setting and capture the 

value from different perspectives, the method suggests valuation points of view (i.e., 

market or subjective estimates) as a solution. The framework is comprehensive 

enough to account for the economic ramifications of the change, its global impact on 

the architecture, and on other architectural qualities. The solution aims to promote 

flexibility through incorporating both subjective estimates and/or explicit market 

value, when available.  

 

The thesis uses case studies to empirically evaluate ArchOptions and explore its 

fitness in addressing two architecture-centric evolution cases, with desired stability 

requirements. In the first case, we apply ArchOptions to value the payoff of 

refactoring [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. The 

application demonstrates how ArchOptions can be used to value the worthiness of 

reengineering for better support to likely future changes in requirements.  In the 
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second case, we apply ArchOptions to inform the selection of stable middleware-

induced software architecture in face of likely critical changes in non-functional 

requirements [Bahsoon et al., 2005]. In this case, we argue that the choice of a stable 

distributed software architecture has to be guided by the choice of the middleware 

and its flexibility in responding to future changes in non-functional requirements. 

We draw on a case study that adequately represents a medium-size component-

based distributed architecture: we report on how a likely future change in scalability, 

as representative critical change in non-functional requirements, could impact the 

architectural structure of two versions, each induced with a distinct middleware, one 

with CORBA and the other with J2EE. We show how we can apply ArchOptions to 

value the flexibility of the induced-architectures and to guide the selection. Research 

wise, addressing these problems has resulted in novel applications of real options 

theory in valuing the payoff of refactoring and in informing the selection of 

middleware-induced software architectures. On the discipline level, the application 

of ArchOptions to the above cases has provided some preliminary observations, 

lessons, and insights that could stimulate future research in the area of relating 

requirements to software architectures. Consequently, these observations aim at 

advancing our understanding of the architectural stability problem, when addressed 

from an economics-driven software engineering perspective. 

 

The thesis concludes by highlighting some open questions that could stimulate 

future research in architectural stability, relating requirements to software 

architectures, and architectural economics.   

 
Thesis-Related Publications 
 

The work presented in this thesis is based on and extends several papers that have 

been published in the last three years [Bahsoon et al., 2005, Bahsoon and Emmerich 

2004a; Bahsoon and Emmerich 2004b; Bahsoon 2003; Bahsoon and Emmerich 2003a; 

Bahsoon and Emmerich 2003b]. This thesis should be regarded as the definitive 

account of the work.  
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1.6 Thesis Outline  
 
In Chapter 2, we survey seminal work on software architecture evaluation methods 

and identify their limitations in addressing stability and evolution. We document 

research motivation and perspectives on architectural stability. We differentiate 

between two types of approaches for evaluating architectural stability; these are 

retrospective or predictive. 

In Chapter 3, we highlight the requirements for evaluating architectural stability. We 

motivate the need for an economics-driven approach to address these requirements.  

 

In Chapter 4, we pursue an economics-driven approach to address the requirements 

highlighted in Chapter 3. We motivate the use of real options theory as a solution. 

We devise a real option model, referred to as ArchOptions, to systematically evaluate 

architectural stability. We describe the analogy that ArchOptions make with real 

options theory. We report on ArchOptions formulation, its possible interpretation, its 

sensitivity, and its possible uses. We discuss valuation issues and assumptions. We 

provide an overview of closely related work on the use of real options is software 

design and engineering.      

 

In Chapter 5, we support the model with a three-phase method for evaluating 

architectural stability. We provide guidelines on applying ArchOptions and discuss 

practical ways for estimating the model parameters.  

 

In Chapter 6, we apply ArchOptions in two architecture-centric evolution case 

studies. We critically discuss and reflect on the strengths and the limitations of its 

application. We attempt to verify many of the thesis-related claims. We qualitatively 

evaluate the ArchOptions model and relate its application to the supporting method.   

 

In Chapter 7, we summarize the thesis contribution. We highlight possible future 

research on ArchOptions. We conclude by highlighting some open questions that 
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could stimulate future research in architectural stability, relating requirements to 

software architectures, and architectural economics. 

 

In Appendix A, we provide background information on COCOMO II (COnstructive 

COst MOdel) [Boehm 1995], a cost and schedule estimation model.  

 

In Appendix B, we provide supporting material related to the case study of using 

ArchOptions to select stable middleware-induced architecture of Chapter 6. 

 

In Appendix C, we provide brief background on Net Present Value (NPV) and 

Discount Cash Flows (DCF) valuation techniques. 
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Chapter 2 
 
 
A Survey of Software Architecture 
Evaluation Methods 
 

 

In [Bahsoon and Emmerich, 2003a], we have distinguished between two classes of 

software architecture evaluation methods:   

 

(i) General-purpose methods that evaluate software architectures for 

qualities that need to be met by the system, such as performance, security, 

and modifiability, and 

 

(ii) an emerging class of methods that explicitly evaluate for stability and 

evolution.  

 

In this chapter, we first review representative examples of (i). The motivation behind 

this review is to find through existing research stocks insights for evaluating 

software architectures for stability, which we examine in Chapter 3. Many of the 

ideas presented relate to the use of software evaluation methods in general. 

Secondly, we report on research effort related to (ii). We document research 

motivation and perspectives on architectural stability, as reported in the literature. 

We discuss why and how to evaluate an architecture for stability. We differentiate 

between two types of approaches to evaluation; these are retrospective or predictive. 

We note that methods for evaluating software architectures for stability do not exist, 

with [Jazayeri, 2002] and our work being the only notable exceptions. Thirdly, we 

briefly survey research effort on Architectures Description Languages (ADLs) as they 
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have implications for supporting the evaluation of software architectures. ADLs are 

languages that provide features for modeling and analyzing software architectures. 

We show how ADLs can be used in the context of evaluating software architectures 

in general and the evaluation for architectural stability in particular. 

 
2.1 Architectural Evaluation: A Brief Background  
 

In this section, we lay down the groundwork for evaluating a software architecture: 

we describe architectural review and evaluation; discuss why and when to evaluate 

an architecture; who is involved in the evaluation; and list approaches to evaluation.  

 

The architecture of the system is the first design artifact that addresses the quality 

goals of the system such as security, reliability, usability, modifiability, stability, and 

real-time performance. As the manifestation of early design decisions, the 

architecture represents those design decisions that are hardest to change [Parnas, 

1976] and need to be validated against the quality goals for mitigating risks. 

Architecture evaluation is an activity for developing an assessment of an architecture 

against the quality goals. It is a form of artifact validation. The evaluation is done 

with the objective of ensuring that the architecture under question satisfies one or 

more quality goals. Evaluation also aims to ensure that the architecture is buildable. 

That is, the system can be built using the resources at hand: the staff, the budget, the 

legacy software (if any), and the time allotted before delivery. From an evolution 

perspective, architectural evaluation is a preventive activity that aims to delay the 

decay (as referred to by Parnas) and limits the effect of software aging [Parnas, 1996]. 

Architectural evaluations represent a risk-mitigation effort and are relatively 

inexpensive [Clements et al., 2002].   

 

Architectural evaluation can be applied at any stage of an architecture lifetime. The 

classical evaluation of an architecture occurs when the architecture has been 

specified but before implementation has begun. Users of iterative or incremental life-

cycle models can evaluate the architectural decisions made at the end of each 

iteration or during the most recent architectural cycle. For instance, the Rational 
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Unified Process (RUP) [Krutchten, 1999] splits the development (evolution) process 

into four phases. These phases are Inception, Elaboration, Construction, and 

Transition. The four phases (I, E, C, and T) constitute a development (evolution) 

cycle and produce a software generation. Under the RUP context, the architectural 

evaluation can span iteratively and intertwinedly the Inception phase and iterations 

of the Elaboration phase, and/or can take place at the Life-Cycle Architecture (LCA) 

milestone. At the LCA milestone, the detailed system objectives and scope are 

examined; the choice of the architecture is considered; and the major risks are 

identified.  

 

Early evaluation need not wait until an architecture is fully specified. It can be used at 

any stage in the architecture creation process to examine those architectural decisions 

already made and choose among architectural options that are pending. Early 

evaluations may take the form of discovery reviews. A discovery review is a very early 

mini-review activity. It aims to analyze whatever “proto-architecture” may have 

been crafted. The output of a discovery review is an “iterated” or a “revised” set of 

requirements and an initial architectural approach to satisfying them, which is 

subject in turn to later and iterative evaluation. Note that the architecting process is 

best conducted iteratively and intertwined through requirements, architecting, and 

validation 

 

Late evaluation is a form of evaluation for an existing architecture. It takes place when 

the architecture already exists and the implementation is complete. This occurs when 

an organization inherits some sort of legacy system and need be integrated with the 

existing system. The evaluation at this level helps the new owners understand the 

legacy system, and determine whether the system can be counted on to meet its 

quality and behavioral requirements. 

 

Clements et al. [2002] provides two rules of thumb on when to hold the evaluation. 

They suggest i) hold the evaluation when the development team start to make 

decisions that depend on the architecture; and ii) when the cost of undoing those 

decisions would outweigh the cost of holding the evaluation. 
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Generally, architectural evaluation is a human-centered activity. The reviews are 

typically conducted in the presence of key stakeholders, clients, designers, and the 

evaluation team. Architecture evaluation may involve “thought experiments”, 

modeling, and walking-through scenarios that exemplify requirements, as well as 

assessment by experts who look for gaps and weaknesses in the architecture based 

on their experience. The evaluation may be supported by analytic models, simulation 

tools, and other architectural analysis means (e.g. parsers, Abstract State Machines, 

etc). These may be quality-specific, suitable to reason about one quality goal (e.g., 

performance), or multi-quality goal, suitable for assessing more than one quality 

goal. 

   

2.2 Research Effort on Architectural Evaluation 
 
In this section, we provide a comprehensive review of software architecture 

evaluation methods. We trace the evolution of software architecture evaluation 

methods starting from the early effort by [Parnas and Weiss, 1985] on Active Design 

Reviews (ADRs) up to the latest existing effort. We  describe the evolution of the 

principles and practices of software architecture evaluation through the following 

methods: the Software Architecture Analysis Method (SAAM) [Kazman et al., 1994]; 

the Architecture Trade-off Analysis Method (ATAM) [Kazman et al., 1996]; the 

Active Attribute-Based Architectural Styles (ABASs) [Klein et al, 1999]; the PASA 

Software Performance Engineering (SPE) [Smith 1990; Smith and Williams, 2002]; 

Reviews for Intermediate Designs (ARID) (Clements, 2000); and the Cost Benefit 

Analysis Method (CBAM) [Kazman et al., 2001].  

 

Effort on architectural evaluation goes back to the seminal work of David Parnas and 

David Weiss [1985]. Their paper entitled “Active Design Reviews: Principles and 

Practices” is regarded as the cornerstone to the architectural review/evaluation area. 

In their paper, Parnas and Weiss expressed one of the fundamental principles behind 

the architectural evaluation methods: undirected and unstructured design reviews 

for software design do not work. Their work was motivated by the observations that 

approaches to design review tend to be spotty, ad hoc, and not repeatable. The 

common practice was –and still is- to identify a group of reviewer, drop a stack of 
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read-ahead material on their desk a week or so prior the meeting, haul them in a 

conference room for a few tedious hours, ask for comments on the material read, and 

hope for the best [Clements et al, 2000]. The outcome of such practice is predictable 

and entirely disappointing: failing to uncover any serious problems with the design 

under consideration and propagating the problem to other phases. Obviously, this is 

attributed to human nature: participants will not have cracked the read-ahead 

material until the last minute (if at all), or perhaps they have read to make some 

intelligent comment. In short, the outcome is an unexercised design artifact. 

 

Parnas and Weiss prescribed a better way. ADRs are contrasted with unstructured 

reviews in which people are asked to read a document, attend a long meeting, and 

comment on whatever they wish [Clements and Northrop, 2002]. For validating 

architectural (and other design) specifications, ADRs are suitable. ADRs are 

particularly well suited for evaluating the designs of single components before the 

entire architecture has been solidified [Clements and Northrop, 2001]. ADRs can be 

used to evaluate an architecture that is still under construction. Reviewers are chosen 

because of their areas of expertise, not simply because of their availability. Each 

reviewer is given a questionnaire and/or some exercises to complete. The 

questionnaires and/or the exercises compel them to use the documentation and 

think about the architecture. The result is that the artifact being reviewed is actually 

exercised. For example, an exercise might be, “How would you use the facilities 

provided by this module to send a message to the user and wait a response?” The 

reviewer would then be obliged to sketch out the answer in pseudo-code, using 

facilities described in the design and the documentation.  

 

The Software Engineering Institute (SEI) at CMU has played a notable role in 

evolving and flourishing the principles and the practices of reviews that address 

Parnas and Weiss’s concerns. They have argued to consider the architecture 

evaluation as a standard part of the development cycle. With a particular focus on 

architectural design, the SEI has developed a number of methods. Examples include 

the Tradeoff Analysis Method (ATAM) [Kazman et al., 1996], the Software 

Architecture Analysis Method (SAAM) [Kazman et al., 1994), and the Active Review 

for Intermediate Designs (ARID) [Clements, 2000]. These methods have been applied 



 

 35

for years on dozens of projects of all sizes an in a wide variety of domains. Other SEI 

methods include the Attribute-Based Architectural Styles (ABAS) [Klein et al., 1999], 

and The Cost Benefit Analysis Method (CBAM) [Kazman et al., 2002]. The only 

notable effort outside SEI is the Software Performance Engineering (SPE) [Smith 

1990; Smith and Williams, 2002]. We describe the above listed methods in the 

subsequent sections. 

 

The evaluation using these methods generally identifies what the quality goals of 

interest are and then highlights the strengths and weaknesses of the architecture to 

meet the identified goals. These methods either explicitly address a single quality 

goal or multi-quality goals of interest. Abowd et al. [1996] broadly categorize existing 

techniques to architectural evaluation as either questioning, measuring techniques, 

or hybrid. Questioning techniques use scenarios, questionnaires, and checklists, and 

the like for architectural investigation. Measuring techniques use metrics, simulation, 

prototypes, or experimentations on running systems. Measuring techniques result in 

quantitative results. These techniques differ from each other in applicability, but they 

are all used to elicit discussion about the architecture and increase understanding of 

the architecture’s “fitness” with respect to its requirements. Hybrid techniques may 

combine both questioning and measuring. The architecture evaluation methods 

described in this review are generally hybrid; they tend to elicit “discussion” about 

the architecture using questioning techniques and use some measurements for 

reasoning.   

 

Conceptually, all the architecture evaluation methods described in this review are 

active design reviews. They require the participation of experts for their specific 

stake in the architecture. They pursue a path of directed analysis such as eliciting a 

specific statements on quality goal(s) that the architecture must meet to be 

acceptable, and then follow an analytical/measuring path to demonstrate how the 

architecture satisfies (or does not satisfy) the quality goal(s). 
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2.2.1 The Architecture Trade-off Analysis Method (ATAM) 
 

The Architecture Trade-off Analysis Method (ATAM) [Kazman et al., 1996] does not 

only reveal how well an architecture satisfies particular quality goals, but it also 

provides insight into how these goals interact with each other – how they trade off 

against each other [Clements et al., 2001]. ATAM is a scenario based architecture 

evaluation method. A scenario describes the interaction with the system from the 

stakeholders’ point of view. The ATAM uses three types of scenarios. These are use 

case scenarios, growth scenarios, and exploratory scenarios. Use case scenarios describe 

the typical uses of the completed running system. Growth scenarios represent typical 

anticipated changes of the system. Exploratory scenarios expose the limits or 

boundary conditions of the current design; in other words, they tend to expose 

extreme changes that are expected to “stress” the system.  

 

The input to the ATAM consists of an architecture, the business goals of a system, 

and the perspectives of the stakeholders involved with the system. The ATAM 

achieves its evaluation of an architecture by utilizing an understanding of the 

architectural approach that is used to achieve particular quality goals and the 

implications of that approach. The quality attributes that compromise system 

“utility” (e.g. performance, availability, security, modifiability, usability, and so on) 

are elicited, specified down to the level of scenarios, annotated with stimuli and 

responses, and prioritized. The scenarios are used for the evaluators to understand 

the inherent architectural risks, non-risks, sensitivity points to particular quality 

attributes, and trade-offs among quality attributes. 

 

The ATAM can be used at various stages of development (conceptual, before code, 

during development, or after deployment). The ATAM is fully described in 

[Clements et al., 2002]. 
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2.2.2 The Software Architecture Analysis Method (SAAM) 
 

The Software Architecture Analysis Method (SAAM) [Kazman et al., 1994] elicits 

stakeholder’s input to identify explicitly the quality goals that the architecture is 

intended to satisfy. Unlike the ATAM, which operates around a broad collection of 

quality attributes, the SAAM concentrates on attributes for modifiability, variability 

(suitable for product line), and achievement of functionality. The development of 

SAAM was motivated by the observation that practitioners regularly make claims 

about their software architectures (e.g. “This system is more robust than its 

predecessor”, “Using CORBA will make the system easy to modify and upgrade”) 

that are untestable [Clements et al, 2001]. SAAM tends to make these claims testable; 

it replaces claims with quality attributes (like maintainability, modifiability, 

robustness, flexibility, and so forth) and uses scenarios to operationalize these 

attributes. 

 

SAAM indicates places where the architecture fails to meet its modifiability 

requirements and in some cases shows obvious alternative designs that would work 

better. Like ATAM, SAAM is a scenario-based method. A scenario in SAAM is a brief 

description of some anticipated or desired use of the system. Scenarios are classified 

as either direct or indirect scenarios. Direct scenarios are those scenarios that are 

directly supported by the architecture, meaning that anticipated use require no 

modification to the architecture for the scenario to be accommodated. An indirect 

scenario is one that requires a modification to the architecture to be satisfied; the 

architect describes how the architecture would need to be changed to accommodate 

the scenario. When two or more indirect scenarios require changes to a single 

component of an architecture, they are said to interact in that component. Areas of 

high scenario interaction reveal potentially poor separation of concerns in a 

component. This indicates that the architecture is not documented to the right level 

of structural decomposition. The right level of structural decomposition often 

demands that the decomposed component handles one task at a time, easing both its 

comprehension and evolution.  
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The input to SAAM consists of an enumerated set of stakeholder’s scenarios that 

represent known or likely changes that the system will undergo in the future. These 

scenarios are prioritized and mapped onto the architecture representation. The 

activity of mapping indicates problem areas in the architecture, where the 

architecture is overly complex (e.g. if distinct scenarios affect the same component(s)) 

and areas where changes tend be problematic (e.g. if a scenario causes changes to a 

large number of components). Bass et al. [1998] and Clements et al [2002] provide a 

complete description of SAAM. 

 

2.2.3 Active Reviews for Intermediate Designs (ARID) 
 

The Active Reviews for Intermediate Designs (ARID) [Clements, 2000] is a hybrid 

design review method that combines the philosophy of the Active Design Review 

(ADRs) with the scenario-based evaluation techniques, such as the ATAM or SAAM. 

ARID is a method for evaluating subdesigns of partial architectures in their early or 

conceptual phases. Designs of partial architectures are architectural in nature; they 

are subdesigns that represent the stepping stones to the full architecture. It aims to 

validate the suitability of the subdesign being proposed from the point of view of 

other parts of the architecture. ARID is motivated by the fact that if the architectural 

subdesigns are inappropriate, then the entire architecture can be undermined. Hence, 

reviewing a design in its early pre-release stage provides valuable early insights into 

the design’s viability and allows for timely discovery of errors, inconsistencies, or 

inadequacies.  

 

Note that ADRs are primarily used to evaluate detailed designs of coherent units of 

software, such as modules or components. It tends to address (i) the sufficiency, 

fitness, and suitability of the services provided by the design, and (ii) the quality and 

the completeness of the documentation. ARID can be carried out in the absence of 

complete documentation. In ARID, the reviewers are the design’s stakeholders. The 

reviewers prepare a set of scenarios. Like ATAM and SAAM, a session is held for 

scenario brainstorming and prioritization. After scenarios are gathered, a winnowing 

process occurs. In this process, two or more scenarios that are versions of the same 

scenario or one that subsumes another are merged. Prioritization is by voting: each 
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reviewer is allowed to vote up to 30 percent of the number of scenarios. Beginning 

with the scenarios that have received the most votes, the reviewers craft code or 

pseudo-code that uses the design to carry each scenario. 

 

2.2.4 Attribute-Based Architectural Styles (ABAS) 
 

Attribute-Based Architectural Styles (ABASs) [Klein and Kazman, 1999] build on 

architectural styles to provide a foundation for reasoning about architectural design. 

An architectural style is a generic description of an architecture. An architectural 

style specifies the component types, the topological structure relevant to the specific 

style, and patterns of data and control interaction among the components. A single 

architectural style may result in several ABASs, where every ABAS reasons about a 

specific quality attribute. For example, an architecture with a Client-Server 

architectural style might have a Security Client-Server ABAS, a Modifiability Client-

Server ABAS, a Performance Client-Server ABAS, and so forth. ABAS explicitly 

associate a reasoning framework (qualitative or quantitative) with an architectural 

style. The evaluation of an architecture is facilitated by a reasoning framework. The 

reasoning is based on quality attribute-specific models (e.g. performance, reliability, 

and maintainability models), which exist in the various quality attribute 

communities. The reasoning framework may be quantitatively grounded (For 

example based on rate monotonic analysis, queuing theory, or other metrics) or it 

may be qualitative in nature (such as checklists, questionnaires, or scenario-based 

analysis). 

 

 For example, Rate Monotonic Analysis of the pipe-and-filter style allows the creation 

of Performance Concurrent Pipelines ABAS to support the architect in reasoning 

about worst-case latency quantitatively. Similarly, adding scenario-based reasoning 

using SAAM, allows the creation of Modifiability Layering ABAS, which supports 

the designer in reasoning about the effects of changes on the modifiability and 

maintainability of the system. As far as evaluation is concerned, a style may be 

“stressed” by stimuli on quality of interest. The objective is to gain insight into the 

responses of the architecture under evaluation to these stimuli using a quality-specific 

models as a basis of reasoning. The architectural properties are provided as input to 
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the analysis. This aids the architect in understanding how to achieve a desired 

response by manipulating the architectural parameters. ABAS facilities evaluating 

qualities of a generated architectural design and trading among different 

architectural alternatives. 

 
2.2.5 Software Performance Engineering (SPE) & Performance 
Assessment of Software Architectures (PASA) 
 

Software Performance Engineering (SPE) is systematic quantitative approach to 

proactively analyze and manage software performance [Smith, 1990; Smith and 

Williams, 2002]. The SPE technique can be used to examine an architecture to see 

whether the designed system will meet it performance constraints. It uses model 

predictions to evaluate trade-offs in software functions, hardware size, quality of 

results, and resource requirements. It also includes techniques for collecting data, 

principles and patterns for performance-oriented design, and anti-patterns for 

recognizing and correcting common performance problems. PASA, a Method for the 

Performance Assessment of Software Architectures, is SPA based [Smith, 1990]. 

Participants in PASA are key developers and project managers. The assessment of 

the architecture for performance using PASA starts by the identification of critical 

use cases that are important to the responsiveness or scalability of the system. For 

each critical use case, the scenarios that are important to performance are identified. 

Measurable performance objectives are then identified for each key scenario. The 

architecture is analyzed to determine whether it will support the performance 

objectives. In the face of a performance discrepancy, the designer has many choices 

to make: the performance requirements can be relaxed, functionality can be omitted, 

hardware capability can be increased, or alternatives architectural designs for 

meeting the performance objectives are recommended. Conceptually, PASA 

resembles the ATAM, in which the singular quality of interest is performance.   

 
2.2.6 The Cost Benefit Analysis Method (CBAM) 
 

The Cost Benefit Analysis Method (CBAM) [Kazman et al., 2001] is an architecture-

centric method for analyzing the costs, benefits, and schedule implications of 

architectural decisions. The CBAM builds upon the ATAM to model the costs and 
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benefits of architectural design decisions and to provide means of optimizing such 

decisions. Conceptually, CBAM continues where the ATAM leaves; it adds a 

monetary dimension to ATAM as an additional attribute to be traded off. The CBAM 

consists of the following steps: i) choosing scenarios and architectural strategies (AS); 

ii) assessing Quality Attribute (QA) benefits; iii) quantifying the Architectural 

Strategies; iv) costs and schedule implications; v) calculating desirability; and vi) 

making decisions.  

 

Upon completion of the evaluation using CBAM, CBAM could have guided the 

stakeholders to determine a set of architectural strategies that address their highest 

priority scenarios. These chosen strategies furthermore represent the optimal set of 

architectural investments. They are optimal based upon considerations of: benefit, 

cost, schedule, within the constraints of the elicited uncertainty of these judgments 

and the willingness of the stakeholders to withstand the risk implied by uncertainty. 

To quantify the architectural strategies benefits, stakeholders are asked to rank each 

AS in terms of its contribution to each quality attribute of –1 to +1. A +1 means that 

this AS has substantial positive effect on the QA (for example, an AS under 

consideration might have substantial positive effect on performance) and –1 means 

the opposite. Each AS can be assigned a computed benefit score from –100 to +100. 

CBAM doesn’t provide a way to determine the cost; it considers that cost 

determination is a well-established component of software engineering and is 

outside its scope. The benefits and scores result in the ability to calculate desirability 

metrics for each architectural strategy. The magnitude of desirability can range from 

0 to 100.  
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2.3 Evaluating Architectural Stability 
 

In this section, we first document research motivation and perspectives on 

architectural stability, as reported in the literature. We then discuss why and how to 

evaluate an architecture for stability. Finally, we differentiate between two types of 

approaches to evaluation; these are retrospective and predictive. 

 
2.3.1 Architectural Stability in Perspective 
 
Ongoing research on the relation between requirements and software architectures 

has considered the architectural stability problem as an open research challenge and 

difficult to handle [Finkelstein, 2000; Nuseibeh, 2001; van Lamsweerde, 2001; 

Emmerich 2002]. In particular, Finkelstein [2000] motivated research in architectural 

stability. Nuseibeh [2001] proposed the “Twin Peaks” model, a partial and simplified 

version of the spiral model. The cornerstone of this model is that a system’s 

requirements and its architecture are developed concurrently; that is, they are 

“inevitably intertwined” and their development is interleaved. Nuseibeh advocated 

the use of various kinds of patterns – requirements, architectures, and designs- to 

achieve the model objectives. As far as architectural stability is concerned, Nuseibeh 

had only exposed a tip of the “iceberg” (as referred to by Nuseibeh): development 

processes that embody characteristics of the Twin Peaks are the first steps towards 

developing architectures that are stable in the face of inevitable changes in 

requirements. Nuseibeh noted that many architectural stability related questions are 

difficult and remain unanswered. Examples include: what software architectures (or 

architectural styles) are stable in the presence of changing requirements, and how do 

we select them?  What kinds of changes are systems likely to experience in their 

lifetime, and how do we manage requirements and architectures (and their 

development processes) in order to manage the impact of these changes? Our work 

addresses some of these questions.  
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Figure 2.1. Twin Peaks [Nuseibeh, 2001]: a model for the concurrent 
development of “progressively” more detailed requirements and 
architectural (design) specifications 

 
 

Not far from the motivation of bridging the gaps between requirements and software 

architectures, van Lamsweerde [2000] noted that the goal-oriented approach to 

requirements engineering may support building and evolving software architectures 

guaranteed to meet both its functional and non-functional requirements. As far as the 

architectural stability problem is concerned, van Lamsweerde noted that:  

 

 “Even though streamlined derivation processes may be envisaged for 
architectural development, things get much more complicated for evolution. 
For example, the conflict between requirements volatility and architectural 
stability is a difficult one to handle”. [van Lamsweerde, 2000]     

 

 

Emmerich [2002] has reflected on the architectural stability problem with a particular 

focus on developing software architectures induced by middleware. Specifically, 

Emmerich considered the architecture stability problem from the deployment 

perspective of distributed components technology, in response to changes in non-

functional requirements. Emmerich advocates adjusting requirements elicitation and 

management techniques to elicit not just the current non-functional requirements, 

but also to assess the way in which they will develop over the lifetime of the 

architecture. These ranges of requirements may then inform the selection of 

distributed components technology, and subsequently the selection of application 

server products. Emmerich considers that addition or changes in functional 

requirements can be addressed in distributed component-based architectures by 

adding or upgrading the components in the business logic. However, changes in 
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non-functional requirements are more critical; they can stress an architecture 

considerably, potentially leading to an architectural “breakdown”. For example, such 

breakdown may occur if the container or application server, selected to execute 

distributed components, does not provide sufficient deployment flexibility to meet 

the changing requirements. As a result, the container or application server has to be 

changed, which is considerably more expensive than just adjusting a component 

replication strategy. 

 

In summary, these brief positions have reflected on open challenges and possible 

strategies in developing software architectures that need to be stable as requirements 

evolve. They have highlighted the architectural stability problem from a 

requirements perspective. Focused research attempts, however, have not followed 

these lines. Hence, the concept is still far from being fully understood and the 

problem is left unaddressed. Our perspective provides a compromise through 

linking technical issues to value creation. The approach, which we suggest in this 

thesis, has the promise to provide insights and a basis for analysis and support for 

many of the concerns highlighted above.  The approach demonstrates that using 

value-based reasoning, we can analyze for architectural stability and support the 

development of software systems that need to adapt to inevitable evolving 

requirements. 

 
2.3.2 Approaches to Evaluating Architectural Stability  
 
Evaluating architectural stability aims to assess the extent to which the system of a 

given architecture is evolvable, while leaving the architecture and its associated 

design decisions unchanged as the requirements change. Approaches to evaluating 

software architectures for stability can be retrospective or predictive [Jazayeri 2000]. 

Both approaches start with the assumption that the software architecture’s primary 

goal is to guide the system’s evolution. Retrospective evaluation looks at successive 

releases of the software system to analyze how smoothly the evolution took place. 

Predictive evaluation provides insights into the evolution of the software system 

based on examining a set of likely changes and the extent to which the architecture 

can endure these changes. 
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Retrospective Evaluation  

To the author’s knowledge, the only visible research effort on architectural stability is 

the work of Jazayeri [2002]. Jazayeri has looked at the problem from a software 

evolution perspective. Jazayeri motivated the use of retrospective approaches for 

evaluating software architectures for stability. Retrospective evaluation looks at 

successive releases of a software system to analyze how smoothly evolution took 

place. The analysis relies on comparing properties from one release of the software to 

the next. The intuition is to see if the system’s architectural decisions remained intact 

throughout the evolution of the system, that is, through successive releases of the 

software. Jazayeri refers to this “intuitive” phenomenon as architectural stability. 

Retrospective analysis can be used for empirically evaluating an architecture for 

stability; calibrating the predictive evaluation results; and predicting trends in the 

system evolution [Jazayeri, 2002]. In other words, retrospective analysis can also 

provide a basis for predictive analysis.  For example, previous evolution data of the 

system may be used to anticipate the resources needed for the next release of the 

system, or to identify the components most likely that require attention, need 

restructuring or replacements, or to decide if it is time to entirely retire the system. In 

principle, predictive analysis and retrospective analysis should be combined. 

However, perfect predictive evaluations would render retrospective analysis 

unnecessary [Jazayeri, 2002].  

 

Jazayeri’s approach uses simple metrics such as software size metrics, coupling 

metrics, and color visualization (see Figure 2.2.) to summarize the evolution pattern 

of the software system across its successive releases. The evaluation assumes that the 

system already exists and has evolved. This approach is therefore not preventive and 

unsuitable for early evaluation (unless the evolution pattern is used to predict the 

stability of the next release). The evaluation appears to be expensive and unpractical 

(in the absence of dedicated tools), for it requires information to be kept for each 

release of the software. Such data could be available through configuration 

management repositories. Yet such data is not commonly maintained, analyzed, or 

exploited. Moreover, as we will see in Chapter 3, the problem of architectural 

stability is strategic in essence and not purely technical. Jazayeri addresses the 

problem from a purely technical perspective.  
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Figure 2.2. Color visualization of module evolution- Jazayeri [2002] 

 

 

Predictive Evaluation  

Retrospective approaches for evaluating architectural stability are unsuitable for 

early evaluation; the approach assumes that the system already exist and has 

evolved. The evaluation tends to summarize how smoothly the evolution has taken 

place. In contrast, predictive approaches can be applied during the early stages of the 

development life cycle to predict threats of evolution to the stability of the software 

architecture. Unlike retrospective approaches, predictive approaches are preventive; 

the evaluation aims to understand the impact of the change on the stability of the 

architecture if the likely changes need to be accommodated, so corrective design 

measures can be taken. Therefore, in predictive approaches the effort to evaluation is 

justified and the evaluation is generally cost effective, when compared to 

retrospective approaches. Briefly, in ArchOptions (detailed in Chapter 4), we 

examine a set of likely changes that are critical to the evaluation. This begs the 

question: How can we predict the change? We pursue scenarios as a possible 

solution to describe these changes. To link the likely future change in requirements 

to the architecture, we adopt Goal-Oriented Requirements Engineering (GORE) 

paradigm, where the goals are extracted from scenarios [Anton, 1997]. We then 
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predict the extent to which the architecture can endure these changes taking a value-

based reasoning to prediction.  

 
 

2.4 Architectures Description Languages (ADLs) and 
Architectural Evaluation   
 

Although software evaluation methods are typically human-centered, formal 

notations for representing and analyzing architectural designs, generically referred 

to as Architectures Description Languages (ADLs), have provided new opportunities 

for architectural analysis [Garlan, 2000] and validation. In this section, we briefly 

survey efforts on ADLs as they have implications for supporting the evaluation of 

software architectures. We explain how ADLs can be used to support the evaluation 

of software architectures in general and provide some insights on their use to 

evaluate the architecture for stability in particular.  

 

ADLs are languages that provide features for modeling a software system’s 

conceptual architecture [Medovidovic and Taylor, 1997]. ADLs provide a concrete 

syntax and a conceptual framework for characterizing architectures [Garlan et al., 

1997]. The conceptual framework typically subsumes the ADL’s underlying semantic 

theory (e.g., CSP, Petri nets, finite state machines).  

 

A number of ADLs have been proposed for modeling architectures both within a 

particular domain and as general-purpose architecture modeling languages 

[Medovidovic and Taylor, 1997]. Examples are Aesop [Garlan et al., 1995], Darwin 

[Magee et al., 1995; Magee and Kramer, 1996], MetaH [Vestal, 1996], C2 

[Medovidovic et al., 1996], Rapide [Luckham and Vera, 1995], Wright [Allen and 

Garlan, 1994], UniCon [Shaw et al., 1995], SADL [Moriconi et al., 1995], and ACME 

[Garlan et al., 1997].  

 

ADLs are often intended to model large, distributed, and concurrent systems. 

Evaluating the properties of such systems upstream, at the architectural level, can 
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substantially lessen the costs of any errors. The formality of ADL renders them 

suitable for the manipulation by tools for architectural analysis. In the context of 

architectural evaluation, the usefulness of an ADL is directly related to the kinds of 

analysis a particular ADL tends to support. The type of analyses and evaluation for 

which an ADL is well suited depends on its underlying semantic model. We refer to 

Medovidovic and Taylor [1997] to state few examples: Wright is based on CSP; it 

analyses individual connectors for deadlocks. MetaH and UniCon both support 

schedulability analysis by specifying non-functional properties, such as criticality 

and priority. SADL can establish relative correctness of two architectures with 

respect to a refinement map. Rapide’s and C2’s event monitoring and filtering tools 

also facilitate analysis of an architecture. C2 uses critics to establish adherence to 

style rules and design guidelines.  

 

Another aspect of analysis, that supports architectural evaluation, is enforcement of 

constraints. Parsers and compilers enforce constraints implicit in types, non-

functional attributes, component and connector interfaces, and semantic models. 

Static and dynamic analyses are used. Static analysis verifies that all possible 

executions of the architecture description conform to the specification. Static analysis 

helps the developers to understand the changes that need to be made to satisfy the 

analysed properties. They span approaches such as reachability analysis [Holzman, 

1991; Valmari, 1991; Godefroid and Wolper, 1991], symbolic model checking [Brush 

et. al, 1990; McMillan, 1993], flow equations, and data-flow analysis [Dwyer and 

Clarke, 1994]. The applicability of such techniques to architecture descriptions has 

been demonstrated in [Naumovich et al., 1997] using two static analysis tools. These 

tools are INCA [Corbett and Avrunin, 1995] and FLAVERS [Masticola and Ryder, 

1991; Dwyer and Clarke, 1994]. Rapide [Lukham et al., 1995] provides a support to 

simulate the executions of the system. The simulation verifies that the traces of those 

executions conform to high-level specifications of the desired behavior. Allen and 

Garlan [1994] use the static analysis tool FDR [Formal Systems, 1992] to prove 

freedom from deadlock as well as compatibility between the component and 

connectors in an architecture description. The term dynamic architectures denote 

that application’s architecture evolves during runtime. Examples of analyses support 

for dynamic architectures include the work of [Magee and Kramer, 1996]. Magee and 
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Kramer’s Darwin provides a support to the analysis of distributed message-passing 

systems. 

 

In the context of evaluating software architectures for stability, no notable research 

effort has explored the role of ADLs in supporting such evaluation. However, we 

believe that ADLs have the potential to support such evaluation. For instance 

comparing properties of ADL specifications for different releases of a software can 

provide insights on how the change(s) or the likely change(s) tends to threat the 

stability of the architecture. This can be achieved by analyzing the parts of newer 

versions that represent syntactic and semantic changes. Moreover, the analysis can 

provide insights into possible architectural breakdown upon accommodating the 

change. For example, the analysis may show how the change may break the 

architectural topology (e.g., the architectural style) and/or the architectural structure 

(e.g., components, connectors, interfaces ect.). We note that ADLs have potential for 

performing retrospective evaluation for stability. In this context, the evaluation can 

be performed at a correspondingly high level of abstraction. Henceforth, the 

evaluation may be relatively less expensive as when compared, for example, to the 

approach taken by [Jazayeri, 2002], detailed in the previous section.  

 
 

2.5 Critical Assessment   
 

Architectural evaluation aims at providing confidence that the system of the crafted 

architecture is buildable, meets both its functional and quality goals (i.e., non-

functional requirements), and satisfies the constraints entailed by the environment in 

which the system works. Table 2.1 depicts a summary of the surveyed general-

purpose software architectural evaluation methods. These methods provide 

frameworks for software architects to evaluate architectural decisions with respect to 

quality attributes that need to be met by the system. Examples of these quality 

attributes include performance, security, reliability, and modifiability. Despite the 

concern with “change” and accommodating changes, some existing architectural 

evaluation methods focus explicitly on construction and only implicitly, if not at all, 

on the phenomenon of software “evolution”. Further, none of these methods, 
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addresses stability of an architecture over time. For example, ATAM and SAAM 

indicate places where the architecture fails to meet its modifiability requirements and 

in some cases shows obvious alternative designs that would work better. When used 

for evaluating modifiability, the input to these methods consists of an enumerated 

set of stakeholders’ scenarios that represent known or likely changes that the system 

will undergo in the future. These scenarios are prioritized and mapped onto the 

architecture representation. The activity of mapping indicates problem areas in the 

architecture: areas where the architecture is overly complex (e.g., if distinct scenarios 

affect the same component(s)) and areas where changes tend be problematic (e.g., if a 

scenario causes changes to a large number of components). The approaches to 

evaluation involve “thought experiments”, modeling, and walking-through 

scenarios that exemplify requirements, as well as assessment by experts who look for 

gaps and weaknesses in addressing modifiability based on their experience. 

However, these methods do not support their prediction with an analytical basis and 

rigorous models. When methods, such as SAAM and ATAM are used to analyze 

qualities that are related to change (such as modifiability), they do not predict and 

measure the capability of the architecture to withstand the change. This renders their 

predictive effectiveness myopic. Further, these methods have ignored any economic 

considerations, with CBAM [Asundi and Kazman, 2001] being the notable exception. 

The evaluation decisions using these methods tend to be driven by ways that are not 

connected to, and usually not optimal for value creation. Factors such as flexibility, 

time to market, cost and risk reduction often have high impact on value creation 

[Boehm and Sullivan, 2000]. Such ignorance is in stark contrast to the objective of 

architectural evaluation, where cost reduction, risk mitigation, and long-term value 

creation are among the major drivers behind conducting evaluation. This brings a 

need for economics-driven models of predictive power for supporting the 

evaluation.  Such provision is important for “it assists the objective assessment of the 

lifetime costs and benefits of evolving software, and the identification of legacy 

situations, where a system or component is indispensable but can no longer be 

evolved to meet changing needs at economic cost”  [Cook et al., 2001].  
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Table 2.1. A summary of the reviewed general-purpose evaluation methods 

Method Technique Goals of 
Interest 

Approach to Evaluation Development/ 
Evolution 

ATAM Scenario-
based 

Emphasizes: 
modifiability, 
security, and 
performance 

Thought experiments, 
walk through scenarios, 
assessment by experts 

Development/ 
Evolution 
implicit 

SAAM Scenario- 
based 

Modifiability, 
variability, 

achievement of 
functionality 

Thought experiments, 
walk through scenarios, 
assessment by experts 

Development/ 
Evolution 
implicit 

ARID Scenario-
based 

Suitability of 
functionality 

Walk through Scenarios, 
pseudo-code analysis, 
assessment by experts 

 

Development 

ABAS Scenario-
based; 

Measuring 

Emphasizes: 
modifiability, 
security, and 
performance 

 

Reasoning framework 
associated with an 

architectural style to 
facilitate the evaluation 

Development/ 
Evolution 
implicit 

PASA/SPE Use-cases/ 
Scenario- 

based; 
Measuring 

Performance Predictive models to 
evaluate trade-offs in 
software functions; 

hardware size; quality of 
results; and resource 

requirements 
 

Development 

CBAM Scenario-
based; 

Measuring 

See ATAM 
AND Cost, 

benefits, 
Scheduality 

Economics-driven; Based 
on optimizing benefits; 

costs; and schedule 
 

Development/ 
Evolution 

 
 

Despite addressing the costs and benefits of architectural strategies, CBAM does not 

address stability. Further, CBAM does not tend to capture the long-term and the 

strategic value of the specified strategy. When CBAM complements ATAM [Kazman 

et al., 1998] to reason about qualities related to change such as modifiability, CBAM 

does not supply a rigorous predictive basis for valuing such impact.  

 

We have described research perspectives on architectural stability. We have 

discussed why and how to evaluate an architecture for stability. We have 

differentiated between two types of approaches for evaluation; these are 

retrospective and predictive, as depicted in Table 2.2. We have critically compared 

the strengths and limitations of these approaches. Retrospective evaluation can 

summarise how smoothly the evolution took place across releases of the software 
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system. The evaluation assumes that the system already exists and has evolved 

making this approach not preventive and unsuitable for early evaluation (unless the 

evolution pattern is used to predict for the stability of the next release). Evaluation 

appears to be expensive and unpractical (in the absence of dedicated tools), for it 

requires information to be kept for each release of the software. Such information 

could be available through configuration management repositories. Yet, such data is 

not commonly maintained, analyzed, or exploited. Though using retrospective 

evaluation it may be feasible to predict future evolvability of an architecture by 

assessing how easily it evolved in the past, these approaches cannot easily be applied 

for short and uncertain history [Cook et al., 2001]. In contrast, predictive evaluation 

provides insights into the evolution of the software system based on examining a set 

of likely changes and the extent to which the architecture can endure these changes. 

Unlike retrospective evaluation, predictive evaluations are preventive and can lead 

to corrective design measures.  

 
Moreover, the problem of architectural stability and its “resilience” over time is 

strategic in essence and not purely technical. Jazayeri has addressed the problem 

from a purely technical perspective. Instead, we aim to assist in proactively 

engineering stable architectures. We believe that the economic interplay between 

evolving requirements and architectural stability need to be addressed.  

 
 

Table 2.2. Methods for explicit evaluation for stability and evolution 

Method Technique Goals of 
Interest 

Approach to Evaluation Development/ 
Evolution 

Jazayeri’s 
Approach 

Quantitative 
Retrospective 

Stability Retrospective evaluation; 
design metrics 

Evolution 
Explicit/ 

Development  
ArchOptions Quantitative 

Predictive 
Stability, 
Added 
Value  

Predictive evaluation; 
Economics- Driven; value 

based reasoning; Real 
options theory 

 Evolution 
Explicit/ 

Development  

 
 

Though our current work on ArchOptions does not exploit Architecture Description 

Languages (ADLs), we have briefly surveyed research effort on ADLs as they have 

implications on architectural evaluation.  The key message is that that role of ADLs is 

left unexplored in the evaluation of architectural stability.  In this context, it is 
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believed that ADLs can facilitate the evaluation at correspondingly higher level of 

abstraction than code, as when compared to the approach taken by [Jazayeri, 2002]. 

Hence, the evaluation may be relatively less expensive.  

 

To address the shortcomings of the surveyed methods, the next Chapter highlights 

the requirements for evaluating architectural stability from an economics driven 

software engineering perspective [EDSER 1-7, 1999-2005; Boehm and Sullivan 2000].  
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Chapter 3 
 
 
Requirements for Evaluating Architectural 
Stability  
 

In the previous chapter, we have reviewed research work on architecture evaluation. 

We have discussed their limitations in addressing architectural evaluation for 

stability. In this chapter, we state the requirements for evaluating architectural 

stability when addressed from an economics-driven perspective [EDSER 1-7, 1999-

2005; Boehm and Sullivan 2000]. 

 
 
3.1 Requirements for Evaluating Architectural Stability 
 

In a nutshell, if the business goal is that a system should be long-lived, should evolve 

to accommodate future requirements, and should support value creation, it becomes 

necessary to evaluate the stability of an architecture. The evaluation has to relate 

technical issues to value creation. The evaluation has to proactively address the 

economic ramifications of the likely critical changes in requirements and their impact 

on the architecture. Below, we highlight the requirements that should be addressed 

when evaluating an architecture for stability.  

  

Assess Evolution    

Despite the concern with “change” and accommodating changes, existing 

architectural evaluation methods focus explicitly on construction and only implicitly, 

if not at all, on the phenomenon of software “evolution”. A Software architecture 

represents those design decisions that are hardest to change [Parnas, 1996]. From an 
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evolution perspective, architectural evaluation is a preventive activity that aims to 

delay the decay and limit the effect of software aging [Parnas, 1996]. Easing 

evolution is the underlying, if implicit, motivation for many of the recent software 

development practices, which place considerable emphasis on the architecture of the 

software system as the key artifact involved.  For example, product-line architectures 

aim at the systematic controlling of software evolution [Jazayeri, 2002]. Product-line 

architectures anticipate the major evolutionary milestones in the development of the 

product, capture the properties that remain constant through evolution and 

document variability points from which different family members may be created. 

The approach gives a structure to the products’ evolution and possibly rules out 

some unplanned evolutions, if the architecture is respected [Jazayeri, 2002]. Though 

the software architecture, as a key designed artifact, is considered to be “the 

promising solution for easing software maintenance and evolution” [Jazayeri, 2002], 

rapid technological advances and industrial evidence are now showing that the 

architecture is creating its own maintenance, evolution, and economics problems. For 

example, assume that a distributed e-shopping system architecture which relies on a 

fixed network needs to evolve to support new services, such as the provision of 

mobile e-shopping. Moving to mobility, the transition may not be straightforward: 

the original distributed system’s architecture may not be respected, for mobility 

poses its own non-functional requirements for dynamicity that are not prevalent in 

traditional distributed setting [Capra, 2003]. Examples of these requirements include 

the need to react to frequent changes in the environment, such as change in location, 

resource availability, variability of network bandwidth, the support of different 

communication protocols, loss of connectivity when the host need to be moved, and 

so forth. These requirements may not be satisfied by the current fixed architecture, 

the built-in architectural caching mechanisms, and/or the underlying middleware. 

Replacement of the current architecture and/or its underlying middleware may be 

required.  

 

Therefore, what constrains the success of evolving the system with a given 

architecture is the ability of the architecture to support the likely change in 

requirements. In evaluating architectural stability, the architectural evaluation may 

not only need to assess how the current requirements could be realized by the  
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architecture, but also the ranges in which these requirements may change and evolve 

during the life time of the software system.  

 

“Continual” Investment Management in an Architecture  

According to Bennet and Rajilich [2000], software evolution takes place only when 

the initial development was successful. The goal is to adapt the system to the 

changing requirements. The inevitability of evolution is documented in [Lehman, 

1985]: “the software is being evolved because it is successful in the marketplace, 

revenue streams are buoyant, user demand is strong, and the organization is 

supportive. Return on investment is excellent”.  Hence, evolution is primary driven 

by business needs. Conversely, software evolution needs to seek and create value 

relative to the resources invested [Bahsoon and Emmerich, 2004a]. As such, the costs 

of evolving software should not outweigh the returns from the process to achieve a 

net benefit. Under the assumption that the primary role of the software architecture 

is to guide evolution, the success of software evolution is hence dependent on the 

architecture [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. An 

architecture needs to be flexible enough to accommodate the change(s) without 

breaking the architecture itself, the supporting infrastructure, and/or the topology.  

Breaking the architecture is costly. On the other hand, having an “overly flexible” 

architecture implies upfront costs, which could not be utilized to achieve a net 

benefit [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. For 

example, if a likely change does not occur, then the value of the system decreases 

because the flexibility will not pay off. When a likely change is significant enough, 

the architecture needs to be considered to incorporate enough flexibility with the 

promise that such flexibility could lead to the right to claim future cost savings. 

Accounting for evolution brings a need for continuous “management” and 

optimization for the net benefit of the flexibility provided by the architecture. This 

needs to be considered upon evaluating an architecture for stability. As the success 

(failure) of evolution is very much linked to the architecture, the long-term costs and 

likely savings are revealing measures to the “resilience” of the architecture to the 

change.  The ability of a system with a given architecture to maintain/add value as 

the software system evolves is hence indicative of its stability.  
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In short, “designing for change” is approached by designing flexible and 

customizable architectures. One of the major criteria that the architectural evaluation 

for stability should consider is optimizing the net-benefit of the embedded or the 

adopted flexibility of the architecture relative to the likely changes. A particular 

question of interest is: how much to do we need to invest in designing for change 

and how valuable are the associated design decisions? Investing in flexibility incurs 

upfront costs and may render future and long-term benefits, such as supporting 

software reuse and instantiating from the core architecture new market products. 

Hence, the tradeoff between the upfront investment and the long-term future 

benefits should be assessed.  

 

Strategic Considerations 

In software engineering, the term strategy refers to techniques that treat uncertainty, 

incomplete knowledge, risk, competition, and related issues systematically, 

consciously, and in a sound manner with the aim to maximize the expected value of 

a given product or project [Sullivan et al., 1997]. Strategic considerations are related 

to or concerned with strategy. The term implies that the focus is on improving and 

sustaining the “performance” of the software system over time in meeting both its 

technical and business goals, aligning the system and its evolution with the 

organization’s performance objectives, and seeking new strategic opportunities. We 

consider the architecture as the appropriate level of abstraction at which to think of 

strategic software decisions and guide the evolution of the software system. Further, 

the problem of architectural stability and the architecture “resilience” to evolution is 

strategic in essence and not purely technical [Bahsoon and Emmerich, 2003a]. A 

stable architecture is a significant strategic asset during the operation and the 

evolution of the software system. Stability is an architectural quality with strategic 

importance and with long-term strategic and operational benefits. Stability is said to 

be of strategic importance as it reflects on the architecture’s “performance” over time, 

the architecture “dynamism” with respect to likely changes in requirements over the 

projected life of the software system, and its “resilience” to change(s). Architectural 

stability may result in benefits of strategic importance, such as the opportunity to 

instantiate from the architecture new market products; the flexibility to respond to 

competitive forces and changing market conditions; and the ability to accommodate 

new services. It may also render long-term operational benefits, such as reduced 
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maintenance cost. A characteristic of these benefits, whether strategic or operational, 

is that their payoffs are uncertain and may not be immediate.  

 

Our consideration of stability as a strategic architectural quality reveals a new 

segmentation of architectural qualities, which appears to be absent from the software 

architecture literature. For example, Bass, Clements, and Kazman [1997] segment 

architectural qualities into two: these are dynamic (i.e., qualities observed via 

execution, e.g. performance) or static (i.e., qualities not observed via execution, e.g. 

modifiability). Both segments correspond to qualities, which need to be “built” into 

the software to fulfill its requirements. Even when qualities such as modifiability are 

considered under Bass and Clements’ segmentation, they are treated from a “build” 

perspective as opposed to an investment. However, stability poses challenges, which 

make it difficult to be considered under Bass and Clements’ segmentation of 

architectural qualities. Intuitively, the stability term refers to the “resilience” of an 

entity over a time period in the face of changes. The term implies a time dimension; it 

necessitates observing the effect of the change on the “global” properties of the 

subject architecture relative to its predecessor(s). The “global” properties may not 

necessarily be structural or behavioral; they may “crosscut” the business goals and 

other factors that constrain the architectural decisions.  

 

In this context, evaluating an architecture for stability must address the following 

strategic dimensions: (i) the time-line in which likely changes may need to be 

realized; (ii) the long-term cost of accommodating the change; and (iii) the long-term 

value implications of the architectural potential in accommodating the change.  

 

 

Addressing Uncertainty  

Uncertainty is defined as an event that can happen, but the probability of its 

occurrence is unknown [Ross et al., 1996]. We identify three major types of 

uncertainty, which need to be addressed upon evaluating an architecture for 

stability. First, the uncertainty associated with the change, its complexity, and its 

likelihood. The change could be considered as a major source of uncertainty that may 

place the investment in a particular architecture at risk. For example, the uncertainty 
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might be because of changes in stakeholders preferences and expectations, features 

of a system that are likely to change in the future and across a product line, changes 

in the environment in which the system works, macroeconomic influences, 

organizational changes, new market demands such as standardization, 

internationalization, product segmentation, economics constraints and so forth. 

These changes may not necessarily be perceived during the development of the 

software system. Second, when the change in requirements is likely, the value that 

the analysts ascribe to the architecture in supporting the change, perhaps resulting in 

new products, is often uncertain. Uncertainty of this value implies variation in the 

probable future values of the “architectural potential” relative to the change. Third, 

even if the changes in requirements are perceived during the development, the You 

Aren’t Going to Need It principle (YAGNI) [http://xp.c2.com/], for example, may 

entail delaying the implementation of some of these requirements until uncertainty 

about their value is resolved. When applicable, this means that the evaluation shall 

also address the value of delaying an investment decision in the change and relative 

to the uncertainty of the requirement’s value itself. Fourth, the uncertainty which is 

partially driven by the immaturity of the discipline and the state-of-practice in 

eliciting requirements, anticipating their changes, the way the change relate to the 

architecture, and the unique nature of the architecture as a capital asset. 

Unfortunately, there are no silver bullets, that can address these challenges. Yet, we 

believe that architectural evaluation for stability should try to control these 

uncertainties as much as possible in order to mitigate risks. 

 

Architectural Integrity 

An architecture with limited flexibility may realize the change through “cosmetic” 

solutions of an ad-hoc or propriety nature, such as modifying part of the architecture; 

implementing additional interfaces; extending the primitives of the underlying 

middleware; and so forth. These solutions could be costly, problematic, and 

unacceptable. Yet these solutions may turnout to be more cost-effective in the long-

run and relative to other alternatives. Even, if we accept the fact that modifying the 

architecture or the infrastructure is the only solution towards accommodating the 

change, analyzing the impact of the change and its economics becomes necessary to 

see how much we are expending to “re-maintain” or “re-achieve” architectural 
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stability relative to the likely change(s) [Bahsoon et al., 2005]. Though it might be 

appealing to intuition that the “intactness” of the structure is the definitive criteria 

for selecting a “more” stable architectures, the practice reveals a different trend: it 

boils down to the potential added value upon exercising the change. Hence, under 

some circumstances breaking the architecture could be acceptable [Bahsoon et al., 

2005]. Therefore, upon evaluating an architecture for stability, a tradeoff between the 

architectural “intactness” and the cost-effectiveness of amending the architecture to 

accommodate the change must be addressed.  

  
 
3.2 Summary  
 
We have highlighted the requirements for evaluating architectural stability from an 

economics-driven software engineering perspective. These requirements entail 

finding an approach for assessing evolvability. The approach shall aim at assessing 

the economic ramifications of the likely critical changes in requirements and their 

impact on the architecture of the software system, the “profitability” of evolution, 

and consequently the success of evolution. The approach shall provide the basis for 

analyzing many of the economic tradeoffs involved in designing and reengineering 

for the change. Examples include (i) the economic tradeoff between the upfront cost 

of enabling the change on the architecture of the software system and the resulting 

long-term future benefits, and (ii) the economic tradeoff between the architectural 

integrity and the cost-effectiveness of amending the architecture to accommodate the 

change.   
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Chapter 4 
 
 
ArchOptions: A Model for Evaluating 
Architectural Stability with Real Options 
Theory 
 
In the previous chapter, we have highlighted the requirements for evaluating 

software architectures for stability. In this chapter, we pursue an economics-driven 

approach to address these requirements. We describe a novel model that exploits 

options theory to evaluate architectural stability. The model is referred to as 

ArchOptions [Bahsoon et al., 2005; Bahsoon and Emmerich, 2004a; Bahsoon and 

Emmerich, 2004b; Bahsoon 2003; Bahsoon and Emmerich, 2003b]. The model 

provides “insights” into the evolution of the software system based on valuing the 

extent to which an architecture is flexible enough to endure some likely critical changes 

in requirements. The model builds on Black and Scholes[1973] financial options 

theory (Nobel Prize winning) for valuing this flexibility. The valuation provides a 

basis for analyzing the stability and investment decisions for many architecture-

centric approaches to evolution. 

 

We first provide background on real option theory that is necessary to understand 

our approach. We then describe the options-based approach to the systematic 

evaluation of architectural stability, leading to the ArchOptions model. We show 

how we have derived the model, the analogy and the assumptions that the model 

makes, the model formulation and its sensitivity, and we report on its possible 

interpretations and usage scenarios. We finally provide an overview of closely 

related work on the use of real options in software design and engineering.      
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4.1 Real Options: A Brief Background  
 

Definition 

Central to the real options approach is the concept of an option. An option is an asset 

that provides its owner the right without a symmetric obligation to make an 

investment decision under given terms for a period of time into the future ending 

with an expiration date [Schwartz and Trigeorgis 2000]. If conditions favorable to 

investing arise, the owner can exercise the option by investing the strike price 

defined by an option. A call option gives the right to acquire an asset of uncertain 

future value for the strike price. A put option provides the right to sell an asset at that 

price. A European option can only be exercised on the expiration date of the option. 

A real option is an option on non-financial (real) asset, such as a parcel of land or a 

new product design. 

 

What Problems Do Real Options Address?  

Real options theory addresses the problem that investment valuation based on 

discounted cash flow (DCF) and net present value (NPV) tend to overlook the value 

of decision flexibility. Critics recognize that DCF and NPV often undervalue 

investment opportunities, leading to myopic decisions, underinvestment, and 

eventual loss of competitive position. The problem originates in the inability of these 

techniques to properly value important strategic considerations and to capture the 

value of future operating flexibility associated with many projects. Myers [1987] 

acknowledged that these techniques have inherent limitations when it comes to 

valuing investments with significant operating or strategic options, for they overlook 

the sequence of interdependence among investments over time. Myers [1987] 

suggested that options pricing holds the best promise to value such investments.      

 

The options pricing approach has two major advantages. First, it relieves the 

decision-maker from having to forecast cash flows and predict the probabilities of 

future states. Second, it provides valuations that are not based on subjective, 

questionable parameter values, but rather on data from the market or market-

calibrated data. In a nutshell, the decision-maker provides the current value of the 

asset under consideration and the variance in the value over time. That is enough to 
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determine the “cone of uncertainty” in the future value of the asset, rooted as its 

current value and extending over time as a function of volatility. The variance is 

obtained by identifying assets in the market that are subject to the same risks as the 

one in question. Valuing flexibility using options considers that the risk (variance) is 

implicit in the asset being considered be “in the span of the market”.  

 

Origin 

The real options field opened in 1977 when the economist Myers noted that “part of 

the value of the firm is accounted for by the present value of the options to make 

further investments on possibly favorable terms” [Myers, 1977]. Myers saw that, all 

else equal, a firm that is in a position to exploit lucrative opportunities, for example, 

through an upfront strategic investment, is worth more than a firm that is not. Myers 

saw that such opportunities take the forms of real (as opposed to financial) options. 

Real options theory is an emerging field and based on financial options theory. 

Financial options have been studied since 1900; however, the seminal modern 

results, which provided long-sought closed-form mathematical formulations for 

valuing financial options, are due to Black and Scholes [1973], and Merton [1973]. 

Black and Scholes received the 1997 Nobel Prize in economics for their work on the 

topic. Many other results, which are now elements of basic finance, have been 

produced since (e.g., [Brealey and Myers, 1996; Cox and Rubinstein, 1984 and 1979; 

and McDonald and Siegel, 1986]). For the past 25 years, researchers have been 

building the theory of real options (e.g., [Brealey and Myers, 1996; Dixit and Pindyck, 

1994; Trigeorgis, 1995]). 

 

Real Options Valuation 

Options are valued using a variety of techniques. These techniques make different 

assumptions and require different tools to capture uncertainty. Uncertainty is often 

captured by a certain stochastic model that represents the movement of the 

underlying asset value over time. The options valuation determines the value of a 

project or investment opportunity from the values of other market-traded assets. The 

quantitative origins of real options derive from the seminal work of Black and 

Scholes [1973] in pricing financial options. Subsequently, Cox, Ross and Rubinstein 

[1979] developed a binomial approach that enables a more simplified valuation of 
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options in discrete time. The mechanics for calculating the value of an option reduce 

to folding back a decision tree, as done for either a dynamic DCF analysis or decision 

analysis [Schwartz and Trigeorgis, 2000]. The difference among these techniques 

revolves around how one chooses relevant values and represents uncertainty. Option 

pricing focuses on market value and uses the standard deviation of the rate of return 

on an underlying or (twin asset). The underlying asset is an asset with the same risks 

as the project (or asset) the firm would own if the options were exercised, that is, if 

the investment were made and the project completed.  

 

Types and Applications 

Real options analysis has been extensively applied to various  sectors such as natural 

resources (exploration and development), pharmaceutical (drug development), real 

estate (leasing decisions), manufacturing systems (convertible plants), aerospace 

(aircraft development and acquisition), and information technology (R&D, 

technology valuation). For examples, see [Schwartz and Trigeorgis 2000] and 

[Amram and Kulatalika, 1999]. The application of real options in software 

engineering is detailed in Section 4.4 of this chapter. In traditional applications, real 

options analysis recognizes that the value of the capital investment lies not only in 

the amount of direct revenues that the investment is expected to generate, but also in 

the future opportunities flexibility creates. These include abandonment or exit, delay, 

exploration, learning, and growth options. The economic literature analyses many 

types of real options. These real options could either occur naturally in a particular 

project/real asset (e.g., the option to defer, to contract, to shutdown, or to abandon) 

or could be planned and built in at some upfront extra cost (e.g., the option to 

expand capacity, to build growth options, to default when investment is staged 

sequentially, or to switch between alternative inputs or outputs).  

 

4.2 Architectural Stability: An Options Perspective 
In the previous chapter, we have highlighted the requirements for evaluating 

architectural stability. These requirements necessitate finding an approach, which 

assesses evolvability and traces technical issues to value creation.  The approach shall 

continually “manage” the investment in evolvable architectures and provide a basis 

for analyzing the economics of an architectural flexibility in relation to change; the 
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economics of maintaining architectural integrity versus the economics of 

architectural modification; and the value of designing and reengineering for the 

change. The approach shall account for structural flexibility in the face of 

uncertainty, where uncertainty is attributed to the change, its nature, and its 

likelihood. The approach shall address the strategic considerations that we have 

highlighted.   

 

Economics Perspective 

We approach the architectural stability problem from an Economics-Driven Software 

Engineering (value-based) perspective [EDSER 1-7; Boehm and Sullivan 2000]. 

Economics-Driven Software Engineering Research has drawn the attention that 

software design and engineering activities need to be judged by their contribution to 

the added value and value creation [Boehm and Sullivan, 2000]. This need becomes 

more intense when the economics of an architecture accommodating the change is 

among the primary considerations that determines evolvability and its “resilience” 

over time. This claim is indirectly supported by observations [FEAST 1-2] and other 

studies [Lehman et al., 2000], which suggest that evolving software eventually 

reaches a condition where, from an economic point of view at least, replacement is 

indicated [Bennet and Rajilich, 2000; Lehman et al., 2000]. In addition, the biggest 

tradeoffs in architectures of large, complex systems have always to do with 

economics [Kazman et al., 2001].  

 

A Motivating Example 

As a motivating example, consider a distributed software architecture that is to be 

used for providing the back-end services of an organization. This architecture will be 

built on middleware. Middleware provides the application developer with 

primitives for managing the complexity of distribution, the system resources, and for 

realizing many of the non-functional requirements in the architecture of the software 

system. Depending on which middleware is chosen, different architectures may be 

induced [Di Nitto and Rosenblum, 1999]. These architectures will have differences in 

how well the system is going to cope with changes in non-functional requirements. 

For example, a CORBA-based solution might meet the functional requirements of a 

system in the same way as a distributed component-based solution that is based on a 
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J2EE application server. A notable difference between these two architectures will be 

that increasing load demands might be easily accommodated in the J2EE architecture 

because J2EE application server provide primitives for replication of Enterprise Java 

Beans that can be used, while the CORBA-based architecture may not easily scale. 

The choice is not straightforward as the J2EE-based infrastructures usually incur 

significant upfront license costs. Thus, when selecting an architecture, the question 

arises whether an organization wants to invest into an J2EE application server and its 

implementation within an organization, or whether it would be better off 

implementing a CORBA solution. Answering this question without taking into 

account the flexibility that the J2EE solution provides and how valuable this flexibility 

will be in the future relative to the likely changes in non-functional requirements 

might lead to making the wrong choice.  

 

 

In general terms, means for achieving flexibility are typical architectural mechanisms 

or strategies built-in or adapted into the architecture with the objective of facilitating 

evolution and future growth, in response to changes in functional (e.g., changes in 

functionality) or non-functional requirements (e.g., changes in scalability demands). 

Unfortunately, built-in or adapted flexibility comes with a price. Questions of 

interest, however, are how worthwhile is it “buying” flexibility to facilitate future 

changes and support the development (evolution) of potentially stable architectures? 

How can we select an architecture which maximizes the yield of such flexibility 

relative to the likely changes in requirements? When does investing in flexibility 

result in potential stability? We aim to provide an answer to these questions using 

“options thinking”. 

 

Why a Real Options Perspective? 

Real options theory is well suited to address many Software Engineering problems 

from a value-based engineering perspective [Boehm and Sullivan, 2000; EDSER 1-7, 

1999-2005]. To understand the stability of software architectures using an economic 

approach, we need a valuation technique that is suitable for strategic and long-term 

valuation, accounts for flexibility, and makes the value of the options created by 
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flexibility tangible, as a way to make the value of stability tangible. Real options 

satisfy these requirements.  

 

First, real options theory provides an analysis paradigm that emphasizes the value-

generating power of flexibility under uncertainty [Erdogmus et al., 2002]. In 

traditional applications, real options analysis recognizes that the value of the capital 

investment lies not only in the amount of direct revenues that the investment is 

expected to generate, but also in the future opportunities flexibility creates. The 

flexibility may take the form of abandonment or exit, delay, exploration, learning, 

and growth options. In an evolutionary context, the change is uncertain as the 

demand on the future changes in requirements is uncertain. Thus, the value-

generation of the architectural flexibility in accommodating the change is a powerful 

heuristic for analyzing investment decisions and its implications on the stability of an 

architecture. We view stability as a strategic architectural quality that adds to the 

architecture values in the form of growth options. A growth option is a real option to 

expand with strategic importance [Myers 1987]. Growth options are common in all 

infrastructure-based or strategic industries with multiple-product generations or 

applications [Schwartz and Trigeorgis 2000]. As many early investments can be 

prerequisites or links in chain of interrelated projects [Myers 1987], growth options 

set the path for the future opportunities. Obviously, investments in software 

architectures are infrastructure-type of investments. The architecture may provide 

both the system and the enterprise the potentials for growth. In the architectural 

context, growth opportunities are linked to the flexibility of the architecture to 

respond to future changes. Note that flexibility has a value under uncertainty [Ross 

et al., 1996]. Since the future changes are generally unanticipated, the value of the 

growth options lies in the enhanced flexibility of the architecture to cope with 

uncertainty; otherwise, the change may be too expensive to pursue and/or 

opportunities may be lost.  

 

Second, the search for a potentially stable architecture requires finding an 

architecture that maximizes the yield in the added value, relative to some future 

changes in requirements. As we are assuming that the added value is attributed to 

flexibility, the problem becomes maximizing the yield in the embedded or adapted 
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flexibility in a software architecture relative to these changes. A Real options 

approach is a value-maximizing paradigm and suited to address this problem. Back 

to our motivating example, the choice of inducing the architecture with either 

CORBA or J2EE is a value-maximization problem. What we need to maximize is the 

added value as a result of choosing either CORBA or J2EE: once a particular 

middleware is chosen, it will be extremely expensive to revert the choice and adopt a 

different middleware. As the middleware is responsible for realizing much of the 

non-functionality, the choice is influenced by the non-functional requirements. 

Unfortunately, these requirements tend to be unstable and evolve over time. Hence, 

the choice has to maximize the value added upon accommodating the change in non-

functionality, such as the changes in the likely future load. Interested reader may 

refer to Chapter 6 for an example.   

 

Third, classical financial valuation techniques, such as Discounted Cash Flow (DCF) 

analysis and Net Present Value (NPV) (see Appendix C for a brief background), fall 

short in dealing with flexibility and uncertainty [Schwartz and Trigeorgis 2000]. The 

main problem with these techniques is that they are best valid when valuing an 

ongoing business or an immediate investment. However, in the case of valuing the 

stability of software architectures in the face of evolutionary changes, the nature of 

the investment is long-term and strategic. For example, assume that an investment in 

an architecture appears to be unattractive, as it would have a negative NPV in the 

first instance: unless the enterprise makes the initial investment, subsequent 

generations or other applications will not even be feasible. The value of the 

investment, thus, may derive not only from the direct measurable cash flows of the 

investment, but also from the ability of an architecture to unlock future growth 

opportunities (e.g. case of reuse, exploring new markets, expanding the range of 

services while leaving the architecture intact).  

 

4.3 The ArchOptions Approach: Valuing Architectural 
Stability with a Real Options Analogy 
 

In subsequent sections, we describe a real options-based approach for evaluating 

architectural stability using an analogy with Black and Scholes [1973] options theory. 
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We describe the approach. We present the analogy. We formulate and interpret the 

ArchOptions model. We report on its sensitivity and on its possible uses. We discuss 

valuation issues and assumptions under ArchOptions.  

 

The Approach 

We assume that the software architecture’s goal is to guide the system’s evolution. 

We view evolving software as a value-seeking and value-maximizing activity: 

software evolution is a process in which software is undergoing a change (an 

incremental) and seeking value [Bahsoon and Emmercih, 2004b]. We attribute the 

value to the flexibility of the architecture in responding to the change(s). In this 

perspective, we rely on intuition in relating flexibility to stability: flexibility is a 

strategic resource that is built-in or adapted into the architecture with the aim of 

facilitating future growth and evolution with the objective of creating value. For 

example, upon reengineering an architecture to facilitate future changes, the 

reengineering activity aims at adapting further flexibility into the architecture of the 

software system. The reengineering exercise may lead to a “more” flexible structure 

with different value potentials, as depicted in Figure 4.1. The investment in 

reengineering may create future value. This is because reengineering adapts 

flexibility into the architecture making it more adaptable than the original version. 

The realized value may span several dimensions including savings in the future 

maintenance effort. The value may be realized only if some future changes need to be 

accommodated on the system of the given architecture. The more valuable the 

adapted flexibility is in responding to future changes, the more successful the 

software evolution is likely to be. Consequently, the better the potentials are for 

maintaining architectural stability. However, in case of an existing architecture with 

built-in flexibility, the embedded flexibility could be unutilized but may translate 

into value upon exercising the flexibility as the inevitable change(s) in requirements 

materializes. Hence, stability is a result of the success (failure) of the flexibility 

resource in responding to the change(s).  
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Figure 4.1. Reengineering leading to a “more” flexible structure with different 
architectural and value potentials upon accommodating some likely change 
in requirements.  

 

 

We claim that stable software architectures add to the software system and to the 

enterprise owing the architecture a value. The added value is attributed to flexibility 

and the options that flexibility creates over the evolutionary periods of the software 

system. The added value under the stability context is strategic in essence and may 

not be immediate. It takes the form of (i) accumulated savings through enduring the 

change without “breaking” the architecture; (ii) shortened time-to-market through 

rapid adaptation of new features or requirements and henceforth preserving the 

competitive position of the enterprise; (iii) savings and opportunities due to reuse; 

(iv) enhancing the opportunities for strategic “growth” (e.g. regarding an 

architecture as an asset and instantiating the asset to support new market products); 

and (v) giving the enterprise a competitive advantage by activating the stable 

architecture like any other capitalized asset. 

 

In this context, the flexibility of an architecture to endure changes in stakeholders’ 

requirements and the environment has a value that can assist in predicting the 
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stability of software architectures. More specifically, flexibility adds to the 

architecture values in the form of real options that give the right but not a symmetric 

obligation to evolve the software system and enhance the opportunities for strategic 

growth by making future follow-on investments (e.g., case of reuse, exploring new 

markets, expanding the range of services, etc.). In software systems, the change in 

requirements is a major source of uncertainty that confronts the architecture during 

its lifetime. As flexibility has a value under uncertainty, the value of these options 

lies in the enhanced flexibility to cope with uncertainty. The importance of the idea 

cannot be overemphasized: it gives the architect an ability to reason about a crucial 

but previously intangible source of value and to employ it in the evaluation of 

architectural stability.  

 

We contribute to an approach for evaluating the stability of software architectures 

with real options theory. As we have mentioned in an earlier chapter, approaches to 

evaluating software architectures for stability can be retrospective or predictive 

[Jazayeri, 2002]. We contribute to a predictive approach, where we use value-based 

reasoning to prediction (real options theory). We examine critical likely changes in 

requirements and value the extent to which the architecture is flexible in enduring 

these changes. These changes could be of functional or non-functional nature.   

 

We derive a predictive model from [Black and Scholes 1973] financial options theory. 

The model is referred to as ArchOptions. ArchOptions builds on a simple and 

intuitive analogy with Black and Scholes [1973]. ArchOptions looks at investment in 

a particular architecture as upfront investment plus future investments in likely 

future change(s) in requirements. However, these changes are uncertain, as the 

demand for the change(s) is uncertain. Uncertainty attributed to the change and its 

likelihood is one of the major reasons, which justify the use of real options theory. 

For a likely change in requirements, the model constructs a call option to value the 

flexibility of the architecture to accommodate the change, as a way to make the value 

of stability tangible. Recall, a call option gives the right to acquire an asset of 

uncertain future value for the exercise price. Accommodating the change, thus, is 

analogous to buying an “architectural potential” (i.e., an option on an asset) with 

uncertain future value paying an exercise price. The exercise price corresponds to the 
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cost of accommodating the change on the system of the given architecture. The value 

of the call option, whether in-the-money or out-of-the-money, is a measure of the 

architecture flexibility in accommodating change. This value is an indicative measure 

of the “architectural potential” in unlocking future growth opportunities (e.g., case of 

reuse, new market products), enhancing the upside potentials of the architecture, 

generating value (e.g., savings in maintenance), or incurring losses (e.g., case of a 

disruptive changes), as a consequence of accommodating the change. The value of 

the call is a powerful heuristic, which can provide a basis for analyzing many 

architecture-centric evolution problems, which place considerable emphasis on the 

flexibility of the architecture as a way for easing software evolution. For example, the 

value can provide insights into the economics of flexibility, the inflexibility, and the 

over-flexibility of the architecture relative to the change. The value of the calls can 

have extensive uses as highlighted in Section 4.3.  

 

As the values of the calls are correlated with the extent to which an architecture is 

flexible, whether this flexibility is embedded or adapted, the search for a potentially 

stable architecture requires finding an architecture or an associated artifact, which 

maximizes the yield in the calls relative to some critical changes.  
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Figure 4.2. The model looks at an investment in an architecture as an upfront 
investment plus increments of future investments in some likely changes in 
requirements. 

 

 

In brief, the approach considers the architecture as the appropriate level of 

abstraction at which to think about strategic investment decisions, guide the 

evolution of the software system, and analyze the evolution value, costs, and 

investment opportunities. The approach builds on a sound theory in financial 

engineering to provide “insights” into architectural stability, investment decisions 

related to the evolution of software architectures, and a basis for analysis for many 

architecture-centric  evolution problems, with desired stability requirements.  
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Black and Scholes Options Pricing  
 

In this section, we provide background information on Black and Scholes [1973] 

options pricing method that is necessary to understand the analogy detailed in the 

next  Sections. 

  

Black and Scholes [1973] is the best-known financial option pricing method (the 

seminal work in the field); the method is a solution to a stochastic calculus problem. 

Under the Black and Scholes model, five parameters are needed to determine the 

option price, as depicted in Figure 4.3. These are the current stock price (S), the strike 

price (X), the time to expiration (T), the volatility of the stock price (σ), and the free-

risk interest rate(r). The price of the stock option is a function of the stochastic 

variables underlying the stock’s price and time. The strike price (X) is the price for 

which the holder may exercise a contract for the purchase/sale of the underlying 

stock; also referred to as the exercise price. The current stock price (S) if exercised at 

some time in the future, the payoff from a call option will be the amount by which 

the stock price exceeds the strike price. Call options, therefore, become more valuable 

as the stock price increase and less valuable as the strike price increases. The 

volatility of the stock price (σ) is a statistical measure of the stock price fluctuation 

over a specific period of time; it is a measure of how uncertain we are about the 

future of the stock price movements. The value of a call option on an asset depends 

on the value of the asset itself and the cost of exercising the option.  
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Figure 4.3. Five Parameters determining the value of call options [Erdogmus 
et al., 2002] 

 

 

The expected value of a European call option is given by E [max (St- X, 0)], where E 

denotes the expected value of a European call option and St  denotes  the stock price 

at time t. The European call option price, C, is the value discounted at the risk-free 

rate of interest. It calculates to equation (4.1). 

 

C = e –r (T-t) E [max (St- X, 0)]                (4.1) 

 

 

In a risk-neutral world, ln St has the following probability distribution given by (4.2), 

 

ln St ~ φ [ln S + (r-σ2/2)(T-t), σ(T-t)1/2 ]     (4.2) 

 

where φ [m, s] denotes a normal distribution with mean m, and standard deviation S. 

Evaluating the right-hand side of (4.1)- in application of integral calculus- results in 

Black and Scholes valuation of a European call option. 
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C = S N (d1) – Xe –r (T-t) N (d2)        (4.3) 

  

where,  

                  d1 = ln(S/X) + (r +σ2/2)(T-t) 

           σ(T-t) ½ 

          

                  d2 = ln(S/X) + (r -σ2/2)(T-t)   =  d1  -σ(T-t)1/2 

                                   σ(T-t) ½ 

 

N (x) is the cumulative probability distribution function for a standardized normal 

variable (i.e., it is the probability that such a variable will be less than x). Interested 

reader may refer to [Hull, 1997] for a more detailed derivation. 

 

The Analogy  
 

A major insight behind real options theory is that flexibility in real asset is analogous 

to financial options: investing in flexibility is said to be analogous to creating options 

on an asset and exercising such flexibility is seen as exercising options for buying. 

Having set the flexibility of the architecture in responding to likely changes in 

requirements as an option problem, the challenge becomes valuing such flexibility. 

We build on a simple and intuitive analogy with Black and Scholes [1973] to value 

the flexibility of the architecture to change. In this section, we formulate the 

ArchOptions model as expressed in (4.4) and explore in depth the analogy 

ArchOptions make with Black and Scholes. In the next sections, we interpret 

ArchOptions in the context of architectural stability and discuss related valuation 

issues and assumptions. 

 

Let us assume that the architecture potential of a given system is V. As the software 

evolves, a change in future requirement ii is assumed to buy xi% of the architectural 

potential with a follow-up investment cost of Cei, where Cei corresponds to an 

estimate of the likely cost to accommodate the change. This is similar to a call option 

to buy (xi%) of the base project, paying Cei as exercise price. The investment 
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opportunity in the system can be viewed as an upfront investment, denoted by VDev  

plus call options on future opportunities, where a future opportunity corresponds to 

the investment to accommodate some future requirement(s). The payoff of the 

constructed call option gives an indication of how valuable the flexibility of an 

architecture to endure likely changes in requirements. The value of an architecture 

with a given system materializes to ArchOptions expressed in (4.4) and accounting 

for VDev and both the expected value and exercise cost of accommodating likely 

changes in requirements ii, for i ≤ n.  ArchOptions is derived by mapping the 

economic characteristics of the architecture (under development or evolution) onto 

the parameters of the option model of (4.1) - as shown in Table 4.1. The economic 

characteristics include the development (evolution) effort, schedule, and budget. We 

assume that the risk-free interest rate is zero for the simplicity of exposition. We then 

pursue (4.2) and (4.3) to valuation which we explore in next sections.  

 

 

 

Figure 4.4. The ArchOptions model 
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Table 4.1. Financial/real options/ArchOptions analogy 
 

Option on stock Real option on 
a project 

ArchOptions 

Stock price(S) Value of the 
expected cash 
flows 

Value of the “architectural potential” in 
addressing a change in requirements(xiV) 

Exercise price(X) Investment cost Estimate of the likely cost to 
accommodate the change (Cei) 

Time-to-
expiration(T) 

Time until 
opportunity 
disappears 

Time indicating the decision to 
implement the change (T) 

Volatility(σ) Uncertainty of 
the project 
value 

“Fluctuation” in the return of value of xiV 
over a specified period of time (σ) 

Risk-free interest 
rate(r) 

Risk-free 
interest rate 

Risk-free interest rate relative to budget 
and schedule (r) 

 

 
Stock price = xiV 

In traditional applications, the real option analogy of stock price, S, corresponds to 

the value of the cash flows of the investment in a particular project. In ArchOptions, 

the S analogy corresponds to the value of the “architectural potential” in 

accommodating the change. In this context, we consider the architecture as a 

portfolio of assets (rather than a single asset). More specifically, we view the 

architecture as a portfolio of requirements. We argue that the value of the 

architecture is in the value of the requirements it supports during the software 

system operation or tend to support as it evolves. In ArchOptions, the nature of the 

change and the case determines the dimensions on which the value of the 

architectural potential is to be realized. Let us return to the motivating example we 

have highlighted in Section 4.2: the value of the architectural potential of inducing an 

architecture with J2EE and not CORBA (and vice versa) is a relative value. This value 

could span different dimensions including ease of future maintenance and relative 

savings in deployment and configuration of the software system, if we choose to go 

for J2EE and not a CORBA-induced architecture (and vice versa). This value is 

realized, if the likely change in future load materializes, necessitating scaling the 

system of the given architecture. Moreover, as we will see in Chapter 6, scalability is 

often measured by the throughput or the capacity of the system. Throughput is a 

generic performance criterion, which expresses the amount of work performed by 

the system during a unit of time.  This criterion is based on the observation that for a 
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fixed system with a given throughput, there is an inverse relationship between the 

response time and the number of clients. In other words, the more requests clients 

submit, the longer are the delays. The value potentials of inducing the architecture 

with either CORBA or J2EE in response to change in load can hence be measured 

relative to throughput. In case of reengineering or designing for change, as it is the 

case when restructuring or refactoring the architecture of a legacy system, the value 

added is determined by the architectural potential realized by reengineering the 

architecture versus not exercising the reengineering decision. Again, the realized 

value may span several dimensions, such as ease of future maintainability, 

extensibility, modularity, reusability, complexity, and efficiency. Alternatively, the 

architecture could “pull” options by responding to changes in the market conditions, 

either with minimal changes to the architecture, by leaving the architecture of the 

software system intact, and/or by adapting new features and requirements with 

shorter time-to-market and gaining a competitive opportunity. In this context, the 

architectural potential relative to the change could have potential market value. 

Product-line architectures fit under this category as it could be argued that 

instantiating from the core architecture a new product is a trend towards “planned” 

evolution in accommodating variability in requirements across products, while 

respecting existing commonality, eventually with shorter time-to-market to gain a 

competitive market opportunity.   

 

Exercise price = Cei 

The real option analogy of the exercise price corresponds to the investment cost in 

realizing the said change. The nature of the case determines the dimensions on which 

the cost needs to be assessed. Back to our motivating example, we can see that the 

cost of realizing a scalability change could differ from one version to another (i.e., the 

J2EE-induced or the CORBA-induced architecture) and with the architectural 

mechanism that is responsible in accommodating the change. Let us suppose that we 

take replication, as an architectural mechanism, to realize the load change. 

Obviously, the J2EE induced architecture has embedded options due to the built-in 

replication primitives. However, this flexibility comes with a cost, mostly on the 

licensing dimension. As for the CORBA induced architecture, the middleware needs 

to be modified and extra–functionalities need to implemented to realize scalability. 
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However, what is the exercise price that an enterprise need to pay if the system 

needs to scale to a high load in either structure? In general terms, the exercise price, 

corresponds to the cost of realizing scalability on each structure, given by Cei for 

requirement i. As the replicas may need to be run on different hosts, calculating Ce as 

a function of the number of hosts, can be given by:    

 

Cei = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh, Chardw)h,             (4.5) 

 

where, h corresponds to the number of hosts. Cdev, Cconfig, and Cdeploy, respectively 

corresponds to the cost of development(if any), configuration, and deployment for 

the replica on host h. Clicesh and Chardw respectively correspond to licenses and 

hardware costs, if any. All costs could be given in ($). Interested reader may refer to 

Chapter 6 for a detailed case study, where we show how these parameters are 

estimated on each structure. 

 

In case of reengineering an architecture to facilitate future changes, as it is the case of 

refactoring, the investment in reengineering may create future options. This is 

because refactoring adapts flexibility into the architecture, making it more adaptable 

to changes. The option is said to be exercised and benefits may be realized only if 

some future changes need to be implemented on the given structure. The enterprise 

still needs to pay a cost for implementing the change; however, this cost could be 

relatively less expensive than the unrefactored structure. The cost could be measured 

in terms of man-months and could be cast into a monetary value.  

 

Estimating cost is a well-researched field in software engineering; it is outside the 

scope of our work. In Chapter 5, we use well-established ways for estimating cost in 

software engineering, ranging from coarse-grained to fine-grained and parametric 

versus knowledge based.    
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Volatility = σ 

Volatility is a quantitative expression of risk. Volatility is often measured by 

standard deviation of the rate of return on an asset price S (i.e., xiV) over time. 

Unlike with financial options, in real options the volatility of the underlying asset’s 

value cannot be observed and must be estimated. During the evaluation of 

architectural stability, it is anticipated and even expected that stakeholders might 

undervalue or overvalue the architectural potential relative xiV to the change in 

requirement(s). In other words, stakeholders tend to be uncertain about such value. 

For example, back to the motivating example of  Section 4, suppose that the value of 

the architectural potential of inducing an architecture with J2EE and not CORBA (or 

perhaps vice versa) take the form of relative savings in development and 

configuration effort, if the future change in scalability need to be exercised on the 

induced structure: estimating such savings may vary from one architect to another 

within the firm. It differs with the architect’s experience, the novelty of the situation; 

consequently, it could be overvalued or undervalued.  The variation in the future 

savings, hence, determines the “cone of uncertainty” in the future value of the 

architectural potential for embarking on a J2EE-induced architecture relative to the 

CORBA one. Thus, it is reasonable to consider the uncertainty of the architectural 

potential to correspond to the volatility of the stock price. In short, the volatility σ 

tends to provide a measure of how uncertain the stakeholders are about the value of 

the architectural potential relative to change; it tends to measure fluctuation in the 

said value. In Chapter 5, we explore ways for estimating σ for our case.  

 

Risk-free interest rate = r 

The risk-free rate is a theoretical interest rate at which an investment may earn 

interest without incurring any risk. An increase in the risk-free interest rate leads to 

an increase in the value of the option. Finding the correspondence of this parameter 

is not straightforward, for the concept of interest in the architectural context does not 

hold strongly (as it is the case in the financial world) and is situation dependent. In 

our analogy, we set the risk-free interest rate to zero assuming that value of the 

architectural potential is not affected by factors that could lead to either earning or 

depreciation in interest. That is, the value of architectural potential today is that of 

the time of exercising the flexibility option. However, we note that it is still possible 



 

 82

for the analyst to account for this value, when applicable. For example, if the 

architectural platform is correlated in a way with the market, then the value of the 

architectural potential may increase or decrease with the market performance of the 

said platform. Similarly, suppose that development revolving around the said 

platform might be using external resources to maintain- such as, extra developers, 

money and/or tools borrowed from other projects- or might go beyond the assigned 

schedule and out of budget (which is the norm in software development), then the 

architecture is anticipated not to record any credits in interest, but rather a value 

deprecation. In these cases, the free-risk interest rate can be estimated relative to the 

budget and schedule.  

 

Exercise time = T 

The real option analogy of the exercise time (also referred to as time-to-expiration) 

corresponds to the time until the investment opportunity disappears. The time that 

the likely change(s) need to be exercised on the software system of the given 

architecture correspond to the time to expiration of the option. Back to the 

motivating example, the built-in replication primitives of J2EE continues to constitute 

an “unutilized” opportunity for future investment in scaling the software system to 

attain some future business benefits. Such an opportunity continues to hold until the 

enterprise wishes to scale up the software system, say as a result of a sudden increase 

in users, as it is the case of successful e-commerce systems. Alternatively, the time of 

exercising the options might correspond to a milestone in the enterprise strategic 

roadmap towards expansion of its services to new customer segments. The exercise 

time might also be coined with the lifespan of the general technologies on which the 

architecture is built (e.g., 20 years for databases, 10 years for middleware, and 2 years 

for user interface toolkits). That is, the change might be attributed to the “decay” or 

related “upgrades” in the exploited database, the underlying middleware, or the 

interface toolkits. Throughout the thesis, we use fictitious numbers for the exercise 

time.   
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Interpretation 

 

For a likely change in requirement k, we interpret (4.4): 

 

The option is in–the- money 

If xkV exceeds the exercise cost (i.e., E [max (xkV - Cek, 0)]>0), then the flexibility of 

the architecture relative to the change is likely to payoff if the change is exercised. 

This means that the architecture is said to be potentially stable with respect to k. 

The more the option is in the money, the more valuable is the embedded 

flexibility; hence, the better are the potentials for the architecture to be stable 

relative to the change. In real situations, the architect/analyst is interested in 

selecting an architecture that maximizes the yield in options relative to some 

likely changes. An optimal selection could be when the option value approaches 

the maximum, indicating an optimal payoff in an investment in flexibility. The 

analyst may perform sensitivity analysis and analyze when such a situation is 

likely to occur. Returning to our running example, as we will see in Chapter 6, 

upon calculating the call options for the change in scalability on the J2EE-induced 

architecture, S1, relative to that of the CORBA-induced architecture, S0, the 

options are said to be in-the-money for S1. In particular, ArchOptions shows that 

S1 is in the money relative to the development, configuration, and the 

deployment, if the change in scalability need to be exercised in one year time. It is 

worth pointing out that though S1 is flexible relative to the scalability change, it 

might not necessarily mean that it might be flexible with respect to other changes. 

Obviously, J2EE provide the primitives for scaling the software system, which 

result in making the architecture of the software system more flexible in 

accommodating the change in scalability, as when compared to the CORBA 

version. As we will see in Chapter 6, the structural analysis has completed the 

option analysis to verify the stability of S1 relative to the change and to quantify 

the impact of the change on the architecture. The intuition is that complementing 

the structural impact analysis with a value-based back-of-the-envelope 

calculation, the combination provides the architect/analyst with a useful tool for 

understanding the extent to which the software system tends to be flexible 

relative to a likely change in requirements, a cost/value indictors of the impact of 
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the change on the structure, the likely success (failure) of the software system 

evolution, and consequently the potential stability of the software architecture 

relative to the change. 

 

  

The option is out –of- money 

If the value of the call option sinks to zero (i.e., E [max (xkV - Cek, 0)]>0), then the 

flexibility of the architecture in response to the change is not likely to add a 

value. Two interpretations might be possible:  

 

(i) The architecture is overly flexible in the sense that its response to the 

change has not “pulled” the options. This implies that the embedded 

flexibility (or the resources invested in implementing flexibility) are wasted 

and unutilized to reveal the options relative to this change. In other words, 

the degree of flexibility provided is much more than the flexibility demanded 

for this change. This case has the prospect in providing an insight on how 

much do we need to invest in flexibility to achieve stability relative to the 

likely future changes, while not sacrificing much of the resources. In Chapter 

6, the refactoring case provides a good example to illustrate this. We will see 

that by refactoring the original structure, we have obtained a more flexible 

one that has better prospect of accommodating the change. Though S1 is 

flexible, refactoring has not “pulled” the options for one change. The 

refactored structure is reported to be out of the money for one change. This 

implies that the embedded flexibility (or the resources invested in 

implementing flexibility) is wasted and unutilized to reveal the options 

relative to one change. In other words, the degree of flexibility provided is 

much more than the flexibility demanded for this change. We have repeated 

the experiment, but stressing refactored structure with two, three, four, and 

then five average changes at a time. Using two average likely changes, the 

options reported zero values. Again, two likely average changes have not 

“pulled” the options. Interestingly, the refactored structure was just about to 

pull the options for three changes, as we will see in Chapter 6. For four, five, 

and nine changes, the structure has revealed the options.  
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(ii) The other case is when the architecture is inflexible relative to the change. 

This is when the cost of accommodating the change is much more than the 

cumulative expected value of the architecture responsiveness. Returning to 

our running example, as we will see in Chapter 6, calculating the options on 

the CORBA-induced architecture S0, relative to that of the J2EE-induced 

architecture S1, we can see that S0 is said to be out of the money for the 

scalability change. The CORBA version has not added value, relative to J2EE, 

as the cost of implementing the services responsible for realizing the change 

in scalability was relatively significant to “pull” the options. As we will see in 

Chapter 6, the structural analysis has completed the option analysis to verify 

the instability of S0 relative to the change in scalability. 

 

Valuation Issues and Assumptions  

In this subsection, we clarify some theoretical issues revolving around the valuation 

of ArchOptions(4.4) and on estimating its parameters. The options model (4.4) 

requires the estimation of several parameters. Most importantly are Cei, xiV, and σ 

which respectively correspond to exercise cost of implementing the ith change in the 

system of the given architecture, the value of the architectural potential  relative to 

the ith change, and the fluctuation of this value. Below, we briefly show how these 

parameters could be estimated. In Chapter 5, we provide in depth treatment to the 

estimation of the ArchOption’s parameters and inline with the proposed method. 

 

The derived ArchOtions model is a general real-options model; it could be valued 

using existing techniques to options valuation. We adopt model (4.3) of Black and 

Scholes to the valuation of the constructed call options. Alternatively, we could have 

cast the options model to use different options valuations (e.g., [Cox et al., 1979]). 

However, the application of [Black and Scholes, 1973] offers a closed and an easy-to-

compute solution, for it assumes that xiV is lognormaly distributed, not requiring xiV 

to be probability-adjusted for rise and drop in value, as when compared to [Cox et 

al., 1979]. We note that it remains an open challenge to strongly justify precise 

estimates for real options in software [Sullivan et al., 1999]. Following the argument 
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of [Sullivan et al., 2001], such models need not be perfect: what is essential is that 

they capture the most important terms; their assumptions and operation must be 

known and understood so that the analyst can evaluate their predictions. Experts 

may question our use of Black and Scholes [1973] to options valuation, as the 

satisfaction of the spanning condition may be doubtful. Real options may be valued 

similarly to financial options, though they are not traded [Schwartz and Trigeorgis 

2000]. For a change in requirements, the call E [max (xiV - Cei, 0)] (4.6) at expiration is 

valued using the above (4.2) and (4.3) of Black and Scholes and detailed as follows:  

 

 

E [max (xiV - Cei, 0)]               (4.6) 

 

 
C = xiV N (d1) – Ceie –r (T) N (d2) 

 

where, 

d1 = ln(xiV/Cei) + (r+σ2/2)(T) 

σ(T) ½ 

 

d2 = ln(xiV/ Cei) + (r-σ2/2)(T)   =  d1  -σ(T)1/2 

                                                          σ(T) ½ 

 

Finding a twin asset 

Real options valuation based on Black and Scholes pricing technique determines the 

value of an asset in question in span of the market value using a correlated twin asset 

[Schwartz and Trigeorgis 2000]. The twin asset is an asset that has the same risks as 

the asset in question will have when the investment has been completed [Schwartz 

and Trigeorgis 2000]. The intuition is that to understand the behavior of the asset in 

question, we can use a twin asset, also referred to as a replicated portfolio. The 

assumption is that under similar conditions the twin asset and the asset in question 

are interchangeable for all practical purposes and should be worth the same. That is, 

if we know how much the twin asset is worth in the present, we can then determine 

how much the option on the asset in question is worth in the present.  
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Software architectures, however, are (non-traded) real assets. Real options may be 

valued similarly to financial options, though they are not traded [Schwartz and 

Trigeorgis 2000]. To facilitate valuation using the principle of a twin asset, we 

consider the architecture as a portfolio of assets (rather than a single asset). More 

specifically, we view the architecture as a portfolio of requirements. In this context, 

we argue that the value of the architecture is in the value of the requirements it 

supports during the software system operation or tend to support as it evolves. This 

assumption facilitates valuing the architectural potential in supporting the change 

based on a similar experience. It can also help in calibrating the architectural 

potential in supporting the changes with the business or the market value, when 

available. Consequently, valuing the architectural potential to the change requires 

finding a twin asset with similar characteristics to the one at hand. We argue that 

reusing a past development experience such as previous design and its 

corresponding implementation to inform the valuation bear a resemblance to the 

concept of a twin asset. We also argue that much of the valuation effort in software 

engineering is based on person-months. Such valuation does implicitly hold market-

based data and is still done in relation with the market and based on similar 

experience. Back to our motivating example, in chapter 6, we can see that in valuing 

the architectural potential of the CORBA-induced version relative to that of J2EE, we 

have used a previous design and development experience, where the scalability 

change has been designed and implemented on a CORBA complaint middleware, 

TAO (refer to Chapter 6). In this context, we argue that our use for the design and the 

corresponding implementation of scalability on TAO as guidelines bears a 

resemblance to the concept of a twin asset, for we are reusing a past development 

experience to inform the valuation. In Chapter 6, we will also see how using 

published performance benchmarks to value the architectural potential, relative to 

likely changes in scalability requirements, resemble the twin asset.   

 

Estimating xiV 

In financial options, several proxies are available to predict the value of the financial 

asset - the most obvious proxy is simply the historical values of the asset. In real 

options, such proxies rarely exist and the analyst may need to rely on experience and 

judgment in her/his estimations [Schwartz and Trigeorgis, 2000]. Real options 
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valuation focuses on market value and uses the return on the twin asset as an input 

to the valuation of the asset in question. If the asset value is not directly observable, it 

is reasonable to use estimates of the revenues on the asset to estimate the market 

value [Schwartz and Trigeorgis, 2000].  

 

The architectural potential relative to the changes in requirement can be valued in 

terms of the directly observable cash flows linked to future operational benefits or 

the market value, making it easy to use the return on the twin asset to value the 

options. In many others cases, the architectural potential may not be directly 

observable through cash flows; the analyst(s) may then need to rely on experience for 

estimation. If the analyst relies on experience and judgment in her/his estimation, 

the estimates tend to be subjective but could make an implicit use of market 

information. However, back-of-the-envelope calculations, which are based on value 

estimates (rather than on market value), are yet informative [Sullivan et al., 2001]. 

 

As a compromise, we argue the valuation of xiV is a multi-perspective valuation 

problem. That is, valuing the architectural potential to the change necessarily 

requires a comprehensive solution that is flexible to incorporate multiple valuation 

techniques; some with subjective estimates and others based on market data, when 

available. The problem of how to guide valuation and introduce discipline in this 

setting, we term as the multiple perspectives valuation problem. To address this problem, 

Chapter 5 outlines a conceptual valuation points of view framework. The framework 

aims at capturing and valuing the flexibility of the architecture to the change from 

different perspectives. In Chapter 6, we exemplify the use of the framework for 

capturing the options from different perspectives.  

 

Estimating σ 

The volatility of the stock price (σ) is a statistical measure of the stock price 

fluctuation over a specific period of time; it is a measure of how uncertain we are 

about the future of the stock price movements. Schwartz and Trigeorgis [2000] 

describe three possible ways for calculating the volatility. The first way is to make an 

educated guess. One approach is to examine a range of estimates from say 30% to 

60% and guess which might be the most appropriate. A second approach is to gather 
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historical data on investment returns in the same or related industries. Another 

approach is to simulate. Projections of a project’s future cash flow, together with 

Monte Carlo simulation techniques, for example, can be used to synthesize a 

probability distribution for project returns and from this σ can be calculated.  

 

The application of Black and Scholes [1973] assumes that the stock option is a 

function of the stochastic variables underlying stock’s price and time. In 

ArchOptions, volatility stands for the “fluctuation” in the value of the estimated 

xiVs. Intuitively, it “aggregates” the “potential” values of the structure in response to 

the change(s). In Chapter 5, we explore ways for estimating volatility inline with the 

method. In some cases, we take modeling assumptions for volatility and based at the 

information at hand. In other cases, we assume that value (xiV) moves stochastically 

bounded to two extreme values: optimistic and pessimistic. This assumption appears 

to be plausible: (i) it tends to account for all possible values within the bound, 

yielding to a better approximation when opposed to an ad-hoc type of estimation; (ii) 

the value of an (evolvable) architecture changes over time; it tends to change in 

uncertain way due to changes in requirements. We estimate variation on these 

values, explained in Chapter 5. We use the standard deviation of the variation of the 

three xiVs estimates-the optimistic, likely, and pessimistic values, to calculate σ  and 

adhering with the real options principles to the valuation of  σ. 

 

Estimating Cei 

As we mentioned before, cost estimation is a well-researched component in software 

engineering; it is outside the scope of our work. For example, it is feasible to use 

existing metrics to cost estimation (e.g., COCOMO-II [Boehm et al., 1995]). This is 

due to the fact that a considerable part of the distributed applications 

implementation could be already available, when the architecture is defined, for 

example, during the Elaboration phase of the Unified Process. Another approach is 

to build on architectural level dependency analysis (e.g., [Stafford and Wolf, 2001]) 

research to extract cost estimates of accommodating ii, guided by some structural 

criteria.  
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Generally speaking, ArchOptions is flexible to incorporate either coarse-grained or 

fine-grained estimation of the cost of implementing the change in the model. 

Generally, two extreme routes can be pursued for estimating the cost of the change in 

software engineering: expert knowledge or parametric models to cost estimation. 

When expert knowledge is combined with parametric knowledge, more precise 

estimation are said to be realized. Note that the granularity of the estimation is 

dependent on the case and the information available for the evaluation. In the next 

Chapter, we sufficiently address how the cost could be estimated using parametric-

models and/or expert knowledge.  

 

Sensitivity Analysis 

Statistical questions on how the uncertainty of the input parameters propagates to 

the model output often require sensitivity analysis. The objective is to provide an 

understanding of how the model responds to changes in input parameters. For 

example, the estimated parameters may be subject to uncertainty: parameters values 

could have been overestimated or underestimated. Further, the estimated value may 

be liable to further adjustment to reflect the time value. We support the model with 

sensitivity analysis to increase the confidence in the model predictions and to 

provide a basis for “what-if” analyses. 

 

First derivative analysis is much used in the investment arena for analyzing the 

sensitivity of the value of a financial option to changes in the variables. Delta and 

Vega provide the investment analyst with a ready means to discover financial 

option’s sensitivity to changes in the estimated value of the underlying asset; and 

increases and decreases to the volatility of the underlying asset.  

 

Table 4.2 provides a summary of the sensitivity parameters, their financial 

explanation, mathematical formulation and the corresponding ArchOptions analogy. 
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Table 4.2. Sensitivity parameters and ArchOptions 
Parameter Financial Explanation ArchOptions Analogy Math-

formula 

Delta (∆) Option price rate of change 
w.r.t. the underlying asset (%) 

Option value rate of change 
w.r.t. xiV 

∂c 
∂(xiV) 

Vega (ν) Option price rate of change 
w.r.t. the volatility of the 
underlying asset (%) 

Option price rate of change 
w.r.t. σ (%) 

∂c 
∂σ 

 
 

The Delta (∆) of an option is defined as the rate of change of the option price with 

respect to the underlying asset. Suppose that the delta of a call option is 0.6. This 

means that when the underlying asset price changes by a small amount, the option 

price change by about 60% of that amount. Mathematically, delta is the partial 

derivative of the call price with respect to the underlying asset price given by ∆= 

∂C/∂S. In practice, volatilities may change over time. This means that the value of the 

option is liable to change because of the movement in volatility as well as because of 

changes in the asset price and the passage of time. The Vega (ν) of an option is the 

rate of change of the value of the option with respect to the volatility of the 

underlying asset. If Vega is high, the option value is very sensitive to small changes 

in volatility. If Vega is low, volatility changes have relatively little impact on the 

value of the option. 

 

4.4 Uses 
 

ArchOptions could provide a basis for analyzing many architecture-centric evolution 

problems, which place considerable emphasis on the flexibility of the architecture to 

ease software evolution. The model can provide insights into the economics of 

flexibility, the inflexibility, and the over-flexibility of the architecture and its 

associated artifacts relative to the change. In this context, the model intends at 

answering the following key question: how much worth is it “buying” flexibility to 

facilitate future changes and support the development (evolution) of potentially 

stable architectures? The model has the prospect of valuing the architectural 

flexibility to various types of changes. These could be functional or non-functional. 
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These changes could be preventive, adaptive, or perfective [IEEE Standard 610.12, 

1993], with the assumption that the architecture guides the evaluation. For example, 

preventive and perfective types of changes may aim at introducing further flexibility 

into the architecture of the software system or its associated artifacts. For these 

changes, the model provides the analyst/architect with a mean to value the 

worthiness of investing in an architectural design decisions, which adapts flexibility 

to facilitate future growth.  

 

ArchOptions may aim at providing the analyst/architect with insights into 

architectural stability and investment decisions related to the evolution of a software 

architecture. In ArchOptions, the value of the constructed calls are indicative 

measures of the “architectural potential” in unlocking future growth opportunities 

(e.g., case of reuse, new market products), enhancing the upside potentials of the 

architecture, generating value (e.g., savings in maintenance), or incurring loses (e.g., 

case of a disruptive changes), as a consequence of accommodating the change. The 

value of the calls may assist the analyst/architect in strategic “what if” analyses, to 

inform:   

 

 the worthiness of designing or reengineering the architecture for change;  

 the retiring and replacement decisions of either the architecture or its 

associated design artifacts;  

 the decisions of selecting an architecture, architectural style, middleware, 

and/or design with desired stability requirements;  

 the trade-off between the upfront cost of enabling the change on the 

architecture of the software system and the long-term future benefits as a 

result;  

 the compromise between the architectural “intactness” and the cost-

effectiveness of amending the architecture to accommodate the change; 

 the trade-offs between two or more candidate software architectures for 

stability and the value added; 
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 the strategic position of the enterprise- if the enterprise is highly centered on 

the software architecture (e.g., the case in web-based service providers 

companies); 

 and/or the success (failure) of evolution.  

 

Apart from the above architecture-centric evolution problems, it could be argued 

that the incremental software processes, such as the unified process, are also ways to 

structure the software’s evolution through prescribed steps [Jazayeri, 2000]. The 

assumption is that evolution is helped by the feedback gained from releases of the 

early increments. The construction of the first release of the system is only the first of 

many milestones in this evolution [Jazayeri, 2000]. In the context of applying 

ArchOptions, an iterative and intertwined phased development (process) is flexible 

to allow the change in requirements to be exercised at the end of each iteration 

(phase) to mitigate risks before proceeding to a next iteration (phase) and render a 

more stable architecture. For instance, under RUP, the Life-Cycle Architectural 

(LCA) milestone corresponds to the time where the detailed system objectives and 

scope are examined, the choice of the architecture is (re) considered, and the major 

risks are identified. Accordingly, the LCA could be the time where the options are 

constructed and their payoffs are predicted- if exercised at a time in the future. In the 

case of an iterative and intertwined development (evolution) process, the time to 

expiration corresponds to the estimated time to deploy a successful software 

generation. In the evolution context, a successful software generation is assumed to 

have the change in requirements accommodated by that time. 

 

In Chapter 6, we will explore how the ArchOptions model could be applied to reason 

about two architecture-centric approaches to evolution. These are (i) valuing the 

payoff of re-engineering the structure of the software system to facilitate future 

changes in requirements and (ii) informing the selection of a more stable 

middleware-induced software architecture, relative to future changes in scalability. 

In Chapter 7, we will highlight some possible unexplored uses of the model to reason 

about the worthwhile of investing in restructuring of systems to support aspect-

orientation, with the objective of facilitating future maintainability and better 

stability.   
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ArchOptions could benefit from tool support. The envisioned tool may automate the 

model, provide basis for estimating its input parameters, and tailor the output based 

on the objective of applying the model. The tool may automate or provide a support 

for much of the activities to be discussed in Chapter 5. The tool may combine 

spreadsheet capabilities to computation and visualization of the results with mining 

of software repositories for storing, maintaining, and analyzing project’s versions 

and potential twin assets.      

 

      

4.5 Related Work 
 

In this subsection, we provide a quick overview of closely related research on the use 

of real options in software design and engineering. The use of real options has taken 

two forms: (i) quantifying investments in software in relation to the market and (ii) 

understanding the nature, role, and value in options with the objective of linking 

structural design and engineering to value. The latter category aims at addressing 

core issues in design and engineering of software by linking technical engineering 

issues to value creation. We scope the review on this category, as our use of real 

options theory fits under it.  

 

Economics approaches to software design appeal to the concept of static Net Present 

Value (NPV) as a mechanism for estimating value [Boehm and Sullivan, 2000]. These 

techniques, however, are not readily suitable for strategic reasoning of software 

development as they fail to account for flexibility [Boehm and Sullivan, 2000; 

Erdogmus et al., 1999]. The use of strategic flexibility to value software design 

decisions has been explored in, for example, [Erdogmus and Vandergraff, 1999; 

Erdogmus and Favaro, 2002; Erdogmus 2000; Sullivan; 1996; Sullivan et al., 1999; 

Sullivan 2001] and real options theory has been adopted to value the strategic 

flexibility:  

 

Baldwin and Clark [1993; 2001] pioneered the use of real options in systems design 

and engineering. They were the first to study the flexibility created by modularity in 

design of components (of computer hardware systems) connected through standard 
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interfaces. Their theory accounts for the influence of modularity on the evolution of 

computer system designs and the structure of the industry that creates them. In 

particular, Baldwin and Clark’s theory is based on the idea that modularity (in 

computer systems) adds value in the form of real options. They consider that 

modularity in design multiplies and decentralizes real options that increase the value 

of a design. A monolithic system can be replaced only as a whole. That is, there is 

only one option to replace, and exercising it requires that both the good and the bad 

parts of the new system be accepted. In a sense, the designer has one option on a 

portfolio of assets. A key result in modern finance, however, shows that all else 

remaining equal, a portfolio of options is worth more than an option on a portfolio. 

In contrast, in ArchOptions consider the architecture as portfolio of options, where 

the options are held on the architectural potential in supporting the change in 

requirements.   

 

Baldwin and Clark’s method has two main components, the Design Structure Matrix 

(DSM) and the Net Option Value formula (NOV). DSM represents the design of a 

system by a structure matrix, providing an intuitive, qualitative framework for 

design. Example of a DSM is depicted in Figure 4.5. The rows and columns of a DSM 

are labeled by the design parameters. A dependency between two design parameters 

is represented by a mark (X). A mark in row B, column A means that an efficacious 

choice for B depends on the choice for A. NOV quantifies the consequences of a 

particular design, thus permitting a precise comparison of differing designs of the 

same system. NOV reasons about the value added to a base system by modularity 

upon applying a modular operator. Module operators include substitution, which 

substitute a modular with an alternative, augmentation, which adds a module to a 

system, exclusion, which removes a module, inversion, which standardizes a common 

design element, and porting, which transports a module for use in another system. 

The NOV model answers the following key question: “How much is it worth to be 

able to substitute, augment, exclude, invert, or port modules?” For example, the 

NOV for quantifying the options added as a result of substitution uses the following 

reasoning: A module creates an opportunity to invest in k experiments to (a) create 

candidate replacements, (b) each at a cost related to the complexity of the module, 

and, (c) if any of the results are better than the existing choice, to substitute in the 

best of them, (d) at a cost that related to the visibility of the module to other modules 
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in the system. Baldwin and Clark acknowledge that designing modularizations is not 

free; but, once done, the costs are amortized over future evolution. The NOV model 

ignores those costs, though accounting for them is important.  

 
 

 
Figure 4.5. Example of a Design Structure Matrix (DSM) [Baldwin and Clark, 
2001] 

 

Sullivan et al. [1996; 1999; 2001] pioneered the use of real options in software 

engineering. Sullivan et al. [1996; 1999] suggested that real options analysis can 

provide insights concerning modularity, phased projects structures, delaying of 

decisions and other dynamic software design strategies. Sullivan et al. [1999] outline 

an options-based interpretation of the spiral-model for software development. 

Sullivan et al. [1999] view that the spiral-model provides flexibility in at least two 

important dimensions. First, it imposes a phased structure on a project, where the 

goal of each phase is to reduce a key uncertainty facing the project, with decisions 

about whether or how to invest in subsequent phases based on information from 

earlier phases. Second, within each phase it stresses the development of alternatives, 

creating an option to pick the most promising one. In context of real options, Sullivan 

et al. appeal to the use of options to defer decisions to invest until optimal to do so 

[Dixit and Pindyck, 1994; Madj and Pindyck, 1987; Myers, 1977] and option to 

explore from a development alternative mainly for mitigating risks upon selecting a 

risky asset [Stulz, 1982].   

 

Sullivan et al. [1999] approach to options pricing uses events trees. They note that the 

first step for software engineering is to understand the nature and role of options. 

They added that the next step is to develop option models. Sullivan et al. [1999] 

address the first step. In contrast, our work covers both steps: we seek an 

understanding for the architectural stability problem from an options perspective 

(see Chapter 6). We develop a model that complements such an understanding.  

Sullivan et al. [1999] formalized that option-based analysis, focusing in particular on 

the flexibility to delay decision making.  In particular, they addressed the timing of 
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design decisions, where they discussed the role of options in decisions about time-to-

market under threat of competitive entry, and the engineering tradeoffs that are 

appropriate in such circumstances.  In contrast, ArchOptions is concerned about the 

growth options an architecture can provide in the face of uncertainty attributed to 

change.  

 

Sullivan et al. [2001] extended Baldwin and Clark’s theory [2001] that is developed to 

account for the influence of modularity on the evolution of the computer 

industry(sufficiently described above). Sullivan et al. [2001] use the model developed 

in [Baldwin and Clark, 2001] to treat the evolvability of software design using the 

value of strategic flexibility. Specifically, they argued that the structure and value of 

modularity in software design creates value in the form of real options. A module 

creates an option to invest in a search for a superior replacement and to replace the 

currently selected module with the best alternative discovered, or to keep the current 

one if it is still the best choice. The value of such an option is the value that could be 

realized by the optimal experiment-and-replace policy. Knowing this value can help 

a designer to reason about both investment in modularity and how much to spend 

searching for alternatives. Sullivan et al. [2001] apply Baldwin and Clark’s 

substitution NOV model to compute quantitative values of the two modularizations, 

using parameter values derived from information in the DSM’s combined with the 

judgments of a designer. The results are back-of-the-envelope predictions, not 

precise market valuations. Like in Baldwin and Clark, Sullivan et al.’s use of NOV 

ignores the costs of designing modularizations. They assume that once 

modularization is done, the costs are amortized over future evolution. Yet they 

acknowledge that accounting for the costs is important. In contrast, ArchOptions 

explicitly accounts for the cost of exercising the change on the structure of the 

system. It uses either parametric models or expert judgment for estimating the cost. 

When the cost, is an upfront cost for adapting flexibility into the system, 

ArchOptions adjusts the model to account for the upfront costs (see Chapter 6). 

 

Erdogums [1999] describes how strategic flexibility in software development, 

involving COTS components, can be valued using real options. They apply two 

quantitative valuation methods, NPV and real options, to the assessment of the 

COTS-centric software development projects. The objective is to investigate the 
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economic incentive of choosing COTS centric strategy in a project vis à vis the 

alternative, the custom development. Real options is employed to investigate the 

value of strategic flexibility inherent in COTS-centric development. The analysis 

concentrates on the impact of the risk embedded in the COTS product and the 

development time. The result shows that real options theory is preferred over NPV 

analysis, as NPV ignores the value of the flexibility in COTS-centric projects making 

it appear less attractive.   

Bergey et al. [2001] proposes the Options Analysis technique for Reengineering 

(OAR). OAR is a systematic, architecture-centric, decision-making method for 

identifying and mining software components within large, complex software 

systems. Mining involves rehabilitating parts of an old system for reuse. OAR 

identifies potentially relevant architectural components and analyzes the changes 

required to use them in a software product line or new software architecture. In 

essence, OAR provides a set of mining options along with estimates of the cost, 

effort, and risks associated with those options. OAR is motivated by the fact that 

existing components are often poorly structured and poorly documented and they 

differ in levels of granularity. There is no clear guidance on how to salvage 

components. OAR’s five activities identify potential components, estimate the 

mining cost, and evaluate the effort required to reuse legacy components. OAR 

reveals implicit stakeholder assumptions, constraints, and other major drivers that 

affect component mining, thereby giving managers insight into this complex task. 

OAR aims at making the decisions required to cost-effectively and efficiently mine 

legacy system components. 

 

An interesting use of real options theory is that of [Erdogums and Favaro, 2002]. 

Erdogmus and Favaro use real options to value the inherent flexibility in Extreme 

Programming (XP), where they have considered XP as a lightweight process that is 

well positioned to respond to change and future opportunities; hence, creating more 

value than a heavy-duty process that tends to freeze development decisions. They 

use real options to reason about one of the most widely publicized principles of XP, 

the You Aren’t Going to Need It principle (YAGNI). The YAGNI principle highlights 

the value of delaying an investment decision in the face of uncertainty about the 

return on the investment. In the context of XP, this implies delaying the 
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implementation of fuzzy features until uncertainty about their value is resolved. 

YAGNI is a typical example of option to delay. Erdogmus and Favaro observed that 

the delay option underlying the YAGNI scenario is much akin to a financial options. 

Their results reveal that under increasing future cost assumptions to the 

implementations of the features, waiting does not make economic sense. This is 

because delaying the implementation decision destroys value because the increase in 

the cost of change overtakes the benefit of the flexibility to make the implementation 

decision later. As a result, the longer we wait, the less value we create. When 

uncertainty is high or it is expected to be resolved over the long term, decisions 

about system features should be committed to as late as possible; otherwise, they 

should be committed to now. Finally, under a constant cost function, commitment 

should always be made later rather than sooner. Hence, Erdogmus and Favaro uses 

real options theory to reason about the option to delay implementing features in 

relation to XP.  In contrast, ArchOptions is concerned about the growth options an 

architecture can provide in the face of uncertainty attributed to change.  

 

Plausible improvements of the existing Cost Benefit Analysis Method (CBAM) 

[Kazman et al., 2001], sufficiently described in Chapter 2 of the thesis, include the 

adoption of real options theory to reason about the value of postponing an 

investment decisions in an architectural strategy. In the situation where many 

architectural strategies are considered, CBAM attempted to apply real options theory 

based upon the dependency structure of the strategies. For example, let AS2 and AS3 

be two architectural strategies, where AS2 is low-cost, low-benefit, and AS3 is high-

cost, high benefit. Analysis of the dependency structure may show, for example, that 

AS2 must be first be implemented, deferring the implementation of AS3. In other 

word, CBAM uses real options theory to calculate the value of option to defer or delay 

the investment into an architectural strategy (i.e. the options to defer the investment 

until more information will be available).   

 

As we have noticed from the above overview on related work, work on real options 

has mainly focused on two types of options. These are the options to explore and 

options to delay. The objective is to reason about core issues in software and design in 

relation to timing as a way for treating uncertainty. In contrast, we have looked at a 

special category of options, which is referred to as growth options. As we mentioned 
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before, growth options are often embedded in platform-based applications. We use 

real options to predict architectural stability in the face of likely evolutionary changes 

in requirements. We value flexibility of the architecture to expand in the face of these 

changes; henceforth, what we value are the created growth options. For likely 

evolutionary change(s), we construct call options to value the flexibility of the 

architecture to accommodate the change(s). The value of the constructed calls are 

indicators of the ability of an architecture to unlock future growth opportunities and 

enhance the upside potentials of the architecture. Knowing this value can assist in 

predicting architectural stability. 

 
It is worth noting that the use of economic models to assess the cost and value of 

software requirements have been explored, for example, in [Karlsson et al., 1997; 

Karlsson and Ryan, 1997; Sivzattian and Nuseibeh, 2001]. 

 

Karlsson and Ryan [1997] use a cost-value approach for prioritizing requirements. 

Karlsson and Ryan defined requirements value as the ability of a requirement to 

contribute to the customer satisfaction with the overall system, when successfully 

implemented. A requirement’s cost is an estimate of the additional cost required to 

meet that requirements alone. By relating requirements value to its cost, stakeholders 

have a measure of that requirement’s ability to contribute to customer satisfaction. 

Different stakeholders apply a ratio scale of intensity for pair-wise comparisons to 

assess the relative value/cost of candidate requirements. Analytical Hierarchy 

Process (AHP) [Saaty, 1980] is used to calculate each candidate requirement’s relative 

value and cost of implementation. These are then plotted on a cost-value diagram 

that serves as a conceptual map for analyses, discussion, and prioritization.  

 

Sivzattian and Nuseibeh [2001] propose a market-driven approach to supplement the 

prioritization and selection of requirements. Sivzattian and Nuseibeh argued that 

portfolio-based reasoning is well suited to inform the objective selection of 

requirements as it makes the connection between the selection decision and the 

market explicit. Unlike Karlsson and Ryan’s approach, Sivzattian and Nuseibeh 

focus on the market value of the requirement and ignore the cost of corresponding 

implementation on the system, which is often crucial and must be considered in the 

prioritization process.  
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In contrast, in ArchOptions, the value is in the architectural potential in supporting a 

change in requirements. The cost corresponds to the cost of accommodating the 

change on the architecture of the software system and analogous to the cost of 

exercising an options. Karlsson and Ryan [1997] acknowledge that assessment of 

value and cost of implementation are based on decision makers’ “experience and 

judgment that this could be supplemented by other methods”.  In our assessment, 

this could lead to a variation in possible value ascribed to the architecture in 

supporting the change. The volatility parameter of ArchOptions provides a closed 

solution for modeling such variation.  

 
 

4.6 Summary 
 

We have pursued an economics-driven approach to address the requirements for 

evaluating architectural stability. We have motivated the use of real options theory 

and have devised a real option model, referred to as ArchOptions, as a solution. We 

have described the approach taken, which is based on a simple and intuitive analogy 

with Black and Scholes[1973] options theory. We have reported on ArchOptions 

formulation, its possible interpretation, and its sensitivity. We have discussed 

valuation issues and assumptions under ArchOptions. We have highlighted possible 

uses of ArchOptions in analyzing many architecture-centric evolution problems. We 

have provided an overview of closely related work on the use of real options is 

software engineering.   
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Chapter 5 
 
 
A Method for Applying ArchOptions  
 

 

In the previous chapter, we have presented the ArchOptions model for predicting 

architectural stability. In this chapter, we support the model with a three-phase 

method for evaluating architectural stability. According to [Brinkkemper,1996], a 

software engineering method is “is an approach to perform a system development project, 

based on a specific way of thinking, consisting of directions and rules, structured in a 

systematic way in development activities with corresponding development products”. The 

method, which this Chapter describes, provides such directions and rules for 

applying the ArchOptions model by describing possible ways for estimating the 

model parameters. We describe phases for conducting an architectural evaluation for 

stability using ArchOptions. We discuss issues related to conducting these phases, as 

it was realized in its application (Chapter 6).  

 

The method is structured in three phases. Figures 5.1 and 5.2 depict an overview of 

the method phases. In the first phase, the method assists in eliciting the likely 

changes in requirements. The method pursues scenarios to describe the likely future 

changes in requirements that are critical to the evaluation. In reality, a scenario could 

be further refined to correspond to one or more further changes that may need to be 

realized or could impact the architecture of the software system. To link the likely 

future change in the requirement to the architectural artifacts, Goal-Oriented 

Requirements Engineering (GORE) paradigm (e.g., [Dardenne et al., 1993; Anton, 

1996]) could be adopted. The objectives are (i) to provide a paradigm, which traces 

the change in the requirement, exemplified by the scenario, into the architecture  and 
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(ii) to analyze changes that are necessary to be made to accommodate the change,  so 

we can quantify the flexibility of the software system in responding to the change. 

 

In the second phase, we use a multi-perspective valuation points of view framework 

for valuing the flexibility of an architecture to change. The valuation using 

ArchOptions requires a comprehensive solution that incorporates multiple valuation 

techniques, some with subjective estimates, and others based on market data, when 

available. The solution shall be comprehensive enough to account for the economic 

ramifications of the change, its “global” impact on the architecture, and on other 

architectural qualities. We refer to the problem of how to guide the estimation in this 

setting as a multiple perspectives valuation problem. We describe the problem from a 

value-based software engineering perspective. To introduce discipline into this 

setting and capture the value from different perspectives, we use valuation points of 

view (e.g., market, structural, behavioral...) as a solution. The solution aims to 

promote comprehensiveness in accounting for the “global” impact of the change on 

one or more architectural quality. The solution also aims to promote flexibility 

through incorporating both subjective estimates and/or explicit market value, when 

available. For every valuation point of view, we construct call options for the given 

change. We estimate the cost of accommodating the change. This cost corresponds to 

the exercise price. We value the architectural potential in accommodating the change. 

The value of the architectural potential may take the form of future savings in 

maintainability, possible revenues due to the support of new services, new market 

products, and so forth. At the end of the second phase, the major inputs of the 

ArchOptions model would have been identified. In the third phase, we interpret the 

call values relative to the set evaluation objective. 
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Figure 5.1.  Phase I of the method 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Phase I. Eliciting and tracing the change to the architecture 

 
Input: 

An architecture and objective for evaluation   
Process:  

a) Set the objectives for evaluating architectural stability, 
 E.g., valuing the cost-effectiveness of designing/re-engineering for change,  
                 software architecture trade-off analysis, etc.  
b) Elicit the changes {i1, i2, …, in} that are critical to the set objectives,  

Case of planned changes: 
E.g., Use technology roadmap and the roadmapping process to elicit the 
scenarios of planned changes 

Case of extreme changes:  
E.g., Use exploratory scenarios to check for extreme/unforeseen changes   

c) Relate the change to the architecture 
Identify goals from scenarios 

E.g., Use heuristics and guidelines suggested by [Anton, 1997] to identify 
the goals 

Trace the goals to the architecture  
For each goal,  

Refine the goal using knowledge of the solution domain until a 
trace is established with the associated architectural artifacts, 
which implement or said to be impacted by the change. 

 
Output:  

A systematic trace (structural) of the change in requirements to the associated 
architectural artifacts, which implement or said to be impacted by the change. 
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Figure 5.2.Phase II of the method 
 

Phase II. Valuing the flexibility of the architecture relative to the change  
 
Input: 

An architecture (and its associated artifacts); objective for evaluation; systematic 
trace (structural) of the change in requirements to the associated architectural 
artifacts  

 
Process: 
 
Using the valuation objectives, identify the valuation points of view  
 
     For every valuation point of view, P Do 
 
        Construct call options to value the architectural flexibility relative to the change:   
 

a) Calculate Cep: Estimate the cost of the architectural strategy, mechanisms, and/or 
the associated implementations, which realize the change- the cost corresponds to 
the exercise price 
 

E.g., Use expert knowledge to cost estimation Or Use parametric models to 
cost estimation (e.g., COCOMO II [Boehm et al., 1995]) Alternatively, 
Combine expert knowledge with parametric models. 

 
b) Using the valuation objectives, identify the value of the architectural potential to 
the change:  

 
I.     Calculate xiVp: Using the set objectives for valuation, value the 

        architectural potential to the change and relative to this point 
         of view: 

E.g., Limit the valuation to three: optimistic, likely, and 
pessimistic, or use valuation scenarios, etc. 
 

II. Calculate σp:  
E.g., Estimate the likely variation for the optimistic, likely, 
and pessimistic values or estimate the likely variation in 
valuation scenarios: 

            
Compute the standard deviation of the elicited variations.  
 
Alternatively, make a modeling assumption of σ or make 
an educated guess of σp. 

 
         Calculate the call options relative to change and the valuation points of view 
 
Output: 

 Call options relative to the valuation point of view:  
Cases where the call options:  in-the-money and/or out-of-the-money   
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Figure 5.3. Phase III of the method 
 

 
 
5.1 Phase I. Eliciting and Tracing the Change to the 
Architecture 
 

Step I-a. Setting the objectives for evaluating architectural stability 

 

For this step, the application of ArchOptions entails identifying the objectives that 

the stability evaluation needs to address. In the previous Chapter, we have 

highlighted several uses of the ArchOptions model for addressing some 

representative architecture-centric evolution problems. The objective for conducting 

an evaluation for architectural stability is often tailored to the said problem.  

 

Understanding what drives the evaluation is essential for: 

 

(i) identifying changes that are critical for analyzing the said objectives, which 

will be explored in this phase; 

(ii) identifying both the value of the architectural potential relative to the change 

and the valuation dimension(s) on which the architectural potential need to 

be assessed, which will be explored in phase II; and  

(iii) interpreting the valuation results relative to the said objectives, which will be 

explored in Phase III.  

 

 

Below are possible drivers for initiating the evaluation for architectural stability.   

Phase III. Interpretations and Recommendations 

   Input:  
Call options relative to the valuation point of view:  

Cases where the Call options: in-the-money and/or out-of-the-money 
Process:  

Interpret the results and give recommendations relative to the set objectives  
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− Valuing the cost-effectiveness of designing/re-engineering for the change. Valuing the 

worthiness of reengineering or designing the architecture of the given software 

system to facilitate future changes in requirements, 

  

− Architectural risk assessment. Risks could be due to the problematic architectural 

decisions. These decisions may lack the flexibility in dealing with the likely 

future changes in requirements. The evaluation may aim to identify the types of 

change(s) for which the software architecture is likely to be inflexible and likely 

to exhibit future threats on the stability of the architecture of the software system,  

 

- Software architecture trade-off. Compare two or more candidate architectures and 

select the more resilient candidate to the likely critical changes in requirements.   

 

Step I-b. Eliciting the changes {i1, i2, …, in} 

 

In this step, we identify likely changes, which are critical to the evaluation and to the 

set objectives. A question of interest is: how can we elicit or predict the change? 

Before we proceed in explaining the process, we define what a change is. We then 

identify two categories of changes: these are anticipated and extreme changes. We 

provide some tips from the literature for eliciting these changes. 

 

Definition and nature of change  
 

Change is a process that either introduces new requirements into an existing system; 

modifies the system if the requirements were not correctly implemented; or moves 

the system into a new operating environment [Yau et al., 1978; Bennett and Rajlich 

2000].  Changes of requirements can be perfective, adaptive, preventive, or corrective 

[Bennett and Rajlich 2000]. A perfective change involves enhancing, extending, or 

adding/deleting the functionality of an existing system. An adaptive change requires 

revising requirements to properly adapt to new operating environment such as 

integration of a system with new hardware, peripherals, etc. A preventive change 

occurs when requirements are revisited to improve future maintainability, reliability, 

and portability or to provide a basis for future enhancements. This might include 
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redesigning and restructuring for requirements to rationalize system services, 

optimize, modularize, or create reusable components. A corrective change emerges 

as inadequacies, incompleteness, contradictions, ambiguities, noises, or over 

specification in requirements are encountered.  

 

In software engineering, it has been known that focusing the change on program 

code leads to loss of structure and maintainability [Bennett and Rajlich, 2000]. Upon 

managing the change of requirements considerable emphasis is thus placed on the 

architecture of the software system as the key artifact involved [Garlan, 2000]. 

Managing the change is a process which involves recognizing the change through 

continued requirements elicitation, requirements evaluation of risk, and evaluation 

of systems in their operational environments [Nuseibeh and Easterbrook, 2000]. 

Identifying and documenting possible future changes is important in order to 

manage software evolution [Lehman, 1998] and evaluate architectural choices 

[Nuseibeh and Easterbrook, 2000]. Eliciting and dealing with the change in 

requirements, however, is still one of the major research challenges facing the 

requirements engineering community [Finkelstein and Kramer, 2000]. Some 

evolutionary changes could be planned. By planned evolutionary changes, we refer 

to changes that belong to a defined (or a semi-defined) roadmap that the system 

needs to accommodate in the future as part of its staged-evolution. However, other 

changes are unforeseen. These changes are likely to surprise the architecture as the 

change materializes. Below, we identify possible routes that an architect/analyst may 

pursue for eliciting the likely change in requirements.  

 

Eliciting Planned Changes 
 
Using Technology Roadmapping  
 

Technology roadmapping is an effective technology planning tool which help 

identifying product needs, map them into technology alternatives, and develop 

project plans to ensure that the required technologies will be available when needed 

[Schaller, 1999]. Technology roadmapping, as a practice, emerged from industry as a 

practical method of planning for new technology and product requirements. 

According to [Schaller, 1999], a roadmap is not a prediction of future breakthroughs 
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in the technology, but rather an articulation of requirements to support future 

technical needs. A roadmap assumes a given future and provides a framework 

toward realizing it. Often, a roadmap is part of the business and/or the product 

strategy towards growth and evolution. Muller [2002] indicates that the roadmap 

creation process has three phases. In the first phase, a meeting is conducted to share 

vision on the market; and explore possible products as an answer to the market, the 

technology status, and the people. In the second phase, the target is obtaining a 

shared vision on the desired technology roadmap and analyzing a few scenarios for 

products, technologies, people, and process. In the third phase, a shared roadmap is 

created. Garcia and Bray [1997] mention an extra phase in the process, which is the 

follow-up activity. For this phase, all key decision makers involved are to critique, 

validate and accept the roadmap. An implementation plan has to be developed. This 

plan has to be routinely reviewed and updated. The process is a joint effort of 

different stakeholders, providing an opportunity for sharing information and 

perspectives. Stakeholders could be the business manager, the marketing manager, 

the technology manager, the operational manager, and the developer team including 

the architect(s), the requirements engineers(s), etc. 

 

Figure 5.3 is a product roadmapping of Company x, a mobile service provider. 

Figure 5.3 shows how the mobile services are said to evolve as we transit from 2G to 

3G networking. As the bandwidth is improved, an emerging number of content-

based services, ranging from voice, multi-media, data, and location-based services 

might be possible. This, in turn, will translate into future requirements (functional 

and non-functional), which need to be planned in advance so it can be 

accommodated by the architecture responsible for delivering the services. Note that 

many of the likely changes in the requirements are often derived from the 

roadmapping process, rather than the roadmap itself. 

 

As an example, M-banking is a service, which allows customers to check bank 

balances, view statements, and carry bank transactions using mobile phones. A 

distributed architecture of a banking system, which envisions providing such a 

service as the bandwidth is improved, may need to anticipate changes due to 

mobility like changes in security requirements, load, availability, etc.  The architect 
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may then need to anticipate relevant change scenarios and ways of accommodating 

them on the architecture of the software system. 

   

E.g., M-banking availability:  

(Requirements) Loss of connectivity is the norm in mobility. The M-banking 

service shall be available 99% of the time,   

(Architecture) New caching mechanisms are then required.  

 

Product-line architectures are systematic approaches for managing the change and 

guiding the evolution of a software system. This is achieved through anticipating the 

major evolutionary milestones in the development of the product, capturing the 

properties that remain constant through the evolution and documenting the 

variability points from which different family members may be created. The 

approach gives a structure to the product’s evolution and possibly rules out some 

unplanned evolutions, if the architecture is respected [Jazayeri, 2000].  Product-line 

analysis, for example, can benefit from technology roadmapping to anticipate future 

requirements, and likely future product variations (which may include combinations 

of features not supported in current products). 
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Source: http://www.3g-generation.com/ 

 
Figure 5.3. Company’s x technology road mapping showing the evolution of 
its mobile services as it moves from 2G to 3G and its value to the end user 

 
 

Companies (for example, in the new communication industries) plan and envision 

possible paths for “perfecting” their services and offering, as the rapid advances in 

the technology or the infrastructure enabling these enhancements materialize. This is 

necessary for catching up with the market, generating wealth, and improving the 

value of what is offered to the end users. Moreover, these companies are investing 

part of their resources in envisioning the future of the stakeholders’ requirements 

and the environment, the evolution of technology and its supporting infrastructure. 

This is apparent through the related investments in research and development, the 

increasing number of personnel recruited in technology roadmapping, and aligning 

the company’s future performance with its ability to execute the set roadmap. 

 

Change scenarios and change cases
 
 
The change may be exemplified using change scenario or change cases. The use of 

change scenarios in the analysis of software architecture has been demonstrated in a 

variety of evaluation methods and across a wide range of domains. In particular, 

change scenarios have been used in the Architecture Tradeoff Analysis Method 

(ATAM) [Kazman et al., 1996], the Software Architecture Analysis Method (SAAM) 
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[Kazman et al., 1994], the Attribute-Based Architectural Styles (ABAS) [Klein et al., 

1999], the Cost Benefit Analysis Method (CBAM) [Kazman et al., 2001] and the 

Software Performance Engineering (SPE) [Smith 1990; Smith and Williams, 2002].  

 

Scenarios could illustrate the kinds of activities that the system must support. They 

could also illustrate the kinds of changes that the client anticipates and that will be 

made to the system. In developing these scenarios, it is crucial to capture all the 

major uses of the system, and the qualities that a system must satisfy now and in the 

foreseeable future. Thus, scenarios represent tasks relevant to different roles, such as 

end users, customers, marketing specialists, system administrators, maintainers, and 

developers. The scenarios elicitation process by itself is a brainstorming exercise. It 

allows stakeholders to contribute to scenarios, in a criticism-free environment, that 

reflect their concerns and understanding of how the architecture will accommodate 

their needs. A single scenario may have implications for many stakeholders: for a 

modification, one stakeholder may be concerned with the difficulty of a change and 

its performance impact, while another may be interested in how the change will 

affect the integrability of the architecture.  

 

A scenario in ArchOptions, like other architectural evaluation methods, is a brief 

description of some anticipated or desired use of a system. The architecture may 

directly support that scenario, meaning that the anticipated use requires no 

modifications to the architecture for the scenario to be accommodated. This would 

usually be determined by demonstrating how the existing architecture would behave 

in performing the scenario. Note that such scenarios could correspond to 

requirements previously addressed in the design process; hence, not “surprising” the 

architecture. Such scenarios may increase our understanding of the architecture, 

allowing systematic investigation of other architectural qualities such as performance 

and reliability.   

 

ArchOptions is more concerned with scenarios that require changes to the 

architecture. Growth scenarios represent ways in which the architecture is expected to 

accommodate growth and change in the moderate near term. These may include 
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expected modifications, changes in performance or availability, porting to other 

platforms, integration with other software, and so forth. Growth scenarios provide a 

way to show the strength and the weakness of the architecture with respect to 

anticipated changes. 

 

If the scenario requires modification to the architecture; these changes could be 

related to how one or more components perform an assigned activity; the addition of 

a component to perform some activity; the addition of a relation between existing 

components; the removal of a component or a relation; a change to an interface; or a 

combination of these. These types of scenarios are often referred to as indirect 

scenarios. An indirect scenario is a one that requires a modification to the architecture 

to be satisfied. Indirect scenarios are central to the measurement of the degree to 

which an architecture can accommodate evolutionary changes. The cumulative 

impact of indirect scenarios on an architecture measures its suitability for ongoing 

use throughout the lifetime of the family of related systems. Directed scenarios are 

similar to use cases in UML notation and indirect scenarios are sometimes known as 

change cases. 

 

Note Use cases of the Unified Modeling Language (UML) may provide an alternative 

for representing the change. For example, we may build on use cases to integrate 

both time and “variability” information. The overall outcome may “visualize” the 

change and facilitate communicating it to the concerned parties. 

 

Dealing with the extreme changes 

 
If changes can be predicted, then they can be anticipated in the design. The hard 

problem, thus, is coping with extreme changes. As for this category of changes, we 

acknowledge the fact that there are no silver bullets for precisely and efficiently 

eliciting these changes, their variation over the lifetime of the software system, and 

their likelihood. We rely on exploratory scenarios [Kazman et al., 1996] for predicting 

classes of possible changes. Exploratory scenarios exemplify “dramatic” changes, 

which if they occur, may stress and surprise the architecture of the software system. 

These changes may take the form of extreme growth that are likely to “stress” the 
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system, such as  dramatic changes in scalability, performance, availability 

requirements, and major changes in non-functional requirements. 

 
Exploratory scenarios attempt to find sensitivity points that appear to stress the 

architecture. The identification of these points helps assess the limits of the 

architecture, hence optimizing the chances of surfacing the architectural decisions to 

risks. 

 

 
Step I-c. Trace the change to the architecture  

This step constitutes of the following activities: 

 

 

The output of the previous step is likely change(s) that need to be accommodated or 

could surprise the architecture. The changes are said to be exemplified using 

scenarios. In this step, we want to understand how the changes relate, are realized, or 

could impact the architecture of the software system. The objective is to quantify the 

cost of the change and value the architectural flexibility relative to the change, which 

we will explore in Phase II.  

 

A scenario could hold a rich description of the likely change(s) to the software 

system. A brief scenario, however, could be further refined to correspond to one or 

more further changes that may need to be realized or could impact the architecture 

of the software system. Note that ArchOptions is more concerned about how the goals 

of a given scenario are “operationalized” or could affect the architecture of the 

software system. The objectives are (i) to provide a paradigm, which traces the 

change in the requirement, exemplified by the scenario, into its architectural 

Identify goals from scenarios 

E.g., Use heuristics and guidelines suggested by [Anton, 1997] to identify 
the goals 

 
Trace the goals to the architecture  

Refine the goal using knowledge of the solution domain until a trace with 
the associated architectural artifacts, which implement or said to be 
impacted by the change, is established. 
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elements, and (ii) to quantify the flexibility of the software system in responding to 

the scenario exemplifying the change. Though existing architectural evaluation make 

use of scenarios, they lack the support for systematically analyzing and 

approximately tracking scenarios into the architecture of the software system. In 

existing architectural evaluation methods, the architect explains how relevant 

architectural decisions contribute to realizing a particular scenario. Ideally, this 

activity is dominated by the architect in explaining how the architecture generally 

addresses a particular scenario.  

 

One possible strategy for tracing the change in requirements to the architecture of the 

software system is to build on Goal-Oriented approaches to Requirements 

Engineering (GORE) [e.g., van Lamsweerde, 2000]. According to [van Lamsweerde, 

2000], goals are prescriptive statements of intent whose satisfaction requires the 

cooperation of agents (or active components) in the software and its environment. 

Goals may be organized in structures that capture how they are being refined or 

abstracted. Such structures form the skeleton of goal models: goals there range from 

high-level, strategic objectives to fine-grained, technical prescriptions that can be 

assigned as responsibilities of single agents. Goals may refer to functional concerns or 

quality attributes. A functional goal typically captures some maximal set of desired 

scenarios. A quality goal typically captures some preferred behaviors among those 

captured by functional goals. An appreciated feature of GORE models is their built-

in vertical traceability – from strategic business objectives to technical requirements 

to precise specifications to architectural design choices. The ability to capture 

multiple system versions within the same model through multiple paths of the goal 

graph (e.g., the system as-is, to-be, and likely-to-be-next) are helpful in case of tracing 

the high-level goals into the corresponding architectural elements.  

 

Briefly, our use of the goal-oriented approach is general. We adopt a goal-oriented 

approach to refine the requirements (e.g., [Dardenne et al., 1993; Anton, 1996]). We 

derive goals from scenarios (e.g., using some heuristics suggested in [Anton, 1997]). 

We then refine the goals using knowledge of the solution domain until a trace with 

the associated architectural artifacts, which implement or are said to be impacted by 

the change, is established. The process is fairly simple and involves following two 

major steps:  



 

 116

Identifying goals from scenarios 

 

We analyze the scenarios to identify goals that need to be met by the software 

system’s architecture. Goal analysis began by identifying goals in the scenarios 

[Anton, 1997]. Anton [1997] provides a methodology and heuristics for identifying 

goals from scenarios. Representative examples can be found in Table 5.1.  

 

Table 5.1. Some useful heuristics for identifying goals from scenarios – Anton [1997] 
  
No. Heuristic  
H1 Key action words such as: track, monitor, provide, supply, find out, know, avoid, 

ensure, keep, satisfy, complete, allocate, increase, speedup, improve, make, and 
achieve are useful for pointing to candidate goals 

H2 Action words that point to some state that is or can be achieved once the action is 
completed as candidates for goals. They are identified by considering each statement 
in the scenario by asking: Does this behavior or action denote a state that has been 
achieved, or a desired state to be achieved? If the answer is yes, then express the 
answer to these questions as goals, which represent a state that is desired or achieved 
within the system 

H3 An effective way to uncover hidden goals is to consider each action word and every 
description of behavior and persistent ask “why?” until all the goal have been 
“treated” and the analyst is confident that the rationale for each action is understood 
and expressed as a goal. The action words should be restated so that they denote a 
state that has been achieved or a desired state. 

H4 If a statement seems to guide decisions at various levels within the system or 
organization, express it as a goal  

H5 Stakeholders tend to express their requirements in terms of operations and actions 
rather than goals. Thus, when given an interview transcript, it is beneficial to trace 
action word strategy to extract goals from stakeholders’ descriptions  

H6 Customers tend to express their goals within the context of their application domain, 
not in terms of an existing or desired system. Analysts should first seek to understand 
the stakeholders’ application domain and goals before concentrating on the actual or 
the current system so that the system requirements may be adequately specified. 
 

 

We shall not go into much detail, as the process is intuitive and outside the scope of 

the thesis.  

 

Trace the goals to the architecture  

 
In this step, we refine the goals and identify the sub-goals. In the refinement process, 

the goals are decomposed into more concrete subgoals, which correspond to richer 

and more tangible representation of the parent goals. In ArchOptions the refinement 

is done using guidance on how it could be operationalized by the architecture. In 
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more abstract terms, the guidance is given by the knowledge of the domain, vendor’s 

specification, related design and implementation experience, related design patterns, 

etc., and in association with the solution domain (e.g., the underlying middleware). 

Another objective of the refinement process is to make goals corresponding to the 

change as measurable as possible to quantify the costs and benefits associated with 

the change. The refinement of goals continues until they can relate the change to 

architectural components, strategies/mechanism (i.e., the architectural element that 

said to operationalize the change) and until we will be able to measure its 

corresponding impact on the architecture of the software system. 

 

The refinement process could result in: (i) identifying the architectural elements 

responsible for operationalizing the goals; or (ii) identifying architectural elements  

which might be impacted by the change. Note, treating goals which represent 

changes in a functional nature is obviously less demanding than goals of non-

functional nature, as the change is often localized in a set of architectural elements. 

Goals of a non-functional nature are more critical as they can have a global impact on 

the architecture.  

 

 

The goal refinement graph could capture relationships among goals using and 

AND/OR refinement links. AND refinement relates to goals that are satisfied when 

all its subgaols are satisfied. OR refinement relates to a goal which is sufficiently 

satisfied if at least one of its subgoals are satisfied. Note that different architectural 

mechanisms may operationalize a given goal, which may be captured in the 

AND/OR graph or by a general graph.  

 

Back to our running example, obviously the goal that could be extracted from the 

scenario narration is maintaining scalability. Figure 5.3 shows the goal-oriented graph 

refinement corresponding to the change in scalability. In Chapter 6, we will see that 

the refinement was guided by the knowledge of the domain (i.e.,  the middleware 

primitives); vendor’s specification, such as [Object Management Group, 1999-2000; 

Sun Microsystems Inc., 2002]; related design and implementation experience, mainly 

that of [Othman et al., 2001a; Othman et al., 2001b]. The scalability goal was refined 

into two major sub-goals: these are achieving load-balancing and fault tolerance on 
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the architecture of the software system. Note that different architectural mechanisms 

may operationalize the scalability goal and its corresponding refinements. As an 

operationalization choice, we use replication as way for achieving scalability. The 

reason is due to the fact that both CORBA and J2EE provide the primitives or 

guidelines for scaling a software system using replication.  We have relaxed the use 

of AND/OR representation as we are modeling the system as-is with one 

operationalization choice.   

 

Consider the Fault Tolerance sub-goal of Figure 5.3: the requirements for 

implementing Fault Tolerance and their CORBA architectural realization are 

depicted in Table 5.2. They are refined based on the CORBA fault tolerance 

specification of the OMG [Object Management Group, 1999]. Detailing the 

refinement and the operationalization of the goal can be found in Chapter 6 with the 

complete case study. 
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Figure  5.3.  The goal-oriented refinement for achieving scalability through 
replication 
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Table 5.2. The refinement of the fault tolerance subgoal (CORBA) 
 
Sub goals  Architectural 

Elements  
Description  

Property Manager Provide operations that set properties for 
object groups 

Object Group 
Manager 

provide operations that allow an application 
to exercise control over addition, removal, and 
obtaining the current reference and identifier 
locations of members of an object group 

Replication 
Management 

Generic Factory Issues requests for replicating objects (object 
groups), creating replicas (members of object 
groups), and unreplicating objects 

Fault detection The Fault detection component detects the 
presence of a fault in the system and generates 
a fault report 

Fault notification The fault notification component propagates 
fault reports to entities that have registered for 
such notifications 

Fault Management 

Fault analysis The fault analysis component analyses a 
(potentially large) number of related fault 
reports to generate a condensed diagnosed 
report 

Logging The Logging records the state and actions of a 
member of an object group in a log 

Logging and 
Recovery 
Management Recovery The Recovery Mechanism sets the state of a 

member, either after a fault when a backup 
member of an object group is promoted to the 
primary member, or alternatively when a new 
member is introduced into an object group 
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5.2 Phase II. Valuing the Flexibility of the Architecture 
to the Change  
 

The problem of valuing the flexibility of an architecture to likely changes in 

requirements needs a comprehensive solution that is flexible enough to incorporate 

multiple valuation techniques; some with subjective estimates and others based on 

market data, when available. This is because of the following reasons:  

 

First, the valuation activity is a human-centered activity. The participants in the 

valuation activity may include developers, architects, project mangers, market 

analysts, product analysts etc. Interviews, meetings, or surveys could be conducted 

to gather qualitative and quantitative costs and benefits information. The 

participants often rely on experience and subjective judgments in valuation. 

Describing the valuation as human-centered activity implies subjectivity and 

introduces different perspectives to the valuation problem. 

 

Second, the change may impact one or more architectural qualities, such as 

performance, maintainability, availability and so forth when need to be 

accommodated by the system of a given architecture.  For example, Chapter 6 

demonstrates a case where a change in scalability requirements affects both 

behavioral and structural qualities of an architecture. Linking the impact of the 

change to value, as a way for valuing flexibility, requires a valuation solution that is 

comprehensive enough to account for the economic ramifications of the change and 

its global impact on the architecture including how the change could affect one or 

more architectural qualities. The aim is to provide the architect/analyst with a 

comprehensive tool for understanding the extent to which the change can “ripple” to 

impact other qualities and its economic implications.  

 

 

Third, technically speaking, real options valuation uses twin asset to the valuation of 

the asset in question. If the twin asset is not directly observable, it is reasonable to 

use estimates of return on the asset in question to estimate value or market-calibrated 

value [Schwartz and Trigeorgis, 2000].  In some cases, the flexibility of the 

architecture to change in requirements can be valued in terms of directly observable 
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cash flows linked to future operational benefits or market value, making it easy to 

use the return to value the options. In other cases, the flexibility of an architecture to 

the change may not be directly observable through cash flows. Consequently, the 

analyst may then need to rely on experience for estimation. If the analyst relies on 

experience and judgment in his/her estimation, the estimates tend to be subjective 

but could make an implicit use of market information. Note that back-of-the-

envelope calculations, which are based on value estimates (rather than on market 

value), continue to be acceptable and revealing [Sullivan et al., 2001]. It is often the 

case that both market and subjective value estimates are available. That is, in real 

options, values are often estimated by inspecting a relevant experience or by using 

subjective estimates. Hence, this brings a need for a solution that comprises both 

value and accounts to the different perspectives to the valuation. 

 

Fourth, the valuation is relative to the evaluation objectives, set in Phase I and the 

primary drivers motivating the change. The drivers could be, for example, future 

cost savings, shorter time-to-market, entry to new markets, service enhancements, 

etc. It is often the case that there is more than one driver behind the change. This 

necessitates a valuation solution that is flexible enough to capture the value relative 

to the said drivers. 

 

As a compromise, the problem of valuing the flexibility of an architecture to a likely 

change necessarily requires a comprehensive solution that is flexible enough to 

capture the options from different perspectives and to incorporate multiple valuation 

techniques; some with subjective estimates and others based on market data, when 

available. The problem of how to guide valuation and introduce discipline in this 

setting, we term as the multiple perspectives valuation problem. To address this problem, 

we outline a conceptual valuation points of view framework. The framework aims to 

capture and value the flexibility of the architecture to change from different points of 

views. A point of view, P, is a perspective used by an analyst/architect to assess the 

architectural potential to the change. The perspective could be either technically 

related (e.g., structural such as development, configuration, deployment; behavioral 

such as performance, availability, reliability etc.), market-related (e.g., market 

potential of a product), and/or related to the organization business objectives. 

Therefore, the corresponding value of an architectural potential to a change may be 
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relative to the market, to one or more technical dimension of the system, or to the 

organization, as sketched in Figure 5.4. The purpose is to reach a comprehensive 

value of options from different perspectives. In addition, the aim is to promote 

flexibility through incorporating both subjective estimates, which may implicitly use 

market information and/or explicit market value, when available. Furthermore, it 

remains an open challenge to strongly justify precise estimates for real options in 

software [Sullivan et al., 2000]. Part of the problem stems in the absence of 

frameworks that capture the options on the software from different perspectives. The 

outlined valuation point of view framework is promising to address these 

shortcomings.  

 

Steps II-b develops on how we can value an architectural potential to change relative 

to a point of view. We define and discuss two valuation points of view: these are 

technical and market valuation points of view.  

 

For a valuation point of view pj and a change i, the constructed call options could be 

re-expressed in (5.1), where xiVpj corresponds to the value of the architectural 

potential of the change relative to pj, with an exercise cost of Ceipj:.  

 

 

E [max (xiVpj - Ceipj, 0)]               (5.1) 
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Figure 5.4. Valuing the options using valuation points of view for changes {i1, 
i2,…, in} on architecture A 

 

 

In context of architectural stability, a potentially stable architecture has to maximize 

the value added relative to some valuation points of view. In Chapter 6, we will see 

how the decision of selecting an architecture which tends to be more accommodating 

for changes in scalability requirements has taken into account both the value added 

relative to two valuation points of views. These are maintainability (structural) and 

throughput (behavioral) (Section 6.3).  

 

Phase II constitutes the heart of the ArchOptions model. In this phase, we identify 

the valuation points of view on which the options will be computed.  For a valuation 

point of view pj: we analyze and list the changes that are necessary to be performed 

on the architecture. We estimate the cost of accommodating the change. This cost 

corresponds to the exercise price. We value the potential of the architecture to 

withstand the change. We analyze ways for computing the fluctuation in the 

estimated value. At the end of Phase II, the major inputs of the ArchOptions model  

would have been identified. These are xiVpj (i.e., Value of the “architectural potential” 

in supporting the change), σpj (i.e., the “fluctuation” in the return of value of xiVpj), 

Options? (Enhancement of QoS 
performance, availability, 
reliability, etc.)   
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and Cepj (i.e., the estimate of the likely cost to accommodate the change) and relative 

to the valuation point of view pj. Having these parameters, we can then construct 

calls to value the flexibility of the architecture to the change.  

 

The steps below constitute phase II, which we detail in the following subsections. 

 

Step II-a. Estimate Ceipj 
 
Estimate the cost of the architectural strategy, mechanisms, and/or the associated 
implementations, which realize the change- the cost corresponds to the exercise 
price 
 
Let us return to our running example: The cost of realizing scalability with the 

CORBA-induced architecture, translates to the cost of building a replication 

mechanism, responsible for realizing the changes in the scalability goal. In concrete 

terms, the cost materializes to the cost of implementing load balancing and fault 

tolerance services, configuration of these services, and deployment of the replicas 

running these services on hosts. These may translate into development cost (i.e., 

person-months), hardware, licensing costs (if any), etc. In abstract terms, the change 

materializes to an architectural strategy or mechanism responsible for realizing the 

said goal. Moreover, the change may affect the existing architectural components, 

connectors, and/or the underlying infrastructure requiring modification to the 

associated software artifacts. Generally speaking, ArchOptions is flexible to 

incorporate either coarse-grained or fine-grained cost estimation. Note that the 

ArchOptions model is complementary to expert estimation, where expert estimates 

of the change can be fed into our model.  To help experts come up with estimates 

that are more precise, they can inspect relevant effort, past projects, associated design 

patterns, and so forth.  Alternatively, techniques such as COCOMO II [Boehm et al., 

1995] may be used if the key predictors, such as size of the change can be reliably 

estimated. As with expert-based estimation, the estimates for change could be fed 

into the model. Note that by inspecting a previous valuation experience to satisfy the 

concept of “twin asset” and by identifying the key predictors to COCOMO II, we end 

up applying a “composite” approach to cost estimation. An approach which 

combines both expert knowledge and parametric estimation is said to be more 

precise than approaches which solely rely on either expert knowledge or parametric 

models to estimation [Briand and Wieczorek, 2002].  
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For example, Table 5.3 shows how the Fault Tolerance subgoal refinement relates to 

the JAVA classes implementing the change. Table 5.3 estimates that SLOC required 

to implement the change using an analogy with a previous development experience. 

Using the SLOC, we can then estimate the cost using models like COCOMO II 

[Boehm et al., 1995]. However, the real-world usefulness of models such as 

COCOMO II has been questioned for constant and unexplained calibration, which 

often leads to inaccuracy in the prediction. It could be also argued that in iterative 

development, when estimations are continuously recalibrated (e.g., in the Unified 

Process), it is possible to come up with estimations that are more accurate than 

COCOMO II, as they will take into account factors, such as the skills of the 

developers, the project maturity, and other organizational factors.             
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Table 5.3. Implementing the fault tolerance service on CORBA 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generally speaking, for estimating the exercise cost, three possible routes can be 

pursued:  

(i) Use expert knowledge to cost estimation, or 

(ii) use parametric models to cost estimation, or 

(iii) combine expert knowledge with parametric models for better estimation. 

Note that in [Briand and Wieczorek, 2002], the prediction accuracy of 

several cost estimation models has been reviewed. Examples include the 

Constructive Cost Model COCOMO [Boehm, 1980], Ordinary Least 

Squares (OLS) regression [Subramanian and Breslawski, 1993], and 

ANALOGY [Walkerden and Jeffery, 1999]. The review examines the 

File Name File 
Type 

SLOC Description 

CosFaultTolerance IDL 242 Interface description of remote 
methods  

PropertyManagerImpl Java 273 Implementation of the 
PropertyManager interface 

ObjectGroupManagerImpl Java 672 Implementation of the 
ObjectGroupManager interface 

GenericFactoryImpl Java 523 Implementation of the 
GenericFactory interface 

ReplicationManagerImpl Java 865 Implementation of the 
ReplicationManager interface 

FaultNotifier Java 611 Implementation of the 
FaultNotifier interface 

ClientPolicy Java 155 Implementations of the 
RequestDurationPolicy interface 

ServerPolicy Java 61 Implementation of the 
HeartbeatEnabledPolicy 

FTPolicy Java 207 Implementation of the 
HeartbeatPolicy interface 

FaultDetector Java 149 Class defining the component 
illustrated above 

DefaultFaultAnalyzer Java 113 The default fault analyzer 
ReplicationManagerFaultAnalyzer Java 865 Replication Manager's fault 

analyzer 
FaultConsumer Java 200 Connect to the fault notifier 
PropertyValidator Java 29 Class providing static methods to 

validate properties 
MemberInfo Java 50 Structure that contains all 

member-specific information 
PropertyUtils Java 53 Provides some methods used to 

manipulate properties 
Operators Java 23 Class providing static methods 

related to operators 
ReplicationManagerServer Java 13 Class running the Replication 

Manager server 
FaultNotifierServer Java 13 Class running the Fault Notifier 

server 
Total 5117 
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results of several empirical studies done in the last fifteen years to 

evaluate the prediction effectiveness of the subject models. The result 

shows that the estimation using these models could be improved if their 

parameters are adjusted using expert knowledge.  

 

Expert knowledge to cost estimation  

Expert knowledge, also referred to as non-model based estimation methods, 

consists of one or more estimation techniques together with a specification on 

how to apply them in a certain context. These methods do not involve models 

but rely on direct estimation. Obviously, they require heavy involvements of 

experts, their previous experience, and judgment to generate an estimate of 

the cost for implementing the change. Using solely non-model based methods 

may lead to very inaccurate results.  Developers may tend to underestimate 

the time required to do small changes, yet they tend to overestimate the time 

for larger ones [Briand and Wieczorek, 2002]. Expert based techniques are 

typically best suited for projects that are not too different from the projects 

completed in the past.  The analyst may have developed an extensive 

experience in similar situations, which makes it easier to estimate. The main 

drawback, however, is the subjective and the non-transparent nature of the 

estimation process that make it harder to justify the estimates. Often it is 

difficult to find analysts with the appropriate experience in the application 

and the environment in which the change needs to be developed.  

 

Parametric models to cost estimation 

 Software development costs continue to increase and practitioners 

continually express their concerns over their inability to accurately predict 

the costs involved. As a result, the software engineering community has been 

concerned with the development of models that constructively explain the 

development life-cycle and predict the cost of developing a software product 

since the early 1960s. The field of software engineering cost models, however, 

has had its own pitfalls: the fast changing nature of software development 

has made it very difficult to develop parametric models that yield high 

accuracy for software development in all domains. Model-based or 
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parametric-based estimation is usually dependent on a number of inputs 

(e.g., a size estimate, cost factors) and outputs an effort point estimate or 

distribution.  

 

Throughout the thesis, we use COCOMO II [Boehm et al., 1995], as a 

parametric model to estimate cost. Appendix A provides the interested reader 

with a quick overview on COCOMO II.  

 

Step II-b. Estimate XiVpj 
 
Using the valuation objectives, identify the value of the architectural 
potential with respect to the change  
 
Upon the application of the model, the problem that the analyst/architect faces is 

that the cost is often tangible, but the value is hard to grasp. For example, refactoring 

a system of a given architecture incurs up-front design costs; but the value is so 

elusive and long-term. Part of the value may materialize if the refactoring exercise is 

planned so the structure can be utilized to create future value such as future savings 

in maintenance and regression testing. Such a value may span several dimensions 

such as ease of future maintainability, extensibility, modularity, reusability, 

complexity, and efficiency. Returning to our running example we have highlighted 

in Chapter 4, the value of the architectural potential of inducing an architecture with 

J2EE and not CORBA (and vice versa) is a relative value. The value could span 

different dimensions including ease of future maintenance and relative savings in 

deployment and configuration of the software system if we choose to go for J2EE and 

not a CORBA-induced architecture (and vice versa). This value is realized only if the 

change in future load materializes. Alternatively, the architectural potential could be 

valued in relation to the market, as it is the case with product line-architectures. For 

example, the architecture could “pull” the options by responding to changes in the 

market requirements, while leaving the architecture of the software system intact or 

by requiring minimal changes to the architecture. In many cases, the value crosscuts 

many dimensions ranging from market to technical leading to both technical and 

market benefits.   
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Hence, the valuation is relative to the evaluation objectives, set in Phase I and the 

primary business drivers motivating the change. The business driver could be for 

example, future cost savings, shorter time-to-market, entry to new markets, service 

enhancements, and so forth. In many cases, we consider that the right to claim future 

cost savings as a result of the architecture supporting the change is a value. In other 

cases, the value of the architectural potential is a consequence of an upfront 

investment to facilitate future changes, which in turn will create value. The payoff 

occurs in the future, contingent on uncertain future conditions. It is worth noting that 

valuing the architectural potential is case dependent and there is no generic off-the-

shelf solution to such valuation. The valuation activity is a human-centered activity. 

Ideally, the valuation is done in connection with the product, strategy, and/or the 

marketing team.  

 

We discuss how we can value an architectural potential to change relative to a point 

of view. We discuss two valuation points of view: these are technical and market 

valuation points of view.  

 

Valuation using technical point of view   
 

By using a technical point of view to assess the architectural potential to the change, we 

may aim at assessing the architectural potential of an architecture to the change 

relative to some structural or behavioural properties of the system of a given 

architecture. As an example of the structural properties, we may aim at assessing the 

expected savings (if-any) in development, configuration, and deployment efforts to 

be realised upon accommodating the change on the system of a given architecture. 

We may also be interested in assessing savings in licenses and hardware. For the 

behavioural properties, we may for example, aim at understanding the economics 

implication of the change on one or more architectural qualities such as performance, 

reliability, availability, and so forth. Chapter 6 provides an extensive example on 

how both structural and behavioural valuation points of view are used. In many 

other cases, the enterprise could focus the analysis on one technical dimension. For 

example, by using development point of view to assess the architectural potential to the 

change, we may aim at understanding the savings in development effort (if any) to 

be realised upon accommodating the change on the system of a given architecture. 
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Therefore, the value of the architectural potential to the change could be realized in 

relation to one or more technical dimension. In fact, the choice of the dimensions is 

dependent on how the enterprise defines its value proposition. As a result, there is 

no generic off-the-shelf formula. A range of metrics can be used. Typical measures 

may include cost savings; risk and losses avoidance; increased productivity; 

reduction in personnel required for integration; reduction in time-to-market; savings 

in regression testing effort; and/or enumeration of short-term (e.g., quarterly cycle) 

and long-term (e.g., two-years or more) benefits and so forth. Our assumption here is 

that the resulting value is cast into monetary value.      

 

Valuing the architectural potential to the change requires finding a twin asset with 

the similar risk characteristic of the one at hand. We have argued that reusing a past 

development experience such as previous design and its corresponding 

implementation to inform the valuation bear a resemblance to the concept of a “twin 

asset” [Bahsoon et al., 2005; Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich 

2004b]. Note that much of the valuation in software engineering is based effort 

measured in person-months. Such valuation is based on similar experience and may 

hold similar risk characteristics to the case in hand. The valuation does implicitly 

hold market information as effort valuation if often priced relative to the market. 

Back to our motivating example, as we will see in Chapter 6, that in valuing the 

architectural potential of the CORBA-induced version relative to that of J2EE, we 

have used a previous design and development experience, where the scalability 

change has been designed and implemented on a CORBA compliant middleware, 

TAO (refer to Chapter 6). In this context, our use for the design and the 

corresponding implementation of scalability on TAO bears a resemblance to the 

concept of a “twin asset”, for we are reusing a past development experience to 

inform the valuation. To value the xiV of the J2EE induced-architecture, S1, relative to 

the CORBA induced-architecture, S0, in responding to the change in load, we take a 

technical point of view to valuation.  The valuation uses the expected savings (if-any) in 

development, configuration, and deployment efforts, when the change in load needs 

to be accommodated on S1 relative to S0, and respectively denoted as ∆S1/S0Cdev, ∆ 

S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative savings in licenses and hardware may also be 

considered and respectively denoted by ∆Clicesh, ∆Chardw. Below is a model for 
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calculating xiVS1/S0 relative to the change, expressed in cumulative savings for h 

hosts:  

 

 

Alternatively, the analyst/architect may break down the valuation relative to one 

point of view at a time. Table 6.11a of Chapter 6 provides an example on using the 

technical point of view and breakdowns of the calculations relative to a particular 

point of view as expressed below: 

 

 

  

 

 

 

 
In the refactoring case of Chapter 6, we restrict the valuation to one point of view, the 

development point of view. The objective is to value the improved architectural 

potential as a result of investing in a refactoring exercise.  The architectural potential 

was assessed relative to likely savings if twenty changes, ch, of adaptive nature may 

need to be accommodated on the refactored version.  

 

 
 
 
 
Valuation using the market point of view   
 

The value of the architectural potential could be realized in relation to the market or 

the enterprise business objectives. This is true when the change is driven by purely 

market needs: this could be in response to market differentiators, assimilating and 

exploiting new technologies, in response to changes in standards, customer 

xiVS1/S0 technical point of view = ∑ h=1…k  (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy, ∆ S1/S0 

Clicesh, ∆ S1/S0Chardw)h                 

xiVS1/S0 Development point of view = ∑ h=1…k  (∆S1/S0Cdev)h;            

 xiVS1/S0 Configuration  point of view = ∑ h=1…k  (∆ S1/S0Cconfig)h; 

xiVS1/S0 Deployment  point of view = ∑ h=1…k  (∆ S1/S0Cdeploy)h.       

xiVS1/S0 Deployment  point of view = ∑ ch=1…20  (∆ S1/S0Cdev)ch 
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demands, and market competition. By using a market point of view to valuation, we 

may aim at assessing the market potential of the architecture upon supporting the 

change leading to new products, new services, etc. The market point of view may 

provide an insight on the profitability of evolution and consequently the success 

(failure) of evolution relative to the market upon accommodating the change.  

 

The analysis may highlight the role of the architectural flexibility in instantiating 

from the core architecture new market products. This gives the analyst/architect a 

way to think about this flexibility as being tangible. The analysis may provide an 

answer to when the payback will be realized upon investing in the change.  

 

We have exemplified the use of the market valuation point of view to value the 

flexibility of a small product-line suite, xlinkit [www.systemwire.com], in 

responding to changes in the market requirements. The change is driven by a need to 

accommodate a new market standard. In summary, the xlinkit suite provides 

capabilities for checking the consistency of distributed and heterogeneous 

documents. xlinkit uses a built-in grammar-based Extensible Markup Language 

(XML) validation language, referred to as CliX, to the consistency checking and the 

validation of these documents. Being a grammar-based validation language, CliX has 

some limitations when validating complex documents, which are inconvenient and 

difficult to represent using grammar-based languages. Example of this category of 

documents is patterns of graph-structured data of scholarly research. Schematron 

[Jelliffe, 2000; Miloslav, 2000] is a unique grammar-free validation language that is 

suitable for validating this category of documents. The current xlinkit 

implementation does not support Schematron. As Schematron is undergoing ISO 

certification, Schematron is likely to become one of the most used XML validation 

languages in the market. For xlinkit, the support of Schematron is likely to enhance 

the product potentials for the capability of CLiX and Schematron are complementary. 

This is in turn may translate into long-term revenues for the enterprise due to likely 

penetration of new markets. We have shown how ArchOptions can value the 

flexibility of the core xlinkit architecture in integrating Schematron. The objective of 

the case is to exemplify the use of the valuation points of views framework. Upon 

valuation, we have appealed to the use of two valuation points of views: the 

maintenance and market valuation points of views. The analysis has shown a 
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possible way of using ArchOptions to provide insights into the likely success 

(failure) of the software evolution and its implication on the software system. The 

case has provided an idea on how ArchOptions can be employed to quantify the 

value of the architectural potential in supporting new market product while 

achieving a net benefit. The interested reader may refer to [Bahsoon and Emmerich, 

2005] for more details.  

 

Using the market point of view to value the architectural potential has some 

shortcomings  

Limited applicability. The only time where an architectural potential can be 

assigned a market value is when the resulting product due to introducing 
new feature can be sold, create market revenues, or be correlated with the 

market.  

The valuation is subject to manipulation and fairly subjective. This is because the 
valuation could be affected by variation in the market conditions such as 

supply and demand, market competition, contractual agreements etc. This 
often leads to subjectivity upon assigning a market value. 

 

A question of interest, however, how could we capture such value? In real options, 

values are often estimated by inspecting a previous relevant experience or by using 

subjective estimates. The participant in the valuation activities may include the 

developers, the architects, the project mangers, the market analysts, and other 

stakeholders. Interviews, meetings, or surveys are often conducted to gather benefit 

information. It is the norm that enterprises construct business cases for justifying the 

upfront investment in a particular architecture. In some cases, a business case may 

include some probable evolutionary milestones in the lifetime of the architecture, 

forecast of possible revenues, enumeration of some benefits, risks, and so forth. The 

business case may also include estimates of costs and valuation scenarios for 

probable payback upon realizing the evolutionary milestones, such as instantiating 

from the core architecture a new market product.  If this is the case, the use of 

valuation scenarios to capture the possible value of the architectural potential upon 

accommodating the change over a period of interest becomes feasible.  The scenario 
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valuation preserves the dynamisms entailed by the options approach and accounts 

for various possible and foreseen values.  

 

Figure 5.4, For example, depicts an extract from Company Y’s valuation of the 

probable payback upon instantiating from the core architecture a simplified new 

market product and in response to market requirements. The valuation uses five 

scenarios showing a likely payback value ranging from £-15,028(Scenario 3), 

£14,025(Scenario 1), £37,472(Scenario2), £40,472(Scenario 4), to £55,153(Scenario 5). 

Note that these values correspond to the present value: 

 

 xiVmarket point of view (scenario 1)  = £14,025;  

xiVmarket point of view (scenario2)  = £37,472; 

xiVmarket point of view (scenario 3)  = £-15,028;  

xiVmarket point of view (scenario4)  = £40,472; 

xiVmarket point of view (scenario 5)  = £55,153. 
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Figure 5.4. An extract from Company Y’s valuation of the probable payback upon 
instantiating from the core architecture a simplified new market product 
 

 

Another simplified solution would be using value estimates representing pessimistic, 

optimistic, and likely [Gilb, 1998] values of the architectural potential, over a specified 

period of interest. We demonstrate the use of such a solution in the evaluation 

section of the thesis.  

 

 

 

 

 

 

 

 

 

Business Case for PAML

Income
FTB Amex Bank EFG PAML1 Co-op

Licence $250,000 $243,000 $447,100 $250,000 £360,000
PS charge to customer $100,000 $50,000 $300,900 $100,000 £460,000
PS income after costs (cost = $59,500 assuming 100 man day deployment) $41,500 -$9,500 $241,400 $41,500 £400,500
Maintenance $54,000 $52,488 $96,574 $54,000 £77,760

% Income FTB Amex EFG PAML 1 Co-op

Product Marketing Licence 10.2% $25,500 $24,786 $45,604 $25,500 £36,720
PS 35.2% $14,608 -$3,344 $84,973 $14,608 £140,976
Corp-License 36.0% $90,000 $87,480 $160,956 $90,000 £129,600
Corp-Services 9.5% $3,943 -$903 $22,933 $3,943 £38,048
Corp-Maintenance 8.5% $4,590 $4,461 $8,209 $4,590 £6,610

TOTAL INCOME$ $138,641 $112,481 $322,675 $138,641
TOTAL INCOME£ £81,553 £66,165 £189,809 £81,553 £351,953

Expenditure

Goal total Man Days 848
Daily Internal Charge Rate £350

Total Expenditure £296,800

Income

Payback Scenario 1
FTB+AMEX £147,719
PAML1 £81,553
PAML2 £81,553
Total income £310,825 Profit = £14,025

Payback Scenario 2
FTB+AMEX £147,719
PAML1 £81,553
2 AMLE deals £105,000
Total income £334,272 Profit = £37,472

Payback Scenario 3
FTB+AMEX £147,719
PAML1 £81,553
1 AMLE deal £52,500
Total income £281,772 Profit = -£15,028

Payback Scenario 4
FTB+AMEX £147,719
EFG £189,809
Total income £337,527 Profit = £40,727

Payback Scenario 5
Co-op £351,953
Total income £351,953 Profit = £55,153
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Calculate σpj: 

 

 

In short, the volatility σpj tends to provide a measure of how the stakeholders are 

uncertain about the future value of the architectural potential relative to the change 

and relative to pj; it tends to measure a fluctuation in value. In financial options, 

practitioners often rely on historical data of investment returns to estimate the 

volatility of the stock price. This is feasible because the valuation is done in span of 

the market where high volume of historical data is available. Yet, this is not the case 

in valuing software. For example, the case of valuing the architectural potential to 

the change may hint that the uncertainty and the fluctuation in value are private to 

the given project. Further, such case often occur in low volumes, therefore getting 

valid data, treating them consistently, and dealing with the non-quantifiable effects 

makes the valuation and estimating volatility different from market-traded options. 

Hence, unlike financial options where richly traded-market information on values 

and uncertainty are available, it is hard to provide reliable and justified estimates of 

volatility in real options. Note that real options practitioners often rely on subjective 

opinion to estimate the volatility. In many cases, real options practitioners make 

simplified assumptions by either using modeling assumptions or making educated 

guess. For example, one approach is to examine a range of estimates from say 30% to 

60% and guess which might be the most appropriate. When the estimates are poorly 

justified, performing sensitivity analysis to verify the choice becomes essential.  

 

In modeling volatility, in some cases we adopt a simplistic solution to the problem. 

We use stakeholder judgment variation of the estimated xiVpj’s as a way for 

estimating volatility. The evaluation team is asked to record their judgment of 

possible variation, ± % var, of the previously estimated xiVpj’s.  A +%var corresponds 

to an anticipated percentage increase in the xiVpj. A -%var corresponds to an 

anticipated percentage decrease in the xiVpj. Possible %var values may be then 

 E.g., Estimate the likely variation in the optimistic, likely, and pessimistic value,  

          Alternatively, Estimate the likely variation in valuation scenarios, 

           Compute the standard deviation of the elicited variations  

Alternatively make a modeling assumption of σ OR make an educated guess of  σ 
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available for the optimistic, the pessimistic, and likely xiVpj’s respectively given by 

Optimistic xiVpj ± %varo, Likely xiVpj ± %varl, Pessimistic xiVpj ± %varp. In real options, σ  

calculates to the standard deviation of the rate of return on the asset. Intuitively, the 

%var is analogous to the rate of return on the architectural potential. Accordingly, we 

take the percentage of the standard deviation of the xiVpj variation estimates-the 

optimistic, likely, and pessimistic values to calculate σpj. 

 

Construct call options to calculate the option relative to this valuation point of 
view 
 

Having estimated the major parameters of the model, it is now possible to compute 

the call options using (5.2) and (5.3) on the architecture in supporting change i. As we 

have noticed, several estimates for Ceipj and xiVpj, ranging from optimistic to 

pessimistic or representing possible valuation scenarios, would have been computed 

at the end of the valuation and relevant to a valuation point of view Pj. Examples are 

depicted in Table 5.4. Based on the case and the evaluation objectives, the analyst 

may then compute optimistic, pessimistic, or likely options.   

 

Table 5.4. Example of estimated parameters at the end of the valuation 

Variable  Estimated Parameters 

Optimistic Ceipj 

Likely  Ceipj 

Ceipj 

Pessimistic Ceipj 

Optimistic xiVpj 

Likely xiVpj 

xiVpj 

Pessimistic xiVpj 

Optimistic xiVpj ± varo 

Likely xiVpj ±  varl 

σpj 

Pessimistic xiVpj ±  varp 
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For numerical examples, we refer the interested reader to Chapter 6, mainly to 

Sections 6.2.3, 6.2.4, 6.3.6.2, 6.3.6.3, and 6.3.7 where we show how (5.2) can be applied 

and how the relevant parameters could be estimated in the context of use.   

 
 

5.3 Phase III. Interpretations and Recommendations 
     

The final stage of the method is the evaluation and the interpretation of the results 

relative to the set objectives. The supporting method is open and flexible enough to 

address many evolution-related objectives. The method does not define rigorous or 

prescribed actions to follow. Although the steps are numbered suggesting linearity, 

this is not a strict waterfall process. There were be times when an analyst will return 

briefly to an earlier step; will jump forward to a later step; or will iterate among 

steps, as the need dictates. Furthermore, the analyst may amend the steps, based on 

the available information at hand, the case itself, and the set evaluation objective(s). 

Accordingly, the nature of the decisions due to the application of the model 

fundamentally varies with the nature of the problem, across projects, and 

organizations. As a result, such decisions are subject to the objective for which the 

model/method is applied. In chapter 6, we will explore how the computed options 

value (i.e., the options-in-the-money or the options-out-of-the-money) may be used 

to provide insights into architectural stability and investment decisions related to the 

E [max (xiVpj - Ceipj, 0)]               (5.2) 

 

 
C = xiVpj N (d1) – Ceipje –r (T) N (d2)        (5.3) 

  

where,  

                  d1 = ln(xiVpj / Ceipj) + (r +σpj 2/2)(T) 

             σpj (T) ½ 

          

                  d2 = ln(xiVpj / Ceipj) + (r-σpj 2/2)(T)   =  d1  -σpj (T)1/2 

                                        σpj (T) ½ 
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evolution of the software. In a nutshell, the recommendations are tailored to the set 

evaluation objective(s). The computed options values guide the recommendations. 

Below, we explore some dimensions that the recommendations may address: 

 

 Trade-off analysis. The evaluation may aim at comparing two or more 

architectures and select one, which is likely to be stable in the face of some 

probable critical future changes in requirements. In this context, the 

application of the model has to explore points where the candidate 

architectures is in-the-money or out-of-the-money to inform the trade-off 

analysis and steer subsequent recommendations. Interested reader may refer 

to the case of selecting a “more” stable induced-middleware architecture, 

presented in chapter 6, for an example.  

 

 The worthiness of reengineering or designing the architecture for change 

and its stability implications. The evaluation may aim at assessing the 

worthiness of investing in reengineering or designing the architecture for the 

change and its stability implications. In this context, the application of the 

model has to explore situations where investing in such an exercise may add 

a value to the software system and/or the enterprise owning the architecture. 

Again, the value of the computed calls provide the analyst with insights into 

when it might be cost-effective to invest in such an exercise, while not 

sacrificing the available resources. Accordingly, related recommendations on 

the cost-effectiveness of such an exercise, its long-term value, and its stability 

implications may follow. Interested reader may refer to the refactoring case of 

chapter 6, for an example.  

 

 Flexibility of the architecture relative to critical changes in requirements 

and its stability implications. The evaluation may aim at identifying critical 

change(s) for which the software architecture is likely to be inflexible. These 

changes may exhibit future threats on the stability of the architecture of the 

software system. In this context, the computed call options may provide 

insights into probable risks, technical risks or investment-related, that could 

confront the architecture during its lifetime. The risk could be attributed, for 

example, to the problematic architectural decisions, the limitations of the 
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existing infrastructure, and/or the inflexibility of the architectural style in 

accommodating the likely future critical change in requirements. 

  

 Others: Strategic “performance” of the architecture over time: Success 

(failure) of evolution. The evaluation may aim at examining the extent to 

which the architecture can support future growth and unlock future 

opportunities, such as extending the range of services while leaving the 

architecture intact, or instantiating from the core architecture new market 

products. In this context, the architecture is the appropriate level of 

abstraction at which to think of strategic software decisions and guide the 

evolution of the software system. The computed call options may provide an 

insight into the success (failure) of evolution and the “performance” of the 

architecture over time through sustaining evolution and generating value. 

Recall, software evolution need to seek and create value relative to the 

resources invested [Bahsoon and Emmerich, 2004b]. As such, the costs of 

evolving software should not outweigh the returns from the process to 

achieve a net benefit. The future net benefits are very much correlated to the 

extent to which the architecture can “pull” the options. When the call options 

are in-the-money, then this is a suitable measure for the “resilience” of the 

architecture to change and the success of evolution. When the call options are 

out-of-the-money, then this is indicative to either the over flexibility of the 

architecture (e.g., waste of recourses), unutilized flexibility, or inflexibility of 

the architecture while achieving its evolutionary milestones. Accordingly, the 

situation and the options results may steer subsequent strategic 

recommendations. 

  

5.4. Summary 
 

In this chapter, we have described a three-phase method for conducting an 

architectural evaluation for stability using ArchOptions. We have discussed issues 

related to conducting these steps, as it was realized in the application of 

ArchOptions. The method does not prescribe rigorous steps to follow upon using 

ArchOptions; it aims to discuss issues and provide ways for estimating the 

ArchOptions parameters.  



 

 142

We have provided guidelines on eliciting the likely changes in requirements and 

relating the change to architecture. For valuing the flexibility of an architecture to 

change, we have outlined a valuation points of view framework. The framework is 

flexible enough to account for the economic ramifications of the change on the 

structural (e.g., maintainability) and behavioral (e.g., throughput) qualities of an 

architecture and the associated business goals (i.e., market). The framework can 

incorporate multiple valuation techniques, some with subjective estimates, and 

others based on market data, when available. We have explored ways for estimating 

the ArchOptions parameters in the context of use.  

 

In chapter 6, we will explore cases that highlight possible application of the model 

and its supporting method.  
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Chapter 6  
 
 
Evaluation – Applying ArchOptions 
 
In previous chapters, we have described a model for predicting architectural 

stability. We have supported the model with a three-phase method. In this chapter, 

we report on our experience in using the model and its supporting method on two 

case studies. 

 

6.1 The Evaluation Method in Brief  
 

Case studies have been extensively used to empirically assess software engineering 

approaches [Maciaaszek and Liong, 2004]. When performed in real situations, case 

studies provide practical and empirical evidence that a method is appropriate to 

solve a particular class of problems. According to Dawson [Dawson et al., 2003], 

conducting controlled and repeatable experiments in software engineering is quite 

difficult, if not impossible to accomplish. This is mainly because the way software 

engineering methods are applied varies across different contexts and involve 

variables that cannot be fully controlled. Nonetheless, we consider that case studies 

are the most appropriate approach to evaluate “soft” methods like ArchOptions.  The 

DESMET methodology [Kitchenham et al., 1997] provides hints for guiding the 

evaluation of software engineering methods. The authors state that the first decision 

to make when undertaking a case study is to determine what the study aims to 

investigate and evaluate. For evaluating ArchOptions with case studies, we aim at 

evaluating the thesis in the large and in the small, as detailed below: 
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Evaluation of the thesis in the large aims at exploring the approach “fitness” in 

addressing representative architecture-centric evolution problems, with desired 

stability requirements. The evaluation aims at demonstrating the approach’s 

applicability, simulating the model’s application, evaluating the maturity of the 

model’s interpretations, and highlighting possible insights that could derive from the 

model’s application to said problems. In the first case study, we explore how 

ArchOptions can be used to assess the worthiness of re-engineering a “more” stable 

architecture in the face of likely future changes in future requirements. We take 

refactoring as a representative example of reengineering. In the second case study, 

we show how ArchOptions can inform the selection of a “more” stable middleware-

induced software architecture in the face of future changes in non-functional 

requirements, such as changes in scalability requirements. As part of the evaluation, 

we argue that ArchOptions is well suited to address these architecture-centric to 

evolution problems. 

 

Evaluation of the thesis in the small aims at extending the confidence in the 

following specific claims: 

  

− The uncertainty, attributed to the likelihood of change(s), makes real options 

theory superior to other valuation techniques, which fall short in dealing with the 

value of architectural flexibility under uncertainty. For some examples, we 

compare the options results to other valuation techniques.   

− The flexibility of an architecture in face of likely changes in requirements creates 

values in the form of real options.  

− The problem of finding a potentially stable architecture requires finding an 

architecture that maximizes the yield in the added value, relative to some likely 

future changes in requirements. If we assume that the added value is attributed 

to flexibility, the problem becomes maximizing the yield in the embedded or 

adapted flexibility in a software architecture relative to these changes.  

− The decision of selecting a potentially stable architecture has to maximize the 

value added relative to some valuation points of view: we demonstrate the use of 

the valuation points of view framework in capturing the options on an evolving 

architecture from different perspectives and informing the selection.   
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We use representative examples from the above-mentioned case studies to 

empirically extend the confidence in these claims. Though some of these examples 

are conducted in controlled environments, they are adequately representative of 

analysis and decisions taken in real small to medium scale projects.  

 

We evaluate ArchOptions on some qualitative characteristics including simplicity of 

use, prediction effectiveness, computation correctness, openness, and 

comprehensiveness. We reflect on ArchOptions strengths and limitations upon 

conducting the case studies.  

 

When sufficient information is available, we relate the conducted case studies steps 

to that of the method sketched in Chapter 5. Nevertheless, the case studies are 

structured in a way that could ease future replication.  

 

We discuss some observations and conclusions that have derived from the case 

studies. These could either relate to the application of the approach itself and/or 

reflect on the practical and proactive understanding of the architectural stability 

problem as observed when conducting these cases.  

 

6.2 Applying ArchOptions to Value the Payoff of 
Refactoring 
 

In this section, we use ArchOptions to value the payoff of investing in a refactoring 

exercise [Bahsoon and Emmerich, 2004a; Bahsoon and Emmerich, 2004b]. The 

valuation is based on a tradeoff between the upfront investment in refactoring and 

the future benefits, due to the enhanced structural flexibility resulting from this 

exercise.  

 

In subsequent sections, we motivate the need for valuing the payoff of refactoring 

using ArchOptions, in the absence of suitable models for such a valuation. We apply 

ArchOptions to a refactoring case study from the literature [Leitch and Stroulia, 

2003]. We discuss the rationale of the case study. We report on the results of the 

ArchOptions application. In more abstract terms, the case study shows how 
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ArchOptions can be applied to assess the worthiness of re-engineering to obtain a 

“more” flexible structure, which has better prospect in accommodating likely future 

changes in requirements. Research wise, the case demonstrates a novel application of 

real options theory to the valuation of the payoff of refactoring [Bahsoon and 

Emmerich, 2004b].    

 

6.2.1 Motivation 
  
As software is enhanced, modified, or adapted to new requirements, the software 

becomes more complex and drifts away from its original design. To reduce 

complexity, there is a need for techniques that incrementally improve the internal 

software quality. The research domain that addresses this problem is referred to as 

restructuring, or in the case of object-oriented and agile development, as refactoring 

[Mens and Tourwe, 2004]. In the context of software evolution, restructuring and 

refactoring are used to improve the quality of the software such as extensibility, 

modularity, reusability, complexity, and efficiency. Refactoring refers to the process 

of changing an (object-oriented) software system in such a way that it does not alter 

the external behavior of the code, yet improves its internal structure [Mens and 

Tourwe, 2004]. In refactoring, the key idea is to redistribute classes, variables, and 

methods across the class hierarchy in order to facilitate future adaptations and 

extensions. This in turn will result in a modified structure (compared to the original) 

with different qualitative measures and value potentials.  

 

Numerical measures can be used before refactoring, to measure the quality of 

software, or after the refactoring, to measure improvements of the quality. For 

example, Simon et al. [2001] use distance-based cohesion metrics to detect where in a 

given piece of software there is a need for refactoring. Kataoka et al. [2002] use 

coupling metrics to evaluate the effect of refactoring on maintainability. Coleman et 

al. [1994] use a polynomial of multiple measures to define a maintainability index by 

means of which the effect of refactoring can be evaluated. However, little work has 

been done on understanding the economics of refactoring. For example, when is it 

cost-effective to invest in a refactoring exercise? How can we value the payoff due to 

refactoring, prior to investing in such an exercise? How can we reason about this 

payoff in connection with changes in the structure and at correspondingly higher 
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level of abstractions than code? These questions translate into a need for economic 

models that quantify the payoffs of refactoring. Such models inform the decision in 

investing in refactoring through a tradeoff between the up-front cost and the 

expected added value to the system as a result. The added value may be strategic or 

operational; it may take the form of expected savings in maintenance and/or returns 

due to the enhancement of some qualities such as reusability or efficiency. A 

characteristic of these benefits, whether strategic or operational, is that their payoffs 

are uncertain and may not be immediate. 

 

Notable effort on understanding the economics of restructuring and refactoring 

includes [Leitch and Stroulia, 2003; Sullivan et al., 1999]. Leitch and Stroulia [2003] 

have proposed a framework for predicting the return on investment (ROI) for a 

planned refactoring using cost-benefit analysis. Sullivan et al. [1999] have shown 

how options thinking can be used to value software design decisions including 

restructuring. They have developed an option model that borrows from decision 

analysis to value the payoff of the decision to restructure legacy systems and its 

optimal exercise time.  

 

 

6.2.2 The Case Study Rationale 
 
Refactoring a system enhance the flexibility of the system’s structure/architecture. 

Yet, this incurs an upfront cost to investment. It is worth investing in refactoring, if 

the refactored system could lead to an architecture/structure that is more flexible 

and adds a value to the system or the enterprise following this exercise. We use the 

expected benefits, due to the enhanced flexibility in the structure, as a way to value 

the payoff of refactoring. As the added value is attributed to the enhanced flexibility 

in the structure, the decision to refactor is driven by the motivation to maximize the 

payoffs in the adapted architectural flexibility that results from refactoring. We use 

future savings in maintenance costs, relative to some likely future changes, as a way 

to quantity the added value.  
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We apply ArchOptions to a refactoring case study from the literature [Leitch and 

Stroulia, 2003]. The objective of the study is to empirically simulate the applicability 

of the model and validate its interpretations. We summarize the simulation rationale 

as follows: (a) refactor and observe its effect on the flexibility of the structure (b) 

observe the potential of the structure to some random changes in requirements; (c) 

quantify flexibility relative to likely future changes as a way for understanding the 

payoff of refactoring. Particularly, we seek an understanding for the following: Are 

the model interpretations valid? When does refactoring, as an adapted flexibility, 

add to the system a value? How valuable is it investing in a refactoring?  

 
 
 
  
 
  

 
  
 
 

 

Figure 6.1. Sketch of the simulation rationale 
 
 

To achieve the simulation rationale, we use the refactoring case study of a traffic light 

system published in [Leitch and Stroulia, 2003]. Leitch and Stroulia [2003] propose a 

framework to predict the return on investment (ROI) for a planned refactoring using 

cost-benefit analysis. We recast the problem into an option problem: we consider the 

benefits of refactoring to be uncertain as the demand for future changes -following 

refactoring- are uncertain. We restrict architectural information to data and control 

dependency for this case. Table 6.1 summarizes the structural changes upon evolving 

S0 (the initial structure) to S1 (the refactored structure) of the traffic light system. 

Table 6.1 shows that refactoring has transformed the structure into a more flexible 

state through the decrease of both control and data dependencies. The decrease in 

dependencies in S1 means less complexity, better prospects for accommodating 

         {Ci1, Ci2, …, Ci20} 

S0 S1 

Options? 

(a) 

   (b) 

(c) 

Refactor  
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future changes, and better potential for maintenance savings [Mansour and Bahsoon, 

2002].    

Table 6.1. Aggregate results: the change (%) - evolving S0 to S1 

 S0 S1 Change (%) 
Size in SLOC 740 602 -19% 
No. of Modules 29 38 31% 
Avg. SLOC Per Module 26 16 -38% 
Data Dependency 147 112 -23.60% 
Control Dependency 101 73 -19.40% 

 
 
6.2.3. Valuing the Payoff of Refactoring  
 
Refactoring, a preventive change, can be seen as an investment to embed flexibility. 

The objective is to “clear up” much of the degraded system structure and enhance its 

upside potentials by making it more accommodating for future changes. In this 

context, refactoring can be seen as an investment to purchase growth options that 

enhance the upside potentials of the structure, paying an upfront cost Ie, which 

corresponds to the cost of refactoring. We build on the ArchOptions model to value 

whether it is worthwhile to invest into refactoring, as shown in (6.1): 

 

             n 

payoff = VDev- Ie + ∑ E [max (xiV - Cei, 0)]               (6.1) 
                                                                         i=0 

 
Let us assume that S1 is a structure of the software obtained by refactoring S0. We 

assume that refactoring is an economical choice, if it adds value to S1 relative to S0. 

We attribute the added value to the enhanced flexibility of S1 over S0. If we are 

considering savings in maintenance as a criteria for understanding the value added 

to the system, then future changes in requirements following refactoring will tell us 

how valuable S1 is relative to S0. But the added value due to refactoring is uncertain, 

as the demand on future changes are uncertain. This makes refactoring a good 

candidate to reason using option “thinking”.  

 

The decision to refactor has to be guided by the expected payoff in (- Ie + ∑ i=1…n E 

[max (xiV - Cei, 0]) S1 relative to that of S0. That is, if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 
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> ∑ i=1…n E [max (xiV - Cei, 0)] S0) for some likely changes, then it is worth investing in 

refactoring, as the investment is likely to generate more growth options for S1 than 

for S0. As we assume that xiV is the expected saving in S1 over S0 due to refactoring, it 

is reasonable to consider that if (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >=0), then 

investing in refactoring is said to payoff. An optimal payoff could be when the 

option value (i.e., ∑ i=1…n E [max (xiV - Cei, 0)] approaches the maximum relative to 

some changes in requirements, indicating an optimal payoff in an investment in 

flexibility provided that (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 >= 0). The analyst may 

conduct sensitivity analysis to manipulate the model variables and analyze when 

such a situation is likely to occur. 

 

For a requirement change k, if the (- Ie + E [max (xkV - Cek, 0)]) <0, then refactoring is 

not likely to payoff as the flexibility of the architecture in response to the change is 

not likely to add a value if the change need to be exercised. Two interpretations 

might be possible: (i) the architecture is overly flexible in the sense that its response 

to the change(s) has not “pulled” the options. This implies that the embedded 

flexibility (or the resources invested in implementing flexibility) are wasted and 

unutilized to reveal the options relative to the changes. In other words, the degree of 

flexibility provided is much more than the flexibility demanded for the change. This 

case has the prospect in providing an insight on how much we need to invest in 

refactoring relative to the likely future changes, while not sacrificing much of the 

resources; (ii) the other case is when the architecture is inflexible relative to the 

change. This is when the cost of accommodating the change is much more than the 

cumulative expected value of the architecture potential relative to the changes. 

 

We apply the model: we construct a call option for the likely changes following 

refactoring. To capture and estimate xiV, we restrict the valuation to the development 

perspective. We use the expected savings in development effort for likely futures 

changes due to refactoring. When necessary, we use $2000 for man-month to cast the 

effort into cost. We show how we have estimated the parameters:  
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Estimating (Ie). Table 6.3 reports the refactoring effort (man-month), cost ($), and 

schedule (month) based on the refactoring plan presented in [Leitch and Stroulia, 

2003] and given in Table 6.2. Table 6.3 provides three values: optimistic, likely, and 

pessimistic for each parameter. All are calculated using COCOMO II. 

 

Table 6.2. The proposed refactoring plan and its design impact [Leitch and Stroulia, 
2003] 

Pr
oc

. 
N

o.
 

R
ef

ac
to

ri
ng

 

A
dd

 S
LO

C
 

D
el

. 
SL

O
C

 
Pr

oc
. 

N
o.

 

R
ef

ac
to

ri
ng

 

A
dd

. 

D
el

. 

1 
Extract 
Method 24 225 33 

Extract 
Method 27 0 

2 
Extract 
Method 4 28 34 

Extract 
Method 81 0 

10 
Move 

Method 4 49 35 
Extract 
Method 17 0 

11 
Extract 
Method 4 56 36 

Extract 
Method 9 0 

30 
Extract 
Method 4 0 37 

Move 
Method 13 0 

31 
Extract 
Method 9 0 38 

Extract 
Method 14 0 

32 
Extract 
Method 10 0 - - - - 

 SUBTOTAL: 59 358  SUBTOTAL: 161 0 
     TOTAL: 220 358

 
 

Table 6.3. Refactoring effort, schedule, and cost 

 Effort Schedule Iei 
Op Lik Pes Op Lik Pes Op Lik Pes 

Refactoring 0.9 1.2 1.5 3.6 3.9 4.2 1893 2366 2958 
 

 
Estimating (xiV). To value the architectural potential of S1 due to refactoring, we use 

twenty changes to stress S1 with cost given as Cei. The twenty changes are of an 

adaptive nature; they are generated based on percentage estimates of design, 

integration, and code to be modified per change. Examples of these changes includes 
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adding/deleting a functionality in the Traffic Light system, integrating with other 

systems, enhancing the functionality, etc. The same likely changes were used to 

stress S0. The objective is to calculate the difference (i.e., savings-if any) in effort/cost 

of S1 over S0. The aim is to quantify the architectural potential due to the embedded 

flexibility, from the development perspective. We use COCOMO II to estimate the 

effort/cost for the twenty changes on each structure. xiV corresponds to the 

difference- as reported in Table 6.4. Expected savings, due to refactoring, are in the 

range of $12806 (optimistic) to $7433 (pessimistic) for the twenty changes.  

 

Calculating volatility (σ). The volatility of the stock price (σ) is a statistical measure 

of the stock price fluctuation over a specific period of time; it is a measure of how 

uncertain we are about the future of the stock price movements. Volatility stands for 

the “fluctuation” in the value of the estimated xiV. Intuitively, it “aggregates” the 

“potential” values of the structure in response to the change(s). To calculate σ, we 

follow the real options principles to calculation taking the percentage of the standard 

deviation of  some representative estimates of xiVs over a period of interest. In some 

cases and for the sake of simplicity, we use three estimates of the xiVs: these are 

optimistic, likely, and pessimistic values.  

  

Exercise time (t) and free risk interest rate(r). As a simulation assumption, we set 

the exercise time to three years. We set the free risk interest rate to zero (i.e., 

assuming that the value of money today is the same as that in three years time).  
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6.2.4 Results and Discussion  
 

Below, we discuss the results of applying ArchOptions to value the payoff of 

refactoring.   

 

Observation 1. Flexibility creates real options: S1 is more flexible than S0 (due 

to decrease in dependencies as a result of refactoring); S1 has created more 

real options when compared to S0.  

 

Tables 6.4 and 6.5 shows that S1 is in the money in response to the twenty 

random changes- relative to the development perspective. The results indicate 

that refactoring (i.e. as the embedded flexibility in S1) is likely to enhance the 

option value by $5979 (pessimistic) to  $10593 (optimistic) over S0, if the 

twenty changes need to be exercised following refactoring. Thus, as flexibility 

is improved, S1 is likely to add value in the form of options in response to the 

twenty changes.  

 

Table 6.4. Options on S1 relative to S0 ($) for the twenty likely changes 
(Maintenance valuation point of view) 

 
 Pessimistic Likely Optimistic 

Cei T xiV Cei T xiV Cei T xiV 
 1454 3 7433 1817 3 9292 2212 3 12806 
Option 5979.09 7474.6 10593 

  
 

Table 6.5. Options on S1 for one to ten changes at a time 

xiV Options 
Changes σ Pes. Lik. Op. Pes. Lik. Op. 
1Req.Ch. 1.4 371.7 464.6 640.3 0 0 0 
2 Req.Ch. 2.7 743.3 929.2 1280.6 0 0 0 
3 Req.Ch. 4.1 1115.0 1393.8 1920.9 0+ 0+ 1.2 
4 Req.Ch. 5.5 1486.6 1858.4 2561.2 73.6 92.45 334.9 
5 Req.Ch. 6.8 1858.3 2323.0 3201.5 405.6 507.6 989.07 
9 Req. Ch.  12.2 3339 4181.4 5760 1885 2364 3547 
10 Req.Ch. 13.6 3717 4640 6400 2263 2823 4188 
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Observation 2. How valuable is refactoring?  
 
Let us take the average value of the twenty changes. The objective is to 

simulate the responsiveness of S1 to one likely average change. The result of 

Table 6.5 implies that though S1 is flexible, refactoring has not “pulled” the 

options for one change. S1 is said to be out of the money for this change. This 

implies that the embedded flexibility (or the resources invested in 

implementing flexibility) are wasted and unutilized to reveal the options 

relative to this change. In other words, the degree of flexibility provided is 

much more than the flexibility demanded for this change. We repeat the 

above experiment, but stressing S1 with two, three, four, and then five 

average changes at a time. Using two average likely changes, the options 

reported zero values. Again, two likely average changes have not “pulled” 

the options. Interestingly, S1 has just about pulled the options for three 

changes. For four, five, and nine changes, S1 reveals the options; however, 

refactoring is not likely to payoff as (- Ie + ∑ i=1…n E [max (xiV - Cei, 0)] S1 < 0). 

For ten changes, refactoring is expected to payoff as (- Ie + ∑ i=1…n E [max (xiV - 

Cei, 0)] S1 >0). Thus, refactoring is likely to add to the system a value, if ten or 

more changes need to be exercised during the next three years. 

 

This case study has the prospect of providing an insight into how much we 

have to invest in flexibility to achieve stability relative to the likely future 

changes, while not scarifying much of our resources. In real situations, an 

optimal stability could be when the option value approaches the maximum, 

indicating an optimal payoff in an investment in flexibility. The analyst may 

make use of the sensitivity estimates to manipulate the model variables and 

analyze when such a state is likely to occur. 

 

6.2.5 Concluding Remarks 
 

In Table 6.6a and Table 6.6b, we relate the case study to the phases of the method 

described in Chapter 5. We have amended some of the steps and based on the 

available information at hand and the evaluation objectives. We have relaxed 

applying phase I, as it is assumed that the likely changes following refactoring are 
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provided and need not be elicited. Upon applying Phase II, we have restricted the 

valuation to one valuation point of view, which is the development perspective. We 

have appealed to the use of maintenance savings as a way to value the options due to 

refactoring. Needless to say, the valuation could have incorporated other valuation 

points of view (e.g., extensibility, reusability, efficiency) to value the options due to 

refactoring. Future work may entail investigating ways for valuing the payoff of 

refactoring relevant to other points of views. The objective is to have a 

comprehensive value of options from different perspectives. As for Phase III, we 

have reported on some observations derived from the model simulation. These are 

mainly on the worthiness of refactoring, as a mean for introducing flexibility into the 

structure. In reality, the analyst may use a similar argument to justify a case for 

investing in refactoring. The analyst/architect may explore situations where 

investing in such an exercise may add a value to the software system and/or the 

enterprise owing the architecture. Again, the value of the computed calls provide the 

analyst with insights into when it might be cost-effective to invest in such an 

exercise, while not sacrificing the available resources. Accordingly, related 

recommendations on the cost-effectiveness of such an exercise, its long-term value, 

and its stability implications may then follow.  

 

Table 6.6a. Relating the refactoring case to Phase I of the method 

Phase I  Case 1 

Setting the objectives for 

evaluating architectural stability 

Objective: 

Valuing the payoff of the adapted architectural 

flexibility due to refactoring  

Eliciting the change {i1, i2, …, in} 

that are critical to the set 

objectives 

Twenty changes of adaptive type are used 

Tracing the change to the 

architecture and its associated 

design decisions 

 

Control/data flow is  taken as the architectural 

artifacts on which the decision of the cost-

effectiveness is made  
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Table 6.6b. Relating the refactoring case to Phase II of the method 
 

Phase II Case 1 

Estimate the cost of 

accommodating the change 

An estimate of the cost of implementing the  

twenty changes   

Identify the value of the  

architectural potentials with 

respect to the change  

By reducing the complexity of the 

control/dataflow structure following 

refactoring, future savings in maintenance  

could be claimed  

Identify valuation points of view  Maintainability  

Volatility  Using optimistic, likely, and pessimistic 

 
 

The purpose of the case study is to simulate the model steps and the maturity of its 

interpretations. The results demonstrate the fitness of the approach in addressing the 

problem of valuing the payoff of refactoring in relation to likely future changes in 

requirements. The observations verify that the model interpretations are reasonable. 

As a satisfaction of the spanning condition entailed by Black and Scholes [1973], we 

argue that valuation based on person-month does implicitly hold market-based data 

and is done in relation with the market. Alternatively, we could have cast the options 

model to use different options valuation (e.g., [Cox and Rubinstein, 1979]). However, 

the application of Black and Scholes [1973] offers a closed and an easy-to-compute 

solution, for it assumes that xiV is lognormaly distributed, not requiring xiV to be 

probability-adjusted for rise and drop in value, as when compared to [Cox and 

Rubinstein, 1979]. 

 
 

6.3 Applying ArchOptions to Select Stable Middleware-
Induced Software Architectures 
 
The current trend is to build distributed systems using middleware, which provide 

the application developer with primitives for managing the complexity of 

distribution and for realizing many of the non-functional requirements such as 

scalability and performance requirements. As non-functional requirements 

evolve, the “coupling” between the middleware and architecture becomes the 
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focal point for understanding the stability of the distributed software system 

architecture in face of change. In this case, we hypothesize that the choice of a 

stable distributed software architecture depends on the choice of the underlying 

middleware and its flexibility in responding to future changes in non-functional 

requirements. We motivate the need for an economics-driven approach to the 

selection of a candidate middleware that will then induce a given architecture. We 

draw on a case study that adequately represents a medium-size component-based 

distributed architecture: we report on how a likely future change in scalability 

requirements could impact the architectural structure of two versions, each 

induced with a distinct middleware: one with the Common Object Request Broker 

Architecture (CORBA) [Object Management Group, 2000] and the other with Java 

2 Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002]. We appeal to the use of 

two valuation points of views upon valuing the potentials of the induced-

architetures in relation to likely future changes in scalability requirements. We 

show how we can apply ArchOptions to value the flexibility of the induced-

architectures, relative to the valuation points of view, and to consequently guide 

the selection of a  more “stable” architecture. Our hypothesis is verified to be true 

for the given change. We conclude the case with some observations that could 

stimulate future research in the area of relating requirements to software 

architectures.   

 

The case study demonstrates a novel application of real options theory for informing 

the selection of a more “stable” middleware-induced architectures [Bahsoon et al., 

2005; Bahsoon and Emmerich, 2005]. Furthermore, the observations derived upon 

conducting the case are likely to advance our understanding to the architectural 

stability problem, when addressed from practical and proactive perspective.   

 

6.3.1 Motivation 
 

The requirements that drive the decision towards building a distributed system 

architecture are usually of a non-functional and global nature [Emmerich, 2000a]. 

Scalability, openness, heterogeneity, and fault-tolerance are just examples. The 

current trend is to build distributed systems architectures with middleware 

technologies such as Java 2 Enterprise Edition (J2EE) [Sun Microsystems Inc., 2002] 
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and the Common Object Request Broker Architecture (CORBA) [Object Management 

Group, 2000]. Middleware simplifies the construction of distributed systems by 

providing high-level primitives, which shield the application engineers from the 

distribution complexities, managing systems resources, and implementing low-level 

details, such as concurrency control, transaction management, and network 

communication. These primitives are often responsible for realizing many of the non-

functional requirements in the architecture of the software system induced. Despite 

the fact that architectures and middleware address different phases of software 

development, the usage of middleware can influence the architecture of the system 

being developed. Conversely, specific architectural choices constrain the selection of 

the underlying middleware [Di Nitto and Rosenblum, 1999]. Once a particular 

middleware system has been chosen for a software architecture, it is extremely 

expensive to revert that choice and adopt a different middleware or a different 

architecture. The choice is influenced by the non-functional requirements. 

Unfortunately, the requirements tend to be unstable and evolve over time. Non-

functional requirements often change with the setting in which the system is 

embedded, for example when new hardware or operating system platforms are 

added as a result of a merger, or when scalability requirements change due to 

sudden increase in users, as it is the case of successful e-commerce systems 

[Emmerich, 2000b]. Moreover, changes in non-functional requirements are critical; 

they can stress an architecture considerably, leading to architectural “breakdown”. 

The ranges in which non-functional requirements change may need to inform the 

selection of distributed components technology, and subsequently the selection of 

application server products. For example, a CORBA-based solution might meet the 

functional requirements of a system in the same way as a distributed component-

based solution that is based on a J2EE application server. A notable difference 

between these two architectures will be that increasing scalability demands might be 

easily accommodated in the J2EE architecture because J2EE primitives for replication 

of Enterprise Java Beans can be used, while the CORBA-based architecture may not 

easily scale. The choice is not straightforward as the J2EE-based infrastructures 

usually incur significant upfront license costs.  Thus, when selecting an architecture, 

the question arises whether an organization wants to invest into an J2EE application 

server and its implementation within an organization, or whether it would be better 

off implementing a CORBA solution. Answering this question without taking into 
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account the flexibility that the J2EE solution provides and how valuable this flexibility 

will be in the future relative to the likely change in load might lead to making the 

wrong choice. This gives rise to value the flexibility of the middleware-induced 

architecture relative to likely changes in requirements so we can understand its 

stability implications, as the non-functional requirements of the software system 

evolve.  

 
We argue that the problem of selecting a particular middleware to induce a given 

architecture is an option problem. From the evolution perspective, the flexibility of 

the middleware induced-architecture in coping with changes in non-functional 

requirements has a value that can assist in predicting the stability of software 

architectures. More specifically, flexibility adds to the architecture values in the form 

of real options that give the right but not a symmetric obligation- to evolve the 

software system and enhance the opportunities for strategic growth. The added 

value is strategic in essence, uncertain as the demand on the future changes are 

uncertain, and may not be immediate. The added value may take the form of (i) 

accumulated savings through coping with the change without “breaking” the 

architecture, mostly these are changes in non-functional requirements; (ii) extending 

the range of services while leaving the architecture intact; and (iii) the ability to 

respond to competitive forces and changing market conditions that may pose higher 

Quality of Service (QoS) requirements, such as the demands for higher availability, 

scalability, reliability and so forth. From an early development perspective, given 

several middleware candidates, the architect has the right without the symmetric 

obligation to embark on a selection for inducing an architecture. A “wise” selection 

could be regarded as an investment to buy flexibility, which could be valued as 

future growth options [Schwartz and Trigeorgis, 2000] on the architecture of the 

software system. These options differ from one middleware to another.  

 

ArchOptions has the prospect of valuing the architectural flexibility due to various 

types of changes in requirements. These could be functional or non-functional. 

However, changes in non-functional requirements are often critical and more 

revealing for understanding architectural stability. As the middleware realizes much 

of the non-functionalities, analyzing for architectural stability in the face of changes 

in non-functional requirements cannot be done in isolation of the middleware, for 
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the category of distributed system built using middleware. In this context, we tailor 

ArchOptions to value the growth options on the architecture to be induced relative 

to likely changes in non-functional requirements.  

 

In the next sections, we describe the case study rationale. We describe how 

ArchOptions can be employed for understanding the value added by inducing the 

architecture by EJB relative to CORBA, if the change in scalability, as a representative 

critical change in non-functional requirements, needs to be applied.  

 
 
6.3.2 The Case Study Rationale 
 
We hypothesize that the choice of a stable distributed software architecture depends 

on the choice of the underlying middleware and its flexibility in responding to future 

changes in non-functional requirements. This is necessary to facilitate the evolution 

of the software system, to avoid unnecessary future investments (e.g., maintenance 

overhead, hardware, reverting the choice of the middleware etc.), and to ensure that 

future resources will be used efficiently as the requirements evolve (e.g., new servers 

are purchased or cycles are leased, only when necessary).  

 

We use Duke’s Bank application, an online banking application provided by Sun 

[Sun Microsystems Inc., http://java.sun.com], as part of the J2EE reference 

application. Though the study is conducted in a controlled environment, we regard 

the Duke’s bank application to be adequately representative of a medium-size 

component-based distributed application. Given the software architecture of the 

Duke’s Bank, we have instantiated from the core architecture two versions, each 

induced by a distinct middleware: one with CORBA and the other with J2EE. We 

observe how a likely future change in scalability, a representative critical change in 

non-functional requirements, could impact the architecture of each version. 

Scalability is frequently thought of in terms of numbers of users that can be 

supported on either a single node or collectively on all nodes in a system; it denotes 

the ability to accommodate a growing future load. The exact method of analyzing 

scalability is subject to some debate: First, the change in load demands is critical as it 

could impact the architecture at its various levels: structure, topology, and 



 

 161

infrastructure. For example, the challenge of building a scalable system is to support 

changes in the allocation of components to hosts without breaking the architecture of 

the software system, or changing the design and code of a component [Emmerich, 

2000b]. Second, the change in load could impact other non-functional requirements 

such as performance, reliability, and availability, when the change is poorly 

accommodated by the middleware-induced architecture.  As a result, this debate is 

appealing to the use of the multi-perspective valuation point of view framework we 

have highlighted in Chapter 5. It is appealing to the use of both the structural and 

behavioral valuation points of view, as depicted in Figure 6.2 and detailed below: 

 

− On the structural point of view: we observe how the architecture of the given 

system, when induced by a particular middleware, is ready to cope or need to be 

maintained for supporting the change in scalability. We analyze the impact of the 

change by looking at the structural changes and the source lines of code (SLOC) 

that need to be modified/added for implementing the change, configuring, and 

deploying the software system. We quantify the options by looking at the cost of 

change on the structure of each version and by valuing the savings in 

maintenance, deployment, and configuration costs (if any), upon accommodating 

the change. We refer to this valuation point of view as the maintainability valuation 

point of view.  

 

− On the behavioral point of view: we use throughput or the capacity of the system to 

measure scalability. Throughput is a performance criterion, which expresses the 

amount of work performed by the system under test during a unit of time. We 

refer to this valuation point of view as the throughput valuation point of view.  
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Figure 6.2.  The use of structural and behavioral valuation points of view to 
capture the options on the induced-architecture, A, for a likely change in 
scalability   

 
 

Hence, the ability to scale the software of a given architecture is rich for analyzing 

the architectural stability problem, as the change have both structural and behavioral 

impacts. The objective of the case is to demonstrate how structural and behavioral 

impact analysis on a system of a given architecture can be complemented with 

options “thinking”. The rationale is that by complementing structural and behavioral 

impact analysis with value-based calculation, the combination could provide the 

architect/analyst with a useful tool for understanding the extent to which the 

software system is flexible to accommodate likely future change in scalability 

requirements. The combination can provide insights on the likely success (failure) of 

software evolution, and consequently on the potential stability of the architecture to 

change. This combination can also provide cost and value indictors of the impact of 

the change on the structure and the behavior of the system. For example, throughput 

and performance are correlated with value. That is, the more business transactions 

can be performed on a system of a given architecture, the more value is said to be 

created for the enterprise. Therefore, “hurting” the performance of the software, 

upon accommodating the change in scalability requirements, implies “hurting” 

value.       

 

 
Change in 
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Maintainability valuation point 
of view:  
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configuration, and deployment  
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We describe how ArchOptions can be used to inform the selection of potentially 

more stable middleware-induced software architectures and relative to the two 

valuation points of view. ArchOptions is applied to account for both the long-term 

value and cost of the architectural potential to the change on each valuation point of 

view. Given several middleware candidates, the application of ArchOptions aims at 

informing the trade-offs and consequently the selection of a middleware-induced 

architecture through a simple and intuitive calculation. Questions of interest, 

however, are: how valuable is the flexibility of either alternative, relative to the 

valuation point of view, will be in the long-run? How can we decide which solution 

is of a better long-term value? How can we inform the selection of a “more” stable 

middleware-induced infrastructure, which maximizes the yield in the added value 

relative to the change and the valuation points of view? For instance, the ranges in 

which the throughput requirements change and their value implications may need to 

inform the selection. At the same time, the cost-effectiveness of maintaining the 

structure to realize the change is another important factor. Hence, the economic 

interplay between evolving requirements, relative to the valuation points of view, 

and architectural stability needs to be addressed. 

 

6.3.3 Setting   
 
The architecture of the Duke’s Bank application is given in Figure 6.3. The Duke’s 

Bank has two clients: an application client used by administrators to manage 

customers and accounts and a Web client used by customers to access account 

statements and perform transactions. The server-side components perform the 

business methods: these include managing customers, managing accounts, and 

managing transactions. The clients access the customer, account, and transaction 

information maintained in a database.  

 

The CORBA version of the Duke’s Bank is a straightforward implementation of the 

above description. In the J2EE, the application consists of six EJB (Enterprise Java 

Beans) components that handle operations issued by the users of a hypothetic bank. 

The six components can be associated with classes of operations that are related to 

bank accounts, customers and transactions, respectively. For each of these classes of 

operations, a pair of session bean and entity bean is provided. Session beans are 
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responsible for the interface towards the users and the entity beans handle the 

mapping of stateful components to underlying database table. The EJBs that 

constitute the business components are deployed in a single container within the 

application server, which is part of the middleware.  
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Transaction
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Figure 6.3. The architecture of the Duke’s Bank  
 

For the J2EE version, we use JBoss application server [http://www.jboss.org], an 

open source. In one of the studies, we use WebLogic server [http://www.bea.com/] 

with an average upfront payable license cost equal to $25000/host. We use JacORB, 

version 2.0 to implement the CORBA version. JacORB, is a CORBA implementation 

written in Java; it allows the communication of Java objects. Our choice of JacORB 

makes the comparison between the two versions feasible and meaningful, as both 

will be implemented in JAVA.  

 

We assume that the Duke’s Bank system is likely to “scale up” to accommodate a 

growing number of clients in a year time. As we have mentioned before, we observe 

how a likely future change in scalability requirements, a representative critical 

change in non-functional requirements, could impact the architecture of the 

middleware-induced architectures. We look at two valuation points of view to 

understand the likely impact on the architecture. For the maintainability point of view, 

we elicit the scalability “primitives” which need to be implemented or need to be 

maintained for scaling the structure. We analyze the impact of the change on each 

middleware-induced architecture. For the throughput point of view, we elicit the likely 

ranges in future load. We then discuss the impact of likely change in future load on 
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the behavior (throughput) of the system. In next sections, we deal with each of the 

above views separately. 

 

6.3.4 The Maintainability Valuation Point of View 
 

We consider the Maintaining the structure for scalability as a goal that needs to be 

achieved by the architecture of the software system to be induced. Following the 

method of Chapter 5, we adopt a goal-oriented approach to refining requirements 

(e.g., [Dardenne et al., 1993; Anton, 1996]). We refine the goal, using guidance on 

how it could be operationalized by the architecture, when induced by a particular 

middleware. In more abstract terms, the guidance was given through the knowledge 

of the domain; vendor’s specification, such as [Object Management Group, 1999-

2000; Sun Microsystems Inc., 2002]; related design and implementation experience, 

mainly that of [Othman et al., 2001a; Othman et al., 2001b]. We note that different 

architectural mechanisms may operationalize the this goal. As an operationalization 

alternative, we use replication as way for maintaining scalability on the structures. 

The reason is due to the fact that both CORBA and J2EE do provide the primitives or 

guidelines for scaling a software system using replication, which make the 

comparison between the two versions feasible. In particular, the Object Management 

Group’s CORBA specification [Object Management Group, 1999-2001] defines a fault 

tolerance and a load balancing support, both when combined provide the core 

capability for implementing scalability through replication. Similarly, J2EE provides 

the primitives for scaling the software system through replication. Hence, the 

refinement and its corresponding operationalization are guided by the solution 

domain (i.e., the middleware). Refinement of the scalability goal is depicted in Figure 

6.4. Detailing the refinements and the operationalization of the goal is given in 

subsequent sections. 
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Figure 6.4. The Goal-oriented (high-level) refinement for achieving scalability 
through replication 

 

 
6.3.4.1 Scaling the CORBA-Induced Architecture  
 

In this subsection, we investigate how scalability could be achieved in the CORBA-

induced version through replication mechanisms. The objective of this subsection is 

to detail the refinement of the goal (Maintaining the structure for scalability) and in 

relation to the structure to be induced.  

 

CORBA’s object model [Object Management Group, 2000] relies to a large degree on 

the semantics of object references. An object reference uniquely identifies a local or 

remote object instance- clients can only invoke an operation on an object if they hold 

a reference to the object. Managing scalability in CORBA, through replication, is not 

straightforward, for object referencing makes it demanding. If several replicas of a 

server object are available, providing an object reference to the client is uneasy task. 

A CORBA implementation to the management of scalability, through replication, has 

to incorporate the following: (i) Replication management (i.e., create, remove, 
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manage objects state in case of state retention, etc); (ii) balancing load among replicas 

(i.e., when a client invokes a request, it needs to get the object reference of the least 

loaded replica) and (iii) a fault tolerance (i.e., when a server object fails to handle a 

request, the request has to be forwarded to a replica).  

 

The Object Management Group’s CORBA specification defines a fault tolerance 

support, which provides replication management. The specification also provides the 

core capabilities needed to support load balancing. Othman et al. [2001] introduces a 

CORBA load-balancing service, designed on TAO- the ACE (Adaptive 

Communication Environment) ORB [Schmidt et al., 1998]. The TAO-ORB is a 

CORBA-compliant ORB that supports applications with stringent Quality of Service 

(QoS) requirements. The designed CORBA load-balancing service takes advantages 

of the request forwarding mechanism the CORBA specification mandates [Object 

Management Group, 1999]. A CORBA server application can use this mechanism to 

forward client requests to other servers transparently, portably, and interoperably. 

The combination of the CORBA fault tolerance support and Othman’s CORBA load-

balancing service provides a strong example of implementing scalability in CORBA. 

We use both the Object Management Group’s CORBA specification and the TAO’s 

design and implementation of the services as guidelines for understanding the 

structural impact of the change on the Duke’s Bank architecture and the 

corresponding effort/cost required to scale the system.  

 

In the below subsections, we describe the requirements and the architecture for 

implementing fault-tolerance in CORBA, based on the OMG specification [Object 

Management Group, 1999]. We describe the requirements and the architecture for 

implementing the load-balancing support in CORBA, based on [Othman et al., 2001a; 

Othman et al., 2001b]. We analyze the structural impact, when the fault-tolerance and 

the load-balancing services need to be implemented to scale the CORBA-induced 

Duke’s Bank architecture. 
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Maintaining fault tolerance support and replication management  

 
This subsection relates to how the Maintaining Fault Tolerance (subgoal of Figure 6.4) 

is refined and operationalized. 

 

The Fault Tolerant CORBA standard provides robust support for applications that 

require a high level of reliability, beyond the level provided by single backup server. 

To render an object fault-tolerant, several replicas of the object are created and 

managed as an object group. Because of the object group abstraction, the client objects 

are not aware that the server objects are replicated (replication transparency) and are 

not aware of faults in the server replicas or of recovery from faults (failure 

transparency). The standard provides support for fault detection, notification, and 

analysis for the object replicas. The standard also supports a range of fault tolerance 

strategies, including automatic check pointing; logging and recovery from faults; 

request retry, and redirection to an alternative server.  

 

The requirements for implementing Fault Tolerance in CORBA are depicted in Table 

6.7 and detailed in the CORBA fault tolerance specification of the OMG [Object 

Management Group, 1999].  
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Table 6.7. The requirements for implementing fault tolerance in CORBA 
 
Sub goals   Description  

Property Manager Provide operations that set properties for 
object groups 

Object Group 
Manager 

provide operations that allow an application 
to exercise control over addition, removal, and 
obtaining the current reference and identifier 
locations of members of an object group 

Replication 
Management 

Generic Factory Issues requests for replicating objects (object 
groups), creating replicas (members of object 
groups), and unreplicating objects 

Fault detection The Fault detection component detects the 
presence of a fault in the system and generates 
a fault report 

Fault notification The fault notification component propagates 
fault reports to entities that have registered for 
such notifications 

Fault Management 

Fault analysis The fault analysis component analyses a 
(potentially large) number of related fault 
reports to generate a condensed diagnosed 
report 

Logging The Logging records the state and actions of a 
member of an object group in a log 

Logging and 
Recovery 
Management Recovery The Recovery Mechanism sets the state of a 

member, either after a fault when a backup 
member of an object group is promoted to the 
primary member, or alternatively when a new 
member is introduced into an object group 
 

 

 

Figure 6.5 presents an architectural strategy that realizes these requirements and 

fully documented in [Object Management Group, 1999]. The architecture defines 

minimal modifications to the application programs, existing ORBs, and for 

transparency to both replication and faults. These modifications allow non-replicated 

clients to derive fault tolerance benefits upon invoking replicated server objects. The 

basic blocks of the architecture are three: Replication management; Fault Management; 

and Logging and Recovery Management. Components of the Fault Tolerance 

Infrastructure are shown on the top of Figure 6.5. These include Replication Manager, 

Fault Notifier, and Fault Detector. Interested reader may refer to the Appendix B, for 

further details on the architecture.  
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Figure 6.5. The CORBA fault-tolerance architecture [Object Management 
Group, 1999] 

 

 
Maintaining load balancing 
 

This subsection relates to how the maintaining load-balancing (subgoal of Figure 6.4) is 

refined and operationalized. 

 

Load balancing helps improve system scalability by ensuring that client application 

requests are distributed and processed equitably across a group of servers. Likewise, 

it helps improve system dependability by adapting dynamically to system 

configuration changes that arise from hardware or software failures. According to 

[Othman et al., 2001a], the design of an effective CORBA load balancing service 

should be based on the following requirements, as depicted in Table 6.8.   
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Table 6.8. The requirements for Implementing load balancing in CORBA [Othman et 
al., 2001b] 

 

Sub goals  Description  
Enable client application 
transparency 

A CORBA load balancing service should be as 
transparent as possible to clients and servers; it 
should require no changes to clients whose requests it 
balances 

Enable server application 
transparency 

Implementing a server object’s servant (a 
programming language entity that implements object 
functionality in a server application) should require 
no changes to support load balancing. Yet changes to 
the server application might still be required under 
certain conditions 

Support dynamic client 
operation request patterns 

The CORBA load balancer, however, shall focus on 
load balancing techniques that do not require a priori 
scheduling information, where client operation 
request patterns are dynamic and the duration of each 
request might not be known in advance- which is the 
case of the Duke’s Bank 

Maximize scalability and 
equalize dynamic load 
distribution 

CORBA load balancing service must enhance system 
scalability by maximizing dynamic resource 
utilization in a group of servers that otherwise would 
be underutilized 

Increase system 
dependability 

Load balancer should provide mechanisms to handle 
failures efficiently when detected by administrators or 
other system components. For example, the load 
balancer should migrate crashed or failing servers to 
other servers until the failure is resolved 

Support administrative 
tasks 

A good CORBA load balancing service should have 
facilities for dynamic addition/removal/upgrading of 
new replicas and should adjust to the new load 
conditions rapidly, without disrupting or suspending 
service for existing clients 

Incur minimal overhead A CORBA load balancing service should not 
introduce undue latency or networking, which may 
reduce the overall system performance 

Support application-
defined load metrics and 
balancing policies 

A CORBA load balancing service should let 
applications specify the semantics of metrics used to 
measure load, such as CPU, I/O resources, 
communication bandwidth, or memory load 

Rely on CORBA 
interoperability and 
portability 

A CORBA load balancer should not restrict the 
application developers to single ORB providers 

 

 

Othman et al. [2001b] suggest a CORBA adaptive balancing built on TAO to realize 

the above stated requirements. The TAO’s load balancing solution is entirely based 

on standard features in CORBA, without requiring severe extensions to the ORB or 

its communication protocols. The suggested load balancing solution is based on the 
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patterns [Schmidt et. al., 2000] of the CORBA component model (CCM) [BEA 

Systems, 1999] for minimizing the changes on the application layer. In particular, the 

following patterns are utilized to achieve the above stated transparency 

requirements: these are the   Portable Interceptors pattern, Component Configuration 

pattern, Component Configurator pattern, and the Asynchronous Completion Token 

pattern [Schmidt et. al., 2000]. The architecture is given in Figure 6.6. Interested 

reader may refer to Appendix B for technical details on the load balancing 

architecture.  

 

 

 Figure 6.6. TAO load balancing [Othman et al., 2001b] 
 
 
 
Change impact analysis 
 

The combination of the CORBA fault tolerance support and Othman’s CORBA load-

balancing service provides an example on how scalability could be achieved in the 

CORBA-induced architectures of the Duke’s Bank. In this section, we analyze the 

impact of the change on the Duke’s Bank by looking at the structural changes and the 

source lines of code (SLOC) that need to be modified/added for implementing the 

change, configuring, and deploying the software system. We use the design and the 

implementation of both services (i.e., fault tolerance and load balancing) on TAO as a 

guide to estimate the design impact and the effort required to realize the scalability 

requirements in the Duke’s Bank. The TAO design of these services is based on the 
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CORBA specification. We note that the TAO’s implementation of both services is in 

C++. We list all the JAVA classes and files necessary to build the equivalent JAVA 

implementation of both services. A List of classes and files necessary to implement 

the fault tolerant service into the Duke’s Bank architecture is depicted in Table B-1 of 

the appendix. Table B-2 of the appendix reports on the effort necessary to develop 

and integrate the load balancing service into the middleware. Table 6.9 provides an 

aggregated summary of the overall SLOC that need to be implemented.  

 

Considering the CORBA-induced architecture of the Duke’s Bank, supporting 

scalability through replication does not leave the middleware infrastructure and the 

application layer intact. Though the use of both CORBA specification and design 

patterns, has simplified the task of realizing the requirements for achieving fault 

tolerance and load balancing, implementation and integration overhead have not 

been abandoned. In a nutshell, the fault tolerance and load balancing services need to 

be implemented. The implementation needs to be integrated into the used 

middleware. The server application needs to be updated, so that it will be able to 

support object group. The client has to undergo slight changes.  

 

To elaborate, the middleware and the application need to be modified to support 

load balancing. The modifications include the implementation of the Load Balancing 

Service and integrating the service into the existing middleware infrastructure. The 

server-side application, the main CORBA services (mainly, the naming service and 

the transaction Service), and the client-side needs to be updated. The binding 

mechanism needs to be modified to support the introduction of the object groups. 

The server application, which initially binds instances of server implementation to 

the naming service, has to be changed. Instead, the client’s requests need to be bound 

to the replica the load balancer selects. Hence, this requires modifications to the 

standard CORBA services through introducing protocols and interface that abides to 

the OMG standards. In an environment where several hosts are used to store the 

server objects, different object groups need to be created. The server application 

needs to be modified to populate servant instances. Additional interfaces need to be 

introduced in the IDL (Tables B-1 and B-2). ORB interceptors and initializers have to 

be implemented. On the client side, the client application needs to be modified to 

look up the load balancer instead of the naming service to get a replica object 
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reference. The load balancer will be then able to send an object reference by using the 

CORBA ForwardRequest exception that the client can catch. To configure, all the 

instances of JacORB over the different hosts have to be shutdown. To compile and 

package the developed services, an Ant script has to be updated for each service. 

This introduces additional 200 lines of code. The properties file (i.e., 

jacorb.properties) has to be updated on each host. These updates concern the 

ORBInitRef property and the interceptors ORBInitializer. All the JacORB instances 

then need to be restarted. Interested reader may refer to the appendix B for further 

details.  

 

Table 6.9. Scalability in the CORBA-induced architecture: aggregate results 
 

Task  SLOC 

Fault Tolerant implementation 5117 
Load Balancing implementation 3943 
Server-side application (Server 
objects Implementation and Server 
application- on each host)  

170 

Client-side application 30 
Configuration on each host Stop/restart, 200 

SLOC+ 13/host 
 
 
 
6.3.4.2 Scaling the J2EE-Induced Architecture  
 
In subsequent sections, we investigate how scalability could be achieved in the J2EE–

induced version through replication mechanisms. We analyze the impact of the 

scalability change on the J2EE-induced architecture of the Duke’s Bank. 

 

Scalability in J2EE through replication 

Figure 6.7 depicts a common J2EE [Sun Microsystems Inc., 2002] cluster architecture. 

Clustering enables a group of (typically loosely coupled) servers to operate logically 

as a single server. The advantages of clustering include the elimination of a single 

point of failure; the high service availability if multiple servers in the cluster can 

handle the same service; and load balancing by diverting requests to the least loaded 

server hosting the same service. We use JBoss 3.0[http://www.jboss.org/], an open 

source J2EE application server. JBoss clustering aims at improving scalability and 

high availability using replication techniques. JBoss relies on Jgroups 
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[http://www.jgroups.org/] for the clustering of its naming registry face- Java Nam-

ing and Directory Inter (JNDI)-and its EJB container. JGroups is an open source 

group communication middleware fully written in Java. JGroups provides the 

following main features: group creation and deletion, where group members can be 

spread across LANs or WANs; joining and leaving of groups; membership detection 

and notification including joined/left/crashed members; detection and removal of 

crashed members; sending and receiving of member-to-group messages (point-to-

multipoint); and sending and receiving of member-to-member messages (point-to-

point).  
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Figure 6.7. Example of J2EE cluster architecture 
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JBoss uses a layered architecture to manage clustering. The architecture relies on 

JGroups for clustering, which is abstracted. Figure 6.8 describes the architecture 

using two nodes. The term partition is used to refer to a cluster. A node can be part 

of several partitions. 

 

 

 

 

 

 

 

 

 
 

Figure 6.8. Clustering Architecture 
  

 

The HAPartition (i.e., High Availability Partition) abstracts the communication 

framework; it provides access to a set of communication primitives. Services need to 

register with the HAPartition to use the HAPartition services. The Distributed 

Replicant Manager manages the replicas by providing methods to add or remove 

replicas from a partition. The HASession-State is used to manage the state of Stateful 

Session Beans. The state of all Stateful Session Beans are replicated and syn-

chronised across the cluster each time the state of a bean changes. The Distributed 

State stores settings or parameters that should be used by the containers in the 

cluster. Clients can use either the local JNDI service or the HA-JNDI service to look 

up objects. If the local JNDI service is used, the local JNDI namespace is used to 

locate objects. HA-JNDI delegates the lookup to the local JNDI, if it fails to find the 

object within global the cluster-wide context. EJB homes are bound to the local JNDI 

of the server on which the particular EJB is deployed. HA-RMI provides load-

balancing and fail-over facilities for RMI servers. HA-EJB allows selecting the load-

balancing policy to apply (e.g., Round Robin, First Available), when deciding on a 

replica that will respond to the client request. The load-balancing policy is not 

adaptive.  JBoss provides clustering for the two main types of EJB: Entity Bean and 

Session Bean (Stateful and Stateless). Clustering for Message-Driven Bean is not 
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provided yet. Also, JBoss comes with a farming feature. Farming manages cluster 

hot-deployment. Hot-deploying an application (EAR, WAR or JAR application) on a 

machine causes the application to be hot deployed on all instances within the cluster. 

 

Change impact analysis 

 
An observable advantage of scaling the software architecture induced by J2EE, using 

JBoss, is that no development effort is required to realize the scalability requirements 

through replication, as when compared to the CORBA version. The clustered 

environment, which mainly includes the HA-JNDI, the HA-EJB for Entity Bean and 

Stateful Session Bean, and the farming do provide the primitives for scaling the 

software system. That is, no development effort is required to provide a clustering 

environment. However, configuring and deploying the application in the clustered 

environment are still required.  

 

In brief, configuration includes the following: configuring clusters, HA-JNDI, HA-

EJB, and farming. By default, one partition exists. When adding a partition, the 

cluster needs to be configured. This simply requires updating the cluster ser-vice file 

(i.e., cluster-service.xml). Eleven lines of code are necessary to map a partition with a 

HA-JNDI service. The property file (jndi.properties) on the client-side has to be 

updated to enable the client to auto-discover the HA-JNDI servers. One line of code 

is necessary to update this file. 

 

To cluster the EJBs, a special XML tag (clustered) has to be added to the Jboss.xml. To 

specify the partition(s) to be used, the (clusterconfig) tag needs to be added to the 

same file. More, the load-balancing mechanism may need to be up-dated in the JBoss 

deployment descriptor.  All of these changes involve 10 lines/bean. For stateful 

session beans, the cluster service file, cluster-service.xml, need to be updated to add a 

partition to the HASessionState service, involving 7 SLOC. Therefore, we need 39 

SLOC to enable farming for all our partitions. The file farm-service.xml file, by 

default, enables the farming for one partition. To enable the farming for all the 

partitions, farm-service.xml file need to be updated; a link will need to be added 

between the FarmMemberService and a partition. For the Duke’s Bank architecture, 

we use four partitions: two for the Account beans (Entity and Session) and two for 
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the Transactions beans (Entity and Session). Thirty-two SLOC need to be added for 

configuring a partition. This results in 128 SLOC. Other 33 lines of code are necessary 

to map a partition with the HA-JNDI service. Because four kinds of beans exist in the 

system, configuring the HA-EJB requires 40 lines to update the JBoss deployment 

descriptor of the beans. Thirteen SLOC are required.  We note that Farming is not 

enabled by default, requiring the developer’s intervention. Table 6.10 aggregates the 

above description.  

 

 

Table 6.10. Scalability in the J2EE version 
 

Changes to make 4 partitions Source 

Lines of code (SLOC) 

Install Jboss 1 

Configuring clusters 96 

Configuring HA-JNDI 34 

Configuring HA-EJB 47 

Configuring farming 39 

Total for one host 217 

 

 
6.3.5 The Throughput Valuation Point of View  
 

A possible way to treat scalability is to assume that scalability can be measured by 

throughput or capacity of the system. Throughput is a generic performance criterion, 

which expresses the amount of work performed by the system under test during a 

unit of time. This criterion is based on the observation that for a fixed system with a 

given throughput (e.g., a single host), there is an inverse relationship between the 

response time and the number of clients. In other words, the more clients submitting 

requests, the longer are the delays.  

 

A well-known throughput metric is the Total Operations per Second (TOPS) 

completed during the measurement interval, referred to as TOPS 

[http://www.spec.org/]. TOPS is composed of the total number of business 

transactions completed in the customer domain, added to the total number of work 
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orders completed in the manufacturing domain, normalized per 

second[http://www.spec.org/]. 

 

To understand how Duke’s architecture may behave once induced with J2EE or 

CORBA, we have screened relevant performance benchmarks (e.g., Denaro et al., 

2004; http://www.spec.org/jAppServer2005/; Shipping et al., 2005). We appeal to 

the use of published benchmarks, because the system of the given architecture need 

not be implemented during the evaluation. Thus, performance measures may not be 

available. Benchmarks are revealing on the performance dimension because, for 

example, if multiple benchmarks are conducted with a suitable mix of relevant 

factors, it may be possible to obtain a set of basic scalability results that can be used 

for estimating the throughput of possible configurations of the architecture. 

Depending on the benchmarking algorithm, the relevant scalability factors can be, 

for example, the number of objects, the number of clients, or the number of nodes in 

the system etc. supported in response to growing load. A major problem in 

comparing benchmark results, however, is that different hardware platforms and 

configurations (e.g., memory, disk drives etc) often produce different results making 

the comparisons difficult. Further, vendors often try many different ways to optimize 

performance, including adding cache memory and putting cache buffers on disk 

arrays. Therefore, we only use benchmarks, which are close to the case at hand. We 

then normalize the screened benchmarks for easing the comparison. It could be also 

argued that in iterative development (e.g., in the Unified Process) partial 

implementations might be available at the end of each phase. In this context, it is 

possible to create benchmarks from the partial implementations and to use them to 

recalibrate the screened ones. The intention is to have more meaningful figures 

which we could use for understanding the impact of likely change in future load on 

the behavior (throughput) of the system(i.e., relevant to the throughput valuation point 

of view).  

 

In the context of ArchOptions, our use of benchmarks resembles the use of a twin 

asset.   We argue that using benchmarks satisfies the concept of the twin asset as we 

are relying on historical information showing possible variations in performance in 

connection to change in load and relative to the candidate implementations. These 

benchmarks often hint that the throughput is dependent on and can be estimated 
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from the middle-tier “processing power” of the architecture. Such variation, we 

believe, is a wealth as it reveals pros and cons of the Duke’s Bank execution under 

possible operating environments and/or in relation to other participating 

applications. This is advantageous because scalability is also a factor of the number 

of independently developed applications that might share an execution platform. 

The advantage of this approach is that the published benchmarks could reveal risks 

of the operating environment on the choice.  

 

Figure 6.9 shows the likely throughput trend that the J2EE-induced architecture may 

exhibit relative to the CORBA-induced one, upon varying the TOPS and the number 

of hosts.  For the J2EE-induced architecture, we provide throughput estimations for 

two possible implementations: one with JBoss and the other with WLS. For the 

CORBA-induced architecture, we provide estimates upon the use of JacORB to 

induce the architecture. Table 6.11 depicts the upper limit of TOPS supported per 

host for each of WLS, JBOSS, JacORB induced architectures for 1 to 4 hosts.   
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Figure 6.9. Plotting the TOPS per host for each of WLS, JBOSS, JacORB for 1 
to 4 hosts 
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Table 6.11. Upper limit of TOPS  per host for each of WLS, JBOSS, JacORB 
 

 Hosts WLS JBOSS JacORB 
1 732.00 400.26 546.80 
2 918.36 502.16 686.01 
3 1395.44 763.03 1042.39 
4 2640.96 1444.08 1972.79 

 
 

Figure 6.10 shows the likely cost-trend upon inducing the Duke’s bank architecture 

with J2EE (using either WLS or JBOSS) and with CORBA (using JacORB). The likely 

cost is plotted against the number of hosts (1 to 4). The cost refers to the lifecycle cost 

of the System Under Test (SUT). The cost includes Application Servers/Containers, 

Database Servers, network connections, etc. Assuming, for example, a five-year 

lifecycle, cost would include all hardware (purchase price), software including 

license charges, and hardware maintenance. For the CORBA version, it assumed that 

the investment incurs an upfront cost to the development of the replication 

mechanism to support fault-tolerance and load-balancing services for high load 

scenarios. For the J2EE version of WLS, a license cost is incurred per host.   
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Figure 6.10. The likely cost-trend upon inducing the Duke’s bank architecture 
with J2EE-(WLS or JBOSS) and with CORBA (JacORB). 
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6.3.6 Applying ArchOptions  

  
In previous sections, we have seen that to scale the architecture of the Duke’s Bank, 

the requirements depicted in Figure 6.4 need to be maintained. We have estimated 

their structural impact on both the CORBA and the J2EE versions. We have 

estimated the SLOC to be added for implementing the change on both versions, as 

depicted in Tables B-1, B-2, Table 6.9, and Table 6.10.  From the structural valuation 

point of view, an observable advantage of scaling the software architecture induced 

by EJB is that no development effort is required to realize the scalability 

requirements through replication, as when compared to the CORBA version. J2EE 

provides the primitives for scaling the software system, which result in making the 

architecture of the software system more flexible in accommodating the change in 

scalability requirements, as when compared to the CORBA version. Though the 

structural analysis appears to be in favor of the J2EE-induced architecture, the 

throughput analysis may reveal a different trend. From the throughput valuation 

point of view, Figure 6.9 shows that when the Duke’s architecture will be induced 

with JBoss, a J2EE implementation, the system is likely to be slower than that of the 

JacORB one. This is because JBOSS uses reflection [http://www.jboss.org]. This also 

implies that there are some chances for the JBoss-induced architecture to require 

more hardware for addressing this deficiency. When inducing the Duke’s 

architecture with WLS, another J2EE implementation, the system is very likely to be 

faster than that of the JacORB implementation. WLS, however, comes with 

significant licenses costs; this cost grows with the number of hosts, as the load 

increases. Coining the TOPS with their associated costs, Figure 6.9, Figure 6.10 and 

Table 6.11, hint that there might be a case for JacORB in certain throughput range. 

Moreover, note that once the services for realizing scalability (i.e., the fault-tolerance 

and load balancing service) are implemented, the cost is incurred once and 

amortized across the hosts. Hence, as the load grows, the analysis becomes complex. 

 

The case is appealing to ArchOptions for the following major reasons: First, there is 

cone of uncertainty associated with the growing load and consequently in the value 

added as result of our choice. Moreover, the TOPS are of straightforward 

contribution to value. That is, the more operations are completed per second, the 
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more value is added to the enterprise. However, TOPS incur a price upon executing 

the operations. The price again is dependent on several factors such as the number of 

hosts, the hardware, the license cost, and any additional costs that are necessary for 

making the middleware adaptable to the growing load. In the context of the Duke’s 

Bank, the TOPS range is often uncertain as it is dependent on the customers’ 

behavior at a time. The uncertainty in the likely range (i.e., TOPS), the associated costs 

for executing the TOPS, and the “fluctuation” in the value added as a result make the 

case very appealing to the use of ArchOptions.  For the throughput valuation point 

of view, the analysis using ArchOptions aims at complementing the behavioral 

analysis to understand the trend in the added value upon embarking on either J2EE 

(Jboss or WLS) or CORBA(JacORB) to induce the architecture of a given system.    

 

 

6.3.6.1 Formulation and Interpretation 
 

In this section, we describe how ArchOptions can be tailored to understand the value 

added as a result of inducing the architecture by EJB relative to CORBA, if the 

change in scalability requirements materializes and relative to the two valuation 

points of view.  

 

As we have noted in [Bahsoon and Emmerich, 2003a; Bahsoon 2003; Bahsoon and 

Emmerich 2004a; Bahsoon and Emmerich 2004b], the search for a potentially stable 

architecture requires finding an architecture that maximizes the yield in the added 

value, relative to some future changes in requirements. As we are assuming that the 

added value is attributed to flexibility, the problem becomes maximizing the yield in 

the embedded or adapted flexibility in a software architecture relative to these 

changes. For this case study, given the choice of two or more middleware candidates, 

the selection has to maximize the yield in the embedded or adapted flexibility in 

response to likely changes in scalability requirements. In particular, a proper 

selection has to maximize the value added relative to the two valuation points of 

view. That is, the decision to select potentially stable–middleware architecture has to 

provide a compromise between the payoff on the structural and the behavioral 

valuation points of view, as we will see in the subsequent Sections.  
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Let us assume that we are given the choice of two middleware M0 and M1 to induce 

the architecture of a particular system. Let us assume that S0 and S1 are the 

architectures obtained from inducing M0 and M1 respectively. Say, inducing M1 is an 

economical choice, if it adds value to S1 relative to S0. We attribute the added value to 

the enhanced flexibility of S1 over S0. If we are considering stability as a criteria for 

understanding the value added on the system, then future changes in non-functional 

requirements will tell us how valuable S1 is relative to S0, as we are performing a 

tradeoff between the architecture induced by M0 and M1. However, the added value 

is uncertain, as the demand and the nature of the future changes are uncertain. 

Hence, using option theory is a promising approach to inform the selection.  

 

Choosing a particular middleware to induce the architecture of the software system 

can be seen as an investment to purchase flexibility in the induced software 

architecture. The non-functional requirements and the range in which they change 

influence the choice. In this context, deciding on a particular middleware to induce 

the software system architecture can be seen as an investment to purchase future 

growth options that enhance the upside potentials of the structure when the non-

functional requirements change. That is, S1 is said to be more accommodating to the 

change than S0, if S1 holds more growth options than S0. For a valuation point of view 

p, we focus the analysis on the calls of the ArchOptions model for valuing the growth 

options, as given in (6.2). 

                                                       

       ∑ i=1…n E [max (xiVp - Ceip, 0)]               (6.2)                    

                     

 

The selection has to be guided by the expected payoff in (∑ i=1…n E [max (xiVp - Ceip, 

0])S1 relative to that of (∑ i=1…n E [max (xiVp - Ceip, 0])S0. That is, if (- Ie + ∑ i=1…n E [max 

(xiVp - Ceip, 0)] S1 > ∑ i=1…n E [max (xiVp - Ceip, 0)] S0) for some likely changes, then it is 

worth investing in M1, as the investment in M1 is likely to generate more growth 

options for S1 than for S0 and relative to the p valuation point of view.   
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If (E [max (xkVp - Cepk, 0)])S1=0), then M1 is not likely to payoff, relative to M0, as the 

flexibility of the architecture to the change is not likely to add a value for S1  on p, if 

the change need to be exercised. Two interpretations might be possible: (i) the 

architecture is overly flexible in the sense that its response to the change(s) has not 

“pulled” the options relative to p. This implies that the embedded flexibility (or the 

resources invested in implementing flexibility- if any) are wasted and unutilized to 

reveal the options relative to the changes and relative to p (ii) the other case is when 

the architecture is inflexible relative to the change. This is when the cost of 

accommodating the change on S1 is much more than the cumulative expected value 

of the architecture responsiveness to the change. 

 

For the maintainability valuation point of view, PM, we appeal to the use of future 

savings in maintenance effort as a way to quantify the value added due to a 

selection. If we assume that xiVPMS1 is the expected savings in S1 over S0 due to 

selection, then if (∑ i=1…n E [max (xiVPM- CeiPM, 0)] S1 >∑ i=1…n E [max (xiVPM- CeiPM, 0)] S0), 

then investing in M1 is said have better value with respect to PM. For the throughput 

valuation point of view, Pthro, an additional operation is said to “buy” an 

architectural potential paying an exercise price. In terms of throughput, the 

architectural potential is a performance measure. That is, the more TOPS are said to 

be completed at a host (or for a configuration), the more value is said to be added to 

the enterprise. The more valuable is said the architectural potential relative to the 

TOPS. The exercise price is price/TOPS (see relevant section for more details). If we 

assume that xiVPthroS1 is the value added in S1 over S0 due to the support of more 

TOPS, it is reasonable to consider that if (∑ i=1…n E [max (xiVPthro - CeiPthro, 0)] S1 > ∑ i=1…n 

E [max (xiVPthro - CeiPthro, 0)] S0), then investing in M1 is said to payoff relative to 

throughput valuation point of view.   
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6.3.6.2 Options on the Maintainability Valuation Point of View 
 

For this valuation point of view, we aim at understanding the value added upon 

inducing the architecture with EJB relative to CORBA, if the change in scalability 

requirements materializes. We use future savings in maintenance, deployment, and 

configuration costs (if any), upon accommodating the likely change in scalability, as 

a way to quantify the value added. Below, we show how we estimate the parameters 

relative to this valuation point of view.  

 

Upon applying ArchOptions, we focus our attention on the payoff of the call options 

(i.e., ∑ i=1…n E [max (xiVPM - CeiPM, 0)] S1 relative to ∑ i=1…n E [max (xiVPM - CeiPM, 0)] S0), as 

they are revealing for the flexibility of the architecture-induced in responding to the 

likely future changes. We construct a call option for the future scalability goal, where 

the change is analogues to buying an “architectural potential”, paying an exercise 

price. The exercise price corresponds to the likely price to accommodate the change 

in load on the structure. When necessary, we use $6000 for man-month to cast the 

effort into cost. We show how we have estimated the parameters.  

 

Table 6.12. Scaling the system using replication (1 Host): development, 
configuration, and deployment costs 

 

Estimating (CeiPM). The exercise price corresponds to the cost of implementing 

scalability on each structure, given by CeiPM for requirement i. As the replicas may 

  CORBA (JacORB) EJB (JBOSS) 
 Optimistic Most Likely Pessimistic Optimistic Most Likely Pessimistic 

Effort 24.1 30.2 37.7 0 0 0 

Cost,  CeiPM 96481 120602 150753 0 0 0 

D
ev

el
op

m
en

t 

SLOC 9240 0 

Effort 0.4 0.5 0.6 0.4 0.5 0.6 

Cost,  CeiPM 1527 1909 2386 1558 1948 2435 

C
on

fig
ur

at
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n 
&

 
D

ep
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ym
en

t  
 

SLOC 213 217 
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need to be run on different hosts, we devise a general model for calculating Ce as a 

function of the number of hosts, given by:    

 

CeiPM = ∑ h=1…k (Cdev, Cconfig, Cdeploy, Clicesh)h,             (6.3) 

 

where, h corresponds to the number of hosts. Cdev, Cconfig, and Cdeploy, respectively 

corresponds to the cost of development (if any), configuration, and deployment for 

the replica on host h. Clicesh corresponds to licenses and hardware costs, if any. All 

costs are given in ($). We provide three values: optimistic, likely, and pessimistic for 

each parameter. All are calculated using COCOMO II – post architectural model 

[Boehm et al., 1995], as depicted in Table 6.12. Upon varying the number of hosts, we 

only report on pessimistic values for this study, as they are revealing.  

 

Estimating (xiVPM). To value the architectural potential of S1 relative to S0 given by 

(xiVPMS1/S0), we take a structural approach to valuation. We use the expected savings 

(if-any) in development, configuration, and deployment efforts, when the scalability 

change needs to be accommodated on S1 relative to S0, and respectively denoted as 

∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy. Relative savings in licenses may also be considered 

and denoted by ∆Clicesh. Below is a model for calculating xiVS1/S0, for the change in 

requirement i.   

 

xiVPM S1/S0= ∑ h=1…k  (∆S1/S0Cdev, ∆ S1/S0Cconfig, ∆ S1/S0Cdeploy, ∆ S1/S0 Clicesh)h                (6.4) 

 

Similar description applies for (xiVPMS0/S1). The savings (if any), however, are 

uncertain and differ with the number of hosts, as the replicas may need to be run on 

different hosts. Such uncertainty makes it even more appealing to use of “options 

thinking”.  

 

Estimating volatility (σPM). The volatility of the stock price is a statistical measure of 

the stock price fluctuation over a specific period of time; it is a measure of how 
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uncertain we are about the future of the stock price movements. Volatility stands for 

the fluctuation in the value of the estimated xiVPM. Intuitively, it aggregates the 

“potential” values of the structure in response to the change(s). We adhere to the real 

options principles in estimating σPM. We take the percentage of the standard 

deviation of the xiVPMs estimates-the optimistic, likely, and pessimistic values to 

calculate σPM. 

 

Exercise time (tPM) and free risk interest rate(rPM). As a simulation assumption, we 

set the exercise time to one year, assuming that the Duke’s Bank needs to 

accommodate the change in one year time. We set the free risk interest rate to zero 

(i.e., assuming that the value of money today is the same as that in one year’s time). 

 

6.3.6.3 Options on the Throughput Valuation Point of View 

 

We take throughput as a measure for analyzing the payoff on the behavioral point of 

view. We construct call options for a likely change in load-range. The objective is to 

analyze the architectural potential in supporting a likely growth of TOPS. Below, we 

show how we estimate the parameters relative to this valuation point of view. 

  

Estimating (CeiPthro). A change in a load-range is said to buy an architectural 

potential paying an exercise price. As we mentioned before, TOPS denotes the Total 

Operations completed per Second. For the simplicity of explanation, let us assume 

that the system of the induced architecture needs to scale up to support an additional 

operation per unit-time. An additional operation is said to buy an architectural 

potential paying an exercise price. In terms of throughput, the architectural potential 

is a performance measure. Hence, what an extra operation pays, if materializes, is a 

bandwidth for performing that operation. Inducing the Duke’s bank with either J2EE 

or CORBA provide different bandwidth capabilities for performing the operation at 

different price. If the implementation of either happens to hold embedded growth 

options in supporting the extra operation, then the operation is said to pay an 

exercise price to buy options on the architecture. To estimate the exercise price, we 

use a well-known normalization factor, which is the price/performance 

[http://www.spec.org/jAppServer2005/] (i.e., the lifecycle cost of the System Under 
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Test (SUT) as configured for the benchmark divided by the throughput). As an 

example, assuming five-year lifecycle, the cost would include all hardware (purchase 

price), software including license charges, and hardware/software maintenance. If 

the total price is $5,734,417 and the reported throughput is 105.12 TOPS, then the 

price/performance is $54,551.16/TOPS (54,551.151 rounded up). 

 

Estimating (xiVPthro). For simplicity, we estimate xiVPthro relevant to the business 

domain. For every completed on-line operation, Duke’s would not need to have to 

serve a customer in person at a branch. That is, the Duke’s savings are in the manual-

effort for serving the clients at a branch. For example, let us assume a scenario where 

a clerk needs one minute for completing a business operation: if we assume an 

overhead cost of $100,000/year for each clerk, then an online operation saves about a 

dollar per operation in a minute: $100000/ (220day * 8hours * 60minutes). 

Computing the savings per second is then straightforward. We use scenarios of 8 and 

20 clerks for computing xiVPthro.  

 

Estimating volatility (σPthro). Volatility represents uncertainty attributed to the likely 

growing of load. For some computation, we abide to the real options principles in 

computing volatility: we use the standard deviation of xiVPthros due supporting extra 

operations for a range of load at a particular host (as the range is said to be revealing 

to the fluctuation in the value). For some computations, we use modeling estimates 

for volatility, representing uncertainty, with the objective of demonstrating how 

volatility is said to influence the options results. 

  

Exercise time (t Pthro) and free risk interest rate(r Pthro). As a simulation assumption, 

we set the exercise time to one year, assuming that the Duke’s Bank needs to 

accommodate the change in one-year time. We set the free risk interest rate to zero 

(i.e., assuming that the value of money today is the same as that in one year’s time). 

 

6.3.7 Options Analysis: Results and Discussion  
 

In this Section, we report on some selective results and observations upon the 

application of the model. As part of this evaluation, the objective of this section is to 
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extend the confidence in some of the claims that ArchOptions makes and to simulate 

the application of the model. These claims are sufficiently described in Section 6.1 of 

this Chapter. In particular, We verify that the choice of a stable distributed software 

architecture has to be guided by the choice of the underlying middleware and its 

flexibility in responding to future changes in non-functional requirements. We verify 

the hypothesis that flexibility creates real options in the structure relative to likely 

changes in requirements. We exemplify the use of valuation point of view for 

capturing the options from different perspectives. We demonstrate how uncertainty 

impacts value and consequently the decision of selecting a stable architecture. We 

show how the options results are compared to other valuation techniques, which fall 

short in dealing with the value of flexibility under uncertainty. In line of previous 

discussion, CORBA and J2EE correspond to M0 and M1 respectively. We refer to the 

architecture of the Duke’s Bank as S0 when induced by M0 and S1 when induced M1. 

 

Observation 1. Flexibility creates real options: S1 is more flexible than S0 (due to the 

primitives in J2EE); S1 has created more real options than  S0. 

 

Let us first focus the analysis on the maintainability valuation point of view, PM. 

Let us consider the scenario where we consider one host. For this scenario, we 

assume that the license cost (Clicesh) is zero for M1 (e.g., the usage of JBoss an 

open source). Table 6.12 reports on the effort (man-month) and cost in ($); it 

provides three values: optimistic, likely, and pessimistic for each parameter. 

The xiVPMS1/S0 correspond to the difference- as reported in Table 13a. The 

overall expected savings of inducing the structure with S1 relative to S0 are in 

the range of $96450(pessimistic) to $150704(optimistic). As far as the 

development effort is concerned, expected savings are in the range of 

$96481(pessimistic) to $150753(optimistic) for realizing the scalability 

requirements. As far as configuration effort is concerned, S1 has not reported 

any expected savings relative to S0. However, these figures are insignificant. 

As far as the effort of deployment is concerned, both are comparable when it 

comes to SLOC. We note that these figures are based on COCOMO II: the 

number of man-months is different from the time that will take for 

completing a project, termed as the development schedule. For example, a 
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project could be estimated to require 50 man-months of effort but have a 

schedule of 11 months. Accordingly, the cost and relative savings, maybe 

adjusted relative to the schedule. We have relaxed this, as the aim of the 

exercise is to simulate the applicability of the model. The xiVs will be used to 

quantify the added value, taking the form of options, due to the embedded 

flexibility on S1 relative to S0. 

 

Table 6.13a shows that S1 is in the money in response to the change in 

scalability, when compared to S0. Table 6.11a shows that S1 is in the money 

relative to the development, configuration, and the deployment. The results 

of table 6.13a read that inducing the architecture with M1 is likely to enhance 

the option value by an excess of $96450(pessimistic) to $150704(optimistic) 

over S0, if the change in scalability need to be exercised in one year time. 

Thus, the results show that S1 induced by M1 is likely to add more value in the 

form of options in response to the change, when compared to S0. It is worth 

pointing out that though S1 is flexible relative to the scalability change, it 

might not necessarily mean that it might be flexible with respect to other 

changes. Obviously, JBoss does provide the primitives for scaling the 

software system, which result in making the architecture of the software 

system more flexible in accommodating the change in scalability, as when 

compared to the CORBA version. This has lead to a notable savings in 

maintenance cost. Calculating the options of S0 relative to S1, we can see that 

S0 is said to be out of the money for this change. The CORBA version has not 

added value, relative to J2EE, as the cost of implementing the change was 

relatively significant to “pull” the options, as reported in Table 6.13b. The 

very low value of Vega means that possible changes in volatility have 

relatively little impact on the value of the options. The high value of Delta in 

Tables 13a and Table 6.13b roughly means that changes in xiVPM could have 

high impact on the on the calculated options. 
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Table 6.13a. The options in ($) on the architecture induced by S1 relative to S0 for one 
host, with S1 license cost (Clicesh) =zero for the maintainability valuation point of view 
 

 
 
Table 6.13b. The options in ($) on the architecture induced by S0 relative to S1 for one 
host, with (Clicesh) =zero for the maintainability valuation point of view 
 
 
 
 
 
 
 
 
Table 6.13c. Options in ($) on S0 relative to S1 with (Clicesh) = $25000 and σPM=22.7 and 
pessimistic CeiPM for the maintainability valuation point of view 
 

 CeiPM xiVPM OptionsPM

Adjusted
Options 

Concurrent 
Users 

1 2386 25049 2343 0 U1S0 vs U1S1  
2 4772 50049 4772 0 U2S0 vs U2S1 
3 7158 75049 67891 0 U3S0 vs U3S1 
4 9544 100049 90505 0 U4S0 vs U4S1 
5 11930 125049 113119 0 U5S0 vs U5S1 
6 14316 150049 135733 0 U6S0 vs U6S1 
7 16702 175049 158347 7643 U7S0 vs U7S1 

 

 

Let now us inspect another form of flexibility that S1 provides over S0, relative 

to the throughput valuation point of view, Pthro:  

Consider a scenario, where the likely load is 1042 TOPS. Table 6.14a shows 

that 1042 TOPS can be supported by three hosts, if the Duke’s architecture is 

induced with either M1 (WLS) or M0 (JacORB). Table 6.14a shows that for 

three hosts, supporting 1042 TOPS costs $1488.88 for S1 when induced with 

WLS but $243.05 for S0 when induced with JacORB. The cost is denoted by 

    CeiPM xiVPM σPM TPM OptionsPM Delta Vega 
Optimistic 1158 96450 94892 1 9.1149E-71 

Likely 1948 120563 118615 1 1.1628E-70 Overall  
Pessimistic  2435 150704 

22.7 1 
148269 1 1.4533E-70 

Optimistic 0 96481 96481 1 0 
Likely 0 120602 120602 1 0 Development  

Pessimistic 0 150753 
22.7 1 

150753 1 0 
Optimistic 1558 -31 0 0 0 

Likely 1948 -39 0 0 0 Configuration 
and Deployment 

Pessimistic 2435 -49 
22.7 1 

0 0 0 

   CeiPM xiVPM σPM TPM OptionsPM Delta Vega 
Optimistic 96450 31 0 0 0 

Likely 120563 39 0 0 0 Overall  
Pessimistic 150704 49 

22.7 1 
0 0 0 
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CeiPthro. Supporting 1042 TOPS online is assumed to eliminate manual-

overhead and create xiVs, as explained in Section 6.3.6 and computed using 

eight clerks scenario. Using high volatility modeling assumptions for σPthro= 

100% for simplicity, Table 6.14a shows that S1 adds more value than So for 

three hosts. This is because the cost of implementing both load balancing and 

fault-tolerance is far from breaking even on S0 for three hosts. 

 

Let us now suppose that Duke’s can only afford to invest in three hosts and 

the investment is to be made. Let us now assume that the load is likely to 

grow from 1042 TOPS to the range of 1250-1395 TOPS, as a result of 

accommodating more customers in one year time:  

 

According to Table 6.14b, as the load increases over 1042 TOPS, M1 continues 

to be of a better value for flexibility as when compared to M0 for the following 

reasons: First, S0 will be inflexible to support an extra operation beyond 1042 

TOPS for three hosts (Table 6.11). That is, the growing load requires an 

additional host; henceforth, incurring hardware costs. Second, the cost of 

implementing both load balancing and fault-tolerance is far from breaking 

even on S0 for three hosts. As a result, S0 ceases to create real options on three 

hosts if the load exceeds the expected 1024 TOPS. Conversely, for the range of 

1250-1395 TOPS, S1 tends to carry growth options on three hosts. This is 

because at threshold, S1 can support around 1395 TOPS (Table 6.11). That is, 

S1 when induced with WLS, tends to create value for an additional 371 TOPS 

on three hosts.  

 

Formalizing this thinking,  

The architectural potential of S1 (WLS) = value in supporting 1042 

TOPS now + growth options in supporting an additional 371 TOPS;  

The architectural potential of S0 (JacORB) = value in supporting 1042 

TOPS now + zero growth options beyond 1042 TOPS. 
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Table 6.14a. Supporting 1042 TOPS with three hosts and their options value, 
if the Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB), 
σPthro= 100%  

 

 

 

 

Hence, for three hosts and with the likely growing load in the range of 1250-

1390 TOPS, S1 exhibits that it has flexibility under uncertainty. This flexibility 

takes the form of growth options held on S1. The value of these options is in 

supporting an additional 371 TOPS. The more uncertain we are about the 

likely growth in load (i.e., beyond 1024 TOPS and in the range of 1250-1390 

TOPS), the more valuable is the flexibility in S1 relative to S0.  

 

Table 6.14b. Supporting 1395 TOPS with three hosts and their options value, 
if the Duke’s architecture is induced with either M1 (WLS) or M0 (JacORB)  
σPthro= 100%   

 

 

 

 

Observation 2. How worth is the embedded flexibility in S1 when induced with M1, 

relative to that of S0 when induced with M0?  

Consider the case where we use WLS as M1 with an average upfront payable 

license cost Clicesh= $25000/host. As an upfront license fee is incurred, 

increasing the number of hosts may carry unnecessary expenditures that 

could be avoided, if we use M0 instead. Let us first analyze the case from the 

structural point of view: M0 does also incur costs upon scaling the software 

system through the development of both the load balancing and the fault 

tolerance services. Such a cost, however, maybe “diluted” as the number of 

hosts increases. The cost is said to be distributed across the hosts and 

incurred once, as the developed services can be reused across other hosts. For 

1042 
TOPS 

No 
Hosts 

CeiPthro XiVPthro OptionsPthro 

S1(WLS) 3 148.88 131.61 45.44 
S1(JBOSS) 4 126.96 131.61 51.86 
S0(JacORB) 3 243.05 131.61 27.59 

1250-1395  
TOPS 

No 
Hosts 

CeiPthro XiVPthro OptionsPthro Growth Options 

S1(WLS) 3 148.88 176.61 77.05 31.61 
S1(JBOSS) 4 126.96  176.1 85.79 33.93 for 4 hosts 
S0(JacORB) 3 243.05  131.61 27.59 0 
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this experiment, we assume that developing the fault tolerance and load 

services are upfront investments to buy growth options on the structure. An 

additional configuration and deployment cost materializes per host and sum 

up to the exercise price, CeiPM as in equation (6.3), when an additional host is 

needed to scale the software. xiVPMS0/S1 is calculated based on equation (6.4). 

We calculate the options of S0 relative to S1. We adjust the options by 

subtracting the upfront expenditure of developing both services on M0, as 

reported in Table 6.13c. The adjusted options reveal situations in which S0 is 

likely to add value relative to S1, when the upfront cost is considered. These 

results may provide us with insights on the cost effectiveness of 

implementing fault tolerance and load balancing support to scale the 

software system relative to S1, where a licensing cost is incurred per host. 

Therefore, a question of interest is: when is it cost effective to use M0 instead 

of M1 relative to the structural point of view (maintainability)? In other 

words, when the flexibility of M1 cease to create value relative to M0. We 

assume that for any k hosts, S0 and S1 are said to support UkS0 and UkS1 

concurrent users, respectively; where UkS0 could be different or equal to UkS1. 

For the non-adjusted options results of Table 6.13c shows that inducing the 

architecture with M0 is likely to enhance the option value of S0 relative to S1 

(pessimistic) for the case of n hosts for n>0, under the condition that UnS0 

>>=UnS1 and under the assumption that the upfront cost of developing fault 

tolerance and load balancing is relaxed. However, if we benchmark these 

options values against the cost of developing the load balancing and fault 

tolerance services (i.e., the upfront cost), we can see that payoff following 

developing these services is far from breaking even for less than seven hosts, 

as depicted in Figure 6.11.   
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Options on S0 relative to S1
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Figure 6.11. Maintainability valuation point of view: Options on S0 relative S1 
prior to adjustment 
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Figure 6.12. Maintainability valuation point of view: Options on S0 and S1 

upon varying the number of hosts 
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Hence, once we adjust the options to take care of the upfront cost of investing 

to implement the both services, the adjusted options for S0 relative to S1 

reports values in the money for the case of seven or more hosts, as shown in 

Table 6.13c and sketched in Figure 6.12. For the case of seven or more hosts, 

the M0 appears to be a better choice under the condition that UnS0 >>=UnS1. 

These is due to the fact the expenditures in M1 licenses increases with the 

number of hosts, henceforth, the savings in adopting M1 cease to exist. For 

less than seven hosts, M1 has better potentials and appears to be more cost-

effective under the condition that UnS1 >>=UnS0. For seven or more hosts, M0 

appears to be of better potentials under the conditions UnS0 >>=UnS1, as 

depicted in Figure 6.12. The use of this case to exercise the ArchOptions 

model has the prospect in providing an insight on how much do we need to 

invest in the adapted flexibility relative to the likely future changes, while not 

sacrificing much of the resources. 

 

Let us now turn to the throughput valuation point of view, PM: Let us 

analyze the architectural potential of S1 and S0 under a high-load scenario 

using one and two hosts. Under full utilization of capacity at a host, the value 

added shows that S1, whether induced with WLS or JBOSS, is “more” in-the-

money, as when compared to S0 for one and two hosts (Figure 6.13). We 

attribute this to two reasons: First, S0 will incur an upfront cost for the 

development of both the load balancing and the fault tolerance services to 

meet the growing load. This cost is said to be counted in the Price/TOPS. 

Second, S0 supports less TOPS for one and two hosts, as when compared to S1 

when induced with WLS.  

 

The results of Tables 6.15a-c (using high volatility modeling assumptions) 

suggest that S1, when induced with M1, is likely to enhance the option value 

by $25.1751/second (when induced with WLS) and $2.13/second (when 

induced with JBOSS) over S0 for one host. The results also suggest that S1 is 

likely to enhance the option value by $30.2/second (when induced by WLS) 

and by $1.4/second (when induced by JBOSS) over S0 for two hosts, if the 
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change in load materializes in one year-time. The computation assumes a full 

utilization of capacity per host under a similar load. As the load is likely to 

grow, the results suggest that S0 is likely to enhance the options value over S1, 

when induced by JBoss by $6.9/second and $42.12/second respectively for 

three and four hosts. This is because under full utilization of capacity, S0 is 

likely to support additional 279.36 TOPS using three hosts and another 528.71 

TOPS using four hosts, as when compared to S1, when induced with JBOSS. 

This implies that the adapted flexibility, due the development of the load-

balancing and the fault-tolerant services on S0, tend to be of better value than 

the “embedded” flexibility of S1, when induced with JBoss. S1, when induced 

with WLS, continues to be of a better value for three and four hosts as when 

compared to S0. It enhances the value by $48.3/second for three and by 

$102/second for four hosts. The interpretation is as follows: First, WLS can 

support additional 353 TOPS on 3 hosts and another 668 TOPS on 4 hosts, as 

when compared to S0. In terms of real options, WLS has embedded flexibility 

in supporting extra tops/hosts. That is WLS, has better value under 

uncertainty. Second, S0 is less “performant” than S1 (when induced with 

WLS); that is, S0 can execute less TOPS and generate less value.  
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Options per second in $ for WLS, JBoss, and JacORB
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Figure 6.13. Throughput valuation point of view: Options per second ($) for 
WLS, JBoss, and JacORB under high volatility assumptions  
 

 
Table 6.15a. Throughput valuation point of view: Options per second ($) for 
S1 when induced with WLS under high uncertainty (σPthro 100%) for 1 to 4 
hosts and their sensitivity 

 
S1 induced with WLS     Hosts  

XivPthro CeiPthro OptionsPthro Delta Vega 
1 92.42424 116.5451 28.639 0.60 0.35 
2 115.9549 136.2558 38.3265 0.63 0.43 
3 176.1919 148.8778 75.937 0.79 0.56 
4 333.455 107.2882 234.9709 0.94 0.35 

 

Table 6.15b. Throughput valuation point of view: Options per second ($) for 
S1 when induced with JBOSS under high uncertainty (σPthro 100%) for 1 to 4 
hosts and their sensitivity  

 
S1 induced with JBOSS      Hosts 

XivPthro CeiPthro OptionsPthro Delta Vega 
1 50.53758 150.68 5.60400 0.28 0.17 
2 63.40412 149.62 9.78300 0.39 0.24 
3 96.34174 173.98 20.73000 0.46 0.39 
4 182.3332 126.96 90.38285 0.81 0.51 
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Table 6.15c. Options per second ($) for S0 when induced with JacORB under 
high uncertainty (σPthro 100%) for 1 to 4 hosts and their sensitivity  

 
S0 induced with JacORB      Hosts 

XivPthro CeiPthro OptionsPthro Delta Vega 
1 69.04 330.86 3.46398 0.14 0.16 
2 86.62 285.32 8.24432 0.24 0.27 
3 131.61 243.05 27.59433 0.45 0.52 
4 249.09 154.07 132.54728 0.84 0.61 

 

 

Observation 3. The value of flexibility under uncertainty  

One of the earlier claims we have made is that real options is suited to address 

typical software evolution problems, where uncertainty attributed to the change in 

requirements is the norm. We have also claimed that using real options theory is 

better suited than techniques that are based on Present Value (PV) and Discount 

Cash Flow (DCF) as these techniques tend to systematically underestimate the value 

of flexibility under uncertainty. As we have mentioned in several occasions, in our 

case the likely change in load is the major source of uncertainty that the Duke’s Bank 

faces. To address such uncertainty and provide better insights on value creation, we 

have appealed to the use of real options theory.   
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Figure 6.14. The Cash flow at Year i, represents cash flows in which the cash 
flows occur, and r is a per-period discount rate  

 

Let us assume that the load is assumed to be in the range of 30- 50 TOPS. Based on 

the benchmarks, 30-50 TOPS could be easily addressed by one host using either M0 

(JacORB) or M1 (JBOSS or WLS). Figure 6.15 sketches the likely associated costs when 

inducing the architecture with either alternative.  

 

S1(WLS), S1(JBOSS), and S0(JacORB) costs for 1 
host (low throughput)
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Figure 6.15. The likely associated costs compared upon inducing 
Duke’s architecture with WLS, JBOSS, and JacORB for very low 
throughput requirements on 1 host 

 

For such a low throughput requirements, inducing the architecture with M0 may 

appear to be more attractive as when compared to inducing the architecture with 

M1 (using either JBoss or WLS). This is because M1 incurs license costs for WLS. 

Moreover, looking at S1 when induced with JBOSS, S1 is likely to be in magnitude 
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slower than S0 as when induced with JacORB. This means that S1 (JBOSS) will 

support fewer TOPS and consequently will create less value added per second as 

when compared to S0. For this low load, the fault-tolerance and load-balancing 

services need not be implemented on S0. If options analysis is not used, M0 will 

be a no-brain choice for inducing the Duke’s Bank architecture. Though inducing 

the architecture S1 with M1 (using WLS) appears less attractive than M0 (JacORB), 

S1 may still carry embedded growth options which will only materialize if the load 

grows. If we use a PV or DCF approach, the resulted valuation will compute the 

present value as realized and ignore these growth options. In other words, 

inducing the architecture with WLS if undertaken, PV or DCF would hint that S1 

would destroy value rather than create it. Formulating this argument, a PV 

approach, for example, will leave us with ValueS1 = PV. However, ValueS1 is 

actually ValueS1 = PV + Opt.  That is, M1 carry embedded growth options, Opt. 

The Opt, if left unexercised, are ignored by the non-options analysis. Hence, 

Value for S1 is then said to be underestimated. As a result, S0 may look more 

attractive (Table 6.16a). The PV and DCF calculation of Table 6.16a shows that S1 

is the least attractive for this range of load. The computation is based on the 

benefits of supporting 100 TOPS less their costs. However, the computation 

ignores the growth options on S1 in supporting additional 632 TOPS using the 

first host. Similarly, the PV and DCF systematically undervalue the growth 

potential of S1 (Jboss) and S0 (JacORB) in respectively supporting 300.26 TOPS 

and 446.26 TOPS. In other words, PV and DCF ignore the flexibility value of S1 

and S0 in responding to the growing load at host 1. Note that it is a fact that NPV 

or DCF does not work well for projects with future decisions that depend on how 

uncertainty resolves. Though they can be used to evaluate the operational 

benefits in a stable environment with well-understood and measurable costs and 

benefits, they have little to offer when capturing additional value due to 

flexibility under uncertainty, such as strategic opportunities and the ability to 

respond to changing conditions. Using PV or DCF, S1, when induced with WLS, 

reports negative values upon inducing the architecture with WLS for this range 

of load. However, the situation indicates that these results underestimate the 

value of S1, as S1 can better respond to uncertainty, where the load is likely to 

grow over 100 TOPS. In Table 6.16b, we have turned to the intuition and used 

ArchOptions to capture the growth options on S1 and S0. The volatility parameter 
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is an expression of the range of “benefits” at a host. For example, consider S1 

(WLS): the benefits could “wander” from zero (i.e., idle state with no operations 

executing at a second) to the benefits derived from full utilization of capacity (i.e., 

in the support of 732 TOPS).  That is, the volatility of 66%  for  S1 (WLS) indicates 

that the benefits of executing the TOPS is in the range of $0(idle) to $92.42(full 

utilization) per second on host 1. Similarly, for S0 (JacORB): the 45% volatility for  

S0 (JacORB) indicates that the benefits of executing the TOPS are in the range of 

$0(idle) to $69.04 (full utilization) per second on host 1. As far as the options on 

S1(WLS) are concerned, S1 has “pulled” the options on one host for this range of 

load. This is because we have accounted for the possible fluctuation in the 

derived values from supporting the TOPS. Considering such “fluctuation” 

provides us with better insights on the architectural potential of S1 in support of 

this likely change in load. Table 6.16b suggests S1 has reported a value added of 

$0.017 on 1 host.  
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Figure 6.16a. The options, PV, and DCF on S1 when induced with WLS 
relative to the throughput valuation point of view 
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S1(JBOSS)- Options, PV, and DCF
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Figure 6.16b. The options, PV, and DCF on S1 when induced with JBoss 
relative to the throughput valuation point of view 
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Figure 6.16c. The options, PV, and DCF on S0 when induced with JacORB 
relative to the throughput valuation point of view 

 

Table 6.16a. Illustration NPV and DCF per second ($) very low throuput 
scenario (100 TOPS)  
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100 TOPS No 
Hosts 

Max 
TOPS  

CeiPThro XiVPThro PV DCF Value 
Ignored 
(TOPS) 

S1(WLS) 1 732.00 853.11 12.63 -840.48 -933.87 -632 TOPS 
S1(JBOSS) 1 400.26 603.11 12.63 -590.48 -656.09 -300.26TOPS 
S0(JacORB) 1 546.80 603.11 12.63 -590.48 -656.09 -446.80TOPS 

 

Table 6.16b. Illustration options per second ($) very low throuput scenario 
(100 TOPS)  

 

100 TOPS No 
Hosts 

CeiPThro XiVPThro σPthro Options  Actual Value 
 (TOPS) 

S1(WLS) 1 853.11 92.424 66% 0.01700 100 + 632 TOPS 
S1(JBOSS) 1 603.11 50.53 35% 0+ 100 + 300.26TOPS 

S0(JacORB) 1 603.11 69.04 49% 0.00001 100 + 446.80TOPS 

 

 

 

Observation 4: Comparing PV and Options: the impact of volatility on value  

 

A critical difference between PV/DCF and real options is the effect of uncertainty 

(or risk) on value. Figures 6.16a-c shows that PV and DCF systematically 

underestimate the potential value of S1 and S0 in supporting a range in load on 

one to four hosts. The reason why DCF reports steeper values is due to the 

discount rate (10% is used for illustration purposes only). We have turned to the 

intuition and have used a more powerful technique offered by the theory of 

option pricing to capture the value of flexibility under the dynamic and the 

uncertain range of load. However, how this uncertainty is expressed? How does 

this relate to Duke’s case? Let us have a close look at the impact of the volatility 

parameter, which is an expression of the value of flexibility under uncertainty.  

 

In the context of ArchOptions, the volatility parameter estimates the “cone of 

uncertainty” in the future value of the asset, rooted as its current value and 

extending over time as a function of volatility. As volatility increases, total 

uncertainty around the benefits also increases. The more TOPS a host is likely to 

support, the more likely that the actual benefits to “wander” up and down and 

deviate from the expected present value if the load grows. Hence, the more 

volatile the environment is said to be.  
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Let us now assume that Duke’s Bank needs to support more customers. Assume 

that the load is likely to grow and be in the range of 600- 686 TOPS (Table 6.17a): 

S1, when induced with WLS, realizes the change in load by one host. S0, when 

induced with JacORB, will need two hosts and will incur the cost of developing 

the fault-tolerance and load-balancing services on the structure. Yet, S1 when 

induced with JBoss will require three hosts and will incur additional hardware 

costs for completing the 686 TOPS. Figure 6.17 shows a scenario for a likely load 

of 600-686 TOPS for S1 when induced with WLS and for S0 when induced with 

JacORB. S1 could be regarded as an investment with a wide range of possible 

outcomes. However, S0 is an investment with a relatively narrower range. For S1, 

the investment is said to be more volatile. This is because S1 can support more 

TOPS/host resulting in a possible range of values. Relating this to PV, this means 

that there is a chance of producing positive PV in the future. Hence, a real option 

under this set of outcomes would have value. As for the S0, the valuation under 

this scenario is more stable. This is because S0 can support at most 686 TOPS for 

the existing configuration. This means that S0 has no chance of producing a 

project with a positive NPV beyond 686 TOPS. That is an option using the latter 

set of outcomes would have no value. 

 

 
Figure 6.17. Impact of volatility on value 
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Table 6.17a. PV and DCF ($) per second for supporting 686 TOPS on S0 and S1 and 
the values they ingnore  

 
 
 
 

 

 
 
 
 

 
 
 
 
Table 6.17b. Adjusted PV and the options in ($) per second under full utilization 
scenario of hosts for load greater than 686 TOPS on S0 and S1 and the values added 
per second  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Let us now assume that we have induced the Duke’s architecture with M1 (WLS) for 

one version and M0 (JacORB) for the other. Hence, investment is made. As time 

passes, let us assume that an increase in load materializes. As change in load 

materializes, uncertainty is assumed to be resolved. Thus, the present value, as a 

result of supporting more TOPS (analogous to the future value of a stock), can be 

then calculated more accurately. If we examine the PV of this scenario, we can see 

that PV reports $92.18/second for WLS for 686 TOPS. That is, this is equal to the 
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benefits minus the costs of completing the 686 TOPS. However, this value is said to 

be underestimated, as it ignores the additional 46 TOPS that S1 can support using one 

host (i.e., 732 minus 46 TOPS). S1, when induced with JBoss, reports a PV of $23.03, 

ignoring the additional value of supporting 77 TOPS for this configuration. S0, when 

induced with JacORB, reports a negative PV. The negative value is attributed to cost 

incurred upon the development of the fault tolerance and the load balancing services 

on S0. Let us now turn to options: Table 6.17b suggests that for 686 TOPS, S1, when 

induced with WLS, creates more options than S0 using one host. In particular, S1 

(WLS) reports a value of $106.7. S1 (JBoss) reports a value of $47.3. S0 (JacORB) 

reports a value of $0. Why is this difference? Technically speaking, this is because of 

the volatility parameter that captures variation in the value potentials of the said 

structures. For S1 (WLS), the difference for S1 (WLS) is attributed the range of possible 

returns that the additional  46 could ascribe to S1(WLS). This means that for S1 (WLS), 

the additional future values, if the range in load changes, is in the bound of $0(i.e., at 

most 686 TOPS) to $46*216.54/686(i.e., assuming equal returns upon supporting the 

additional 46TOPS). This will leave us with a volatility of %10.52, using the standard 

deviation of the returns over this bound. Similar argument applies for S1 (JBoss), 

leaving us with a volatility equal to %6.9 in support of the additional 77 TOPS. S0 

(JacORB) reports $0 options. This is because S0 (JacORB) cannot support additional 

TOPS on this structure. In the language of options, S0 (JacORB) is not volatile and 

ceases to create options beyond 686 TOPS; henceforth, the reported zero values.  

 

Let us now turn to PV again and assume an additional load has materialized (i.e., 

uncertainty has been resolved). Let us adjust the PV based on the new information at 

hand: if we compute the PV of the additional 46 TOPS for S1 (WLS), this will leave us 

with an added value of $14.52 over the previously computed PV, as reported in Table 

6.17b. If we compute the PV of the additional 77 TOPS for S1 (JBoss), this will leave us 

with an added value of $24.34 over the previously computed PV for S1(JBoss)- see 

Table 6.17b. Adjusting the PV, we sum these values with the previously reported PVs 

of Table 6.17b. This will leave us with $106.7 value for S1 (WLS) and $47.3 value for S1 

(JBoss). Henceforth, this is a match with the ArchOptions results for S1 (WLS) and S1 

(JBoss).  
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This observation leaves us with following conclusions: First, though it is still possible 

to adjust PV or DCF techniques for capturing the options, ArchOptions provides us 

with a ready and closed-form solution, rooted in options theory, for capturing the 

value of flexibility under uncertainty on a given architecture. This solution is said to 

be superior to PV and DCF, as the latter they systematically underestimate the value 

of the flexibility of an architecture under uncertainty. Secondly, the analysis of 

matching the adjusted PV values with that of ArchOptions confirms the correctness 

and the effectiveness of the model. Nevertheless, the effectiveness of ArchOptions is 

essentially rooted in our use of Black and Scholes options theory. The analysis, 

however, has established confidence on both its correctness and effectiveness. Third, 

the results of this observation show that the volatility parameter is critical for the 

valuation of the options. In real situations, the performance analyst/architect may 

inspect available performance benchmarks, screen historical load-trends to predict 

future ones, or use prototypes of partial implementations to collect performance 

indices. Consequently, volatility can be then empirically extracted.  The analyst can 

make use of the sensitivity analysis we have provided in Chapter 4 for better 

understanding of the impact of throughput on the value added when uncertainty in 

the likely future load dominates.    

 

Observation 5. Selecting a stable architecture 

The change impact analysis has shown that the architectural structure of S1 is 

left intact when the scalability change needs to be accommodated. However, 

the structure of S0 has undergone some changes, mostly on the architectural 

infrastructure level to accommodate the scalability requirements. From a 

value-based perspective, the search for a potentially stable architecture 

requires finding an architecture that maximizes the yield in the added value, 

relative to some future changes in requirements. As we are assuming that the 

added value is attributed to flexibility, the problem becomes selecting an 

architecture that maximize the yield in the embedded or adapted flexibility in 

a software architecture relative to these changes. Even, if we accept the fact 

that modifying the architecture or the infrastructure is the only solution 

towards accommodating the change, valuation the impact of the change 

becomes necessary to see how far we are expending to “re-maintain” or “re-
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achieve” architectural stability relative to the change. Note that the economic 

interplay between evolving requirements, the flexibility of the architecture to 

accommodate the change, the structural impact, and the corresponding 

cost/value implications is the key towards selecting a “more” stable 

architectures that tends to add value as the requirements evolve. Though it 

might be appealing to the intuition that the “intactness” of the structure is the 

definitive criteria for selecting a “more” stable architectures, the practice 

reveals a different trend; it nails down to the potential added value upon 

exercising the change.   

 

If you consider the case of S0 and S1 in response to the change in scalability for 

one host (Table 6.13a), the flexibility has yielded a better payoff for S1 than for 

S0, while leaving S1 intact. This implies that inducing the Duke’s Bank 

software architecture with M1 is likely to be more stable relative to the future 

change in scalability, than when induced with M0. However, the situation and 

the analysis have differed upon varying the number of hosts and upon 

factoring a license costs for S1. Though S0 has undergone some structural 

changes to accommodate the change, the case has shown that it is still 

acceptable to modify the architecture and to realize added value under the 

conditions that UnS0 >>=UnS1 for 7 or more hosts (Table 6.13c, Figure 6.12). 

Hence, what matters is the added value upon either embarking on a “more” 

flexible architecture, or investing to enhance flexibility which is the case for 

implementing load balancing and fault tolerance on S0. For the case of 

WebLogic, Though M1 is in principle more flexible, the flexibility comes with 

a price, where the flexibility turned to be a liability rather than a value for  7 

or more  hosts, as when compared with the JacORB, under the condition that 

UnS0 >>=UnS1. The case verifies our claims that the value of flexibility can 

guide towards the selection of architectures that tend to add more value, as 

the requirements evolve. These architectures have the potential of being 

potentially stable.    

 

The analysis of the throughput valuation point of view, taking the 

throughput as a critical measure, has revealed a different trend upon taking 

into account the distribution cost and the added value of the supported TOPS 
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on a host. Deciding on a particular middleware to induce the software system 

architecture can be seen as an investment to purchase future growth options 

that enhance the upside potentials of the structure. Looking at the throughput 

valuation point of view, part of the growth options come from the ability of 

the induced-architecture to support more TOPS while minimizing the cost of 

distribution; henceforth, creating more options. These growth options are 

correlated with the TOPS that could be supported on a host and their exercise 

price. However, the choice is not straightforward as the future load is 

“dynamic” and uncertain. The range in which the load may change 

determines the suitability of the choice. If the likely load tends to be high and 

uncertain, an induced-architecture, which is volatile and holds more options, 

will be a favorable choice. If the range in the load is deterministic but low, the 

maintainability point of view may steer the selection (see Observation 3). In 

this regard, one could characterize the choice of a “more” stable architecture 

as a multi-objective optimization activity in which one trades maintainability 

for performance. In real situations, selecting a stable architecture implies 

finding an architecture, which maximizes the yield in the added value 

relative to the two valuation points.  

 

The options analysis has complemented the structural and the behavioral 

analyses to quantify the impact of the change on the software architecture. 

The intuition is that complementing  both structural and behavioral impact 

analysis with a value-based calculation, the combination provides the 

architect/analyst with a useful tool for understanding extent to which the 

software system tend to be flexible relative to a likely change in requirements, 

a cost/value indictors of the impact of the change on the structure, its 

performance which is directly linked to value, the likely success (failure) of 

the software system evolution, and consequently the potential stability of the 

software architecture relative to the change. 

 
 
6.3.8 Implications on the Discipline   
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In subsequent sections, we draw some preliminary lessons and insights that have 

derived upon the application of ArchOptions. This could stimulate future research in 

the area of relating requirements to software architectures and consequently advance 

our understanding to the architectural stability problem, when addressed from the 

evolution of the non-functional requirement perspective.  

 

Implication 1. Understanding architectural stability has to be in connection with the 

solution domain 

 

Our hypothesis that middleware induced-software architectures differ in coping 

with changes is verified to be true for the given change. Based on the pervious 

observations, we can see that the stability of S1 and S0 appears to be dependent 

on the flexibility of the middleware in accommodating the likely changes in the 

scalability requirements. For the category of distributed software systems that 

are built using middleware, the results of the case study affirm the belief that 

investigating the stability of the distributed software architecture could be 

fruitless, if done in isolation of the middleware, where the middleware 

constraints and dominates much of the solution that relate to the non-

functionalities, managing system resources, and their ability to smoothly evolve 

over the life time of the software system. Hence, the development and the 

analysis for architectural stability and evolution shall consider the “coupling” 

between the architecture and the middleware. This addresses pragmatic needs 

and is feasible even at earlier stages of the software development life cycle: a 

considerable part of the distributed system implementation could be available, 

when the architecture is defined, for example, during the Elaboration phase of 

the Unified Process. We also note that the change in requirements could have 

been addressed by other architectural mechanisms. However, the middleware 

has guided the solution for evolving the software system. For instance, the 

choice of replication as an architectural mechanism for scaling the software 

system, with a given architectures S1 and S0 was respectively guided by the 

clustering primitives provided by M1 and the core capabilities provided by M0 to 

support load balancing and fault tolerance. Interestingly, Di Nitto and 

Rosenblum [1999] state that “despite the fact that architectures and middleware 
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address different phases of software development, the usage of middleware and 

predefined components can influence the architecture of the system being 

developed. Conversely, specific architectural choices constrain the selection of 

the underlying middleware used in the implementation phase”. In more abstract 

terms, Rapanotti, Hall, Jackson, and Nuseibeh [2004] advocate the use of 

information in the solution domain (e.g., the middleware-to be induced for our 

case) to inform the problem space: 

 

“Whereas Problem Frames are used only in the problem space, we 

observe that each of these competing views uses knowledge of the solution 

space: the first through the software engineer’s domain knowledge; the 

second through choice of domain-specific architectures, architectural styles, 

development patterns, etc; the third through the reuse of past development 

experience. All solution space knowledge can and should be used to inform 

the problem analysis for new software developments within that domain” 

[Rapanotti et al., 2004].  

 

The “coupling” between the middleware and the architecture becomes of higher 

interest in case of developing and analyzing software systems for evolution. This is 

because the solution domain can guide the development and evolution of the 

software system; provide more pragmatic and deterministic knowledge on the 

potential success (failure) of evolution, and consequently assist in understanding the 

stability of the software architectures from a pragmatic perspective. 

 

Implication 2. Understanding architectural stability: intertwined with changes in 

non-functional requirements, style, and the middleware   

 

Following the definition of Shaw and Garlan [1996], a style defines a set of 

general rules that describe or constrain the structure of architectures and the 

way their components interact. Styles are a mechanism for categorizing 

architectures and for defining their common characteristics. Though S1 and S0 

have exhibited similar styles (i.e., three-tier), they have differed in the way 

they cope with the change in scalability. The difference was not only due to 
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the architectural style, but also due to the primitives that are built-in in the 

middleware to facilitate scaling the software system. The governing factor, 

hence, appears to be to a large extent dependent on the flexibility of the 

middleware (e.g., through its built-in primitives) in supporting the change. 

The intuition and the preliminary observations, therefore, suggest that the 

style by itself is not revealing for the stability of the software architecture 

when the non-functional requirements evolve. It is, however, a factor of the 

extent to which the middleware primitives can support the change in non-

functional requirements. Interestingly, Sullivan et al. [1997] claims that for a 

system to be implemented in a straightforward manner on top of a 

middleware, the corresponding architecture has to be compliant with the 

architectural constraints imposed by the middleware. Sullivan et al. [1997] 

support this claim by demonstrating that a style, that in principle seems to be 

easily implementable using the COM middleware, is actually incompatible 

with it. Following a similar argument, adopting an architectural style that is 

in principle appear to be suitable for realizing the non-functionality and 

supporting its evolution, may not be complaint with the middleware in the 

first place. And if the architectural style happens to be compliant with the 

middleware, there are still uncertainties in the ability of the middleware 

primitives to support the change. In fact, the middleware primitives realize 

much of the non-functional requirements. Hence, the architectural style by 

itself may not be revealing for potential threats that the architecture may face 

when the non-functional requirements evolve. The evolution of non-

functionality maybe in principle easily supported by the style, but could be 

uneasily accommodated by the middleware. An observable advantage of 

scaling the software architecture induced by S1, for example, is that no 

development effort required to realize the scalability requirements through 

replication, as when compared to that of S0, knowing that in principle the 

style of S1 and S0 exhibit similar capabilities.  

 

Engineering for stability and evolution, requirements engineering has not 

only to be aware of the architecture (e.g., the style), but also of the underlying 

middleware. For example, if we take a goal-oriented approach to 

requirements engineering (e.g., [Dardenne et al., 1993]), we advocate 
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adjusting the non-functional requirements elicitation and their corresponding 

refinements to be aware of both the architectural style and the constraints 

imposed by middleware. The operationalization of these requirements in the 

software architecture have to be guided by both the architectural style, the 

complaint middleware for the said style, and guided by previous experience. 

This, we believe, is a pragmatic need towards engineering requirements and 

developing “evolvable” software architectures that tend to be stable as the 

non-functional requirements evolve. 

 
 
6.3.9 Concluding Remarks  
 

We have used change in scalability, a representative critical change in non-functional 

requirements to steer the study and apply the model. We have appealed to the use of 

structural and behavioral analysis, combined with value-based analysis, to inform 

the tradeoff and select a “more” stable architecture. Though the reported 

observations reveal a trend that agrees with the intuition, research, and the state-of-

practice, confirming the validity of the observations are still subject to careful further 

empirical studies. These studies may need to consider other non-functional 

requirements, their concurrent evolution, and their corresponding change impact on 

different architectural styles and middleware. As a limitation, we have relaxed 

considering the change impact of scaling up the software system on other non-

functional requirements like security, availability and reliability. However, we note 

that the analysis might get complex upon accounting for the impact of the change on 

other non-functional requirements and their interactions. Note the change could 

positively or negatively impact other non-functional requirements and 

understanding the cost implications is not straightforward and worth a separate 

empirical investigation. In this context, utilizing the NFR framework [Mylopoulos et 

al., 1992] could be promising to model the interaction of various non-functional 

requirements, their corresponding architectural decisions, and the negative/positive 

contribution of the architectural decisions in satisfying these non-functionalities. The 

framework could be then complemented by means for measuring (i) the 

corresponding cost of implementing the change itself, and (ii) the additional cost due 
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to the impact of the change on other contributing or conflicting non-functionalities, 

as realized by either the CORBA or the J2EE middleware-induced architectures.  

 

It is also worth noting that the investment decision in either CORBA or the J2EE 

might be influenced by other factors, such as the skills of the developers, the project 

maturity, and other organizational factors. The devised real options model does not 

explicitly take into account these factors. The treatment of these factors is left implicit 

and sufficiently addressed by our use of COCOMO II, where COCOMO II carries 

parameters to adjust the cost estimates based on these factors. It could be also argued 

that in iterative development, when estimations are continuously recalibrated (e.g., 

in the Unified Process), it is possible to come up with estimations that are more 

accurate than COCOMO II, as they will take into account the above mentioned 

factors.            

 

We note that the flexibility of either solutions (i.e., the CORBA or the J2EE induced-

architectures) is closely tied to the problem domain. In particular, domain-specific 

functional characteristics can also influence the flexibility of the solution and its 

behavior, as both the application component and the infrastructure are tightly 

coupled [Liu and Gorton, 2003]. The way the application components and the 

infrastructure are coupled varies across various middlewares. For this study, the 

functional characteristics are assumed to be stable for both the J2EE and the CORBA 

versions; that is, they have not undergone any changes that require from us 

understanding the impact of the functionality change on the flexibility of either 

solutions. It will be interesting, however, to investigate how changes in the domain 

functional characteristics can impact the flexibility and the stability of the 

middleware-induced architectures. 

 

Under no considerations should the results be regarded as a definite distinction of 

the merit of one technology over the other, but yet still revealing on the scalability 

dimension. The reason is due to the fact that we have only used “flavors” of CORBA 

and J2EE, respectively through JacORB, JBoss, and WebLogic. 
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Table 6.18a and Table 6.18b relate the case to the method developed in the previous 

Chapter. The case has exemplified the valuation points of view framework that we 

have outlined in Chapter 5. It has appealed to the use of two: these are structural 

point of view (maintainability valuation point of view) and behavioral point of view 

(throughput valuation point of view). For Phase I of the method, the above case has 

adopted a goal-oriented approach to elicit the change as a goal that need to be 

achieved for scaling the structure. The refinement was done in relation to the 

middleware to be induced. For the throughput valuation point of view, we have 

assumed that we are given likely changes in load-range. We have attempted to relate 

the load-range to performance, which is an architectural quality, as a way to link the 

change to the architecture. Nevertheless, we could have adopted goal-oriented 

approaches for eliciting these ranges. However, the purpose of the case is to verify 

the thesis claims, illustrate the use of the model and simulate its steps; evaluate the 

maturity of model’s interpretations and its applicability.  

 

Table 6.18a. Relating the cases to Phase I of the method 
 

Phase I Case 2 

Setting the objectives for 

evaluating architectural 

stability 

Objective:  

Which middleware-induced architecture is more 

stable with respect to future changes in scalability 

and relative to two valuation points of view  

Maintaining scalability on the structure   Eliciting the change {i1, i2, 

…, in} that are critical to 

the set objectives 
Likely ranges in load 

The change was refined and traced to the 

middleware primitives responsible in realizing 

scalability 

Relating  the change to the 

architecture  

 

The change was related to performance  
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Table 6.18b. Relating the cases to Phase II of the method 
 

Phase II Case 2 

Structural(Maintainability valuation point of view): 

Maintainability, configuration, and deployment 

Identify valuation points 

of view  

Behavioral(Throughput valuation point of view): 

throughput  

Structural(Maintainability valuation point of view): 

J2EE built-in primitives in realizing scalability 

through replication  

Identify the value of the  

architectural potentials 

with respect to the change  

Behavioral(Throughput valuation point of view): 

value in supporting additional TOPS 

Structural: optimistic, likely, and pessimistic Volatility  

Behavioral(Throughput valuation point of view): 

return on possible values of supported TOPS in a  

range or modeling assumptions   

Structural(Maintainability valuation point of view): 

The cost of implementing scalability on each 

structure  

Estimate the cost of 

accommodating the 

change 

Behavioral(Throughput valuation point of view): 

Price/TOPS 

 
 
6.4 Comparative Analysis   
 

We evaluate ArchOptions using some general qualitative characteristics including 

simplicity of use, openness, comprehensiveness, and prediction effectiveness.  

 
Qualitative Characteristics  
 
The analogy that ArchOptions makes with options is simple, yet powerful and 

comprehensive enough to provide basis for analyses supporting plenty of problems. 

We have just utilized this simple and intuitive analogy to address two complex 

architectural centric-evolution problems: valuing the long-term cost-effectiveness of 

refactoring and informing the selection of more stable middleware. Further, in 

Chapter 7, we will highlight some possible unexplored uses of the model to reason 

about the worthiness of investing in restructuring “traditional” systems to support 
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aspect-orientation, with the objective of facilitating future maintainability and better 

stability.   

 

ArchOptions is a composite model, for it is flexible to incorporate estimations based 

on both expert knowledge and parameterized models. For example, our use of 

COCOMO II to estimate Cei and the use of subjective estimates of xiVs, based on the 

twin asset, uses both expert knowledge and parameterized models to estimation. 

Note that such a combination may result in higher estimate accuracy, as when 

compared to the use of models, which are solely based on expert knowledge or 

parameterized models. For example, for the case of the middleware selection, we 

have used TAO and benchmarks as twin assets. The intent behind using the twin 

asset is to understand the behavior of an option by using a corresponding replicating 

portfolio (i.e., a twin). The portfolio and the options are interchangeable for all 

practical purposes and should worth the same. The assumption is that the two assets, 

the option and the twin, with the same payoffs under same conditions, must have the 

same price. If we know how much the twin asset is worth in the present, we can then 

determine how much the option is worth in the present. The analogy of ArchOptions 

with options theory holds such assumptions, which we believe, is strength as it is 

grounded in a sound theory. Further, the use of the twin asset is said to theoretically 

complement software engineering approaches, which advocate using analogy to 

estimate cost in software (e.g., [Shepperd et al., 1996]) for improving the prediction.  

A notable desirable feature of ArchOptions is its flexibility and openness; the model 

does not define rigorous ways for estimating its parameters, conducting its steps, 

and confirming specific actions to execute, following the options computation. 

Consequently, we note that evaluating methods like ArchOptions is rather hard, as 

their effectiveness is dependent on the way practitioners apply them. For example, 

practitioners may have to tailor ArchOptions to address the needs of a specific 

architectural-centric evolution problem and its desired stability requirements. In 

addition, the nature of the decisions made when applying ArchOptions 

fundamentally varies from one project to another, with the addressed problem, and 

across organizations. As a result, the effectiveness of its application is subject to the 

context in which the model is applied. ArchOptions is open; it could be easily 

integrated to complement existing architectural evaluation methods, highlighted in 

Chapter 2, with the objective of explicit evaluation for stability while taking an 
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economics-driven perspective. The integration may provide a basis for analyzing the 

complexity and economic ramifications of a change in requirements and its impact 

on the architecture and/or the associated architectural decisions.  

 

Prediction Effectiveness 
 
ArchOptions levels on a sound theory in financial engineering(Nobel Prize winning). 

The ArchOptions prediction is inherently effective as it is grounded in the use of 

Black and Scholes technique. Nevertheless, Observations 3 and 4 of Section 6.3.7 have 

confirmed the effectiveness of the prediction and the correctness of the computation 

through examples. The observations left us with the following conclusions: First, 

though it is still possible to adjust PV or DCF techniques for capturing the options, 

ArchOptions provides us with a ready and closed-form solution, rooted in options 

theory, for capturing the value of flexibility under uncertainty on a given 

architecture. This solution is said to be superior to PV and DCF, as PV and DCF 

systematically underestimate the value of the architectural flexibility under 

uncertainty. Secondly, the analysis and our ability to match the adjusted PV values 

with that of ArchOptions (refer to Observation 4) confirms the effectiveness of the 

model.  

 

To further confirm this claim and extend the confidence in the model prediction, we 

have conducted three small comparative exercises. In the first exercise, we report on 

the student’s experience in implementing the structural scalability change on the 

Duke’s architectures. We report on how the actual value is compared to that of the 

ArchOption’s predicted one. In the second exercise, we have benchmarked some 

representative results of the refactoring case against the binomial options model of 

[Cox and Rubinstein, 1985], one of the most cited options techniques in the economic 

literature. In the third exercise, we have compared the ArchOptions results of the 

refactoring case to that of [Leitch and Stroulia, 2003], where the latter is based on 

cost/benefit analysis. 

 

In conducting the above exercises, we have used the Magnitude Relative Error 

(MRE) [Conte et al., 1986], a commonly used measure, for the evaluation of 

estimation models. The objective is to evaluate the effectiveness of the ArchOptions 
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prediction and to understand the degree of deviation of the estimated options to that 

of the actual ones. The tailored MRE for our case is given in the below equation (6.5): 

 

 

MRE = |Options actual- Options predicted |     (6.5) 

Options actual   

Such that Options actual   >0  

 

 

One of the motivations behind using real options theory is because the value of the 

architectural potential to the change is uncertain as the change is uncertain. Let us 

assume that uncertainty is resolved: the value becomes certain. We can then calculate 

the value added, Options actual of (6.5), using PV. ArchOptions is then used to 

calculate the Options predicted. Using the Options actual and Options predicted, we could 

then calculate the MRE. We use the prediction level Pred(l) of equation (6.6). This 

measure is often used in the literature and is a proportion of the observations for a 

given level of accuracy. 

   

Pred(l) = K/N     (6.6) 

 

Where, N is the total number of observations, and K is the number of observations 

with an MRE less than or equal to l. A common value for l is 0.25. The Pred (0.25) 

gives the percentage of observation that were predicted with an MRE equal or less 

than 0.25. Conte et al. [1986] suggest an acceptable threshold value for the mean MRE 

to be less than 0.25. For Pred(0.25), Conte et al. [1986] suggest an acceptable threshold 

value to be greater or equal to 0.75.  

 

Exercise 1. Using the help of a student, the Duke’s bank was implemented. All effort 

was made to ensure that the student mimics the twin asset and utilize the guidelines 

provided by the supporting documentation for implementing and “switching on” 

scalability on each structure. SLOC were gathered from the corresponding 

implementation. The student implementation of the load balancing and the fault 

tolerance services on S0 (JacORB) yielded to 12226 SLOC in contrary to the estimated 

9240 SLOC. The 12226 SLOC corresponds to costs ranging from $127659(optimistic) 
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to $199470(pessimistic) according to Table 6.19a. These figures are computed using 

COCOMOII and based on similar computation assumptions to that of Table 6.13a 

and Table 6.13b. This means that if the student would have used S1 (JBOSS), then 

savings in person-months  relative to S0 (JacORB) would have been realized. These 

savings, xiVPM S1 (JBOSS), are in the range of $126101.8 to $197035.3 and according to 

Table 6.19b.  

 

Using PV, we have computed Options actual, on the maintainability valuation points 

of view, and based on the assumptions that value and cost are certain (i.e., as the 

architectural potential is now certain). For Options predicted of (6.5), we have used the 

options results of Table 6.13a and 6.13b. Using equation (6.5), the reported variation 

is in an acceptable range with 24% MRE.  

 

Table 6.19a. The SLOC and the corresponding cost of implementing the load 
balancing and fault tolerance by the student on  S0(JacORB)for one host 
(Maintainability valuation point of view) 
 

 

 

 

 

 
Table 6.19b. The predicted options ($), PV ($), and MRE on S1 (Jboss) relative to S0 
(JacORb) relative to the maintainability valuation point of view 
 

 

 

The deviation, however, could be attributed to the following reasons: the 

“unfaithfulness” that the student may have shown to the twin asset, TAO; his 

programming skills and style; the code optimization; any probable implementation 

defects; and so forth. As a limitation, we acknowledge that the sample is too small to 

generalize a conclusion. Replicating this trial, during the PhD period, was difficult 

for two major reasons: First, the experiment is time and human demanding; it is 

   
SLOC  

CeiPM 
S0(JacORB) 

Optimistic 127659.8 
Likely 159575.8 

Maintainability 
valuation point of

view  

 
12226 

Pessimistic 199470.4 

    CeiPM 
S1(Jboss) 

xiVPM 
S1(Jboss) 

   
ArchOptions 

 
Student (PV) 

 
MRE 

Pessimistic  1158 126101.8 94892 124543.7 0.238 
Likely 1948 157627.7 118615 155679.7 0.238 

Maintainability 
valuation point of 

view Optimistic 2435 197035.3 148269 194600.3 0.238 
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difficult to accommodate within the doctoral period. Second, the experiment 

includes some variables, which were difficult to control. The skills of the developer, 

the correctness and the completeness of the code, the programming style, are just a 

few variables to enumerate. The conducted study, however, provides the promise for 

future replication. As future work, we aim to conduct a careful  systematic study, 

possibly by assigning this exercise to a large group of students of advanced or 

graduate standing(with strong programming and distributing software engineering 

skills) to empirically arrive at a better insight on the predictive effectiveness of 

ArchOptions in relation to these variables.   

 

Exercise 2. One of the most cited options techniques in the economic literature is the 

binomial options model of [Cox and Rubinstein, 1985].  In brief, this binomial model 

assumes that the value of the underlying asset (in the ArchOptions case, denoted by 

xiV) follows a binomial distribution. Starting at time zero, in one time period t, xiV 

may rise to u xiV with probability q or fall to d xiV with probability 1-q, where d<1, 

u>1, and d<r<u. In contrast, the use of Black and Scholes [1973] assume that xiV is 

lognormaly distributed. Both assumptions means that the value of the underlying 

asset can increase to infinity, but only fall to zero [Hull, 1997]. The terminal value of a 

call option under [Cox and Rubinstein, 1985] at T is given by equations (6.7):  

 

Cu = max [0, u xiV – Cei]   and  

Cd = max [0, xiV – Cei],  

with probabilities q and 1-q, respectively (6.7) 

 

We have cast the ArchOptions model to use the options valuation technique of [Cox 

and Rubinstein, 1985]. For 18 observations, we have assumed that we are given 

values for u and d. Given u and d, we have calculated the “rise” and the “fall” in the 

values of the architectural potential in response to change for a time period. Let us 

now assume that the computed options using [Cox and Rubinstein, 1985] correspond 

to Options actual. Using a tool accompanied with [Hull, 1997], we have approximated 

the volatility from the possible ranges of the probability-adjusted values, arriving at 

the so-called implied volatility. The implied volatility and the corresponding 
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behavior of the adjusted-probability value are therefore comparable. Using the 

implied volatility, we can then use ArchOptions to estimate the Optionspredicted. Table 

6.19a reports on the MREs of the results for 18 observations. Figure 6.18 shows a very 

tiny variation upon the computation of the ArchOptions calls using Binomial theory 

[Cox and Rubinstein, 1985] and [Black and Scholes, 1973]. 

 

For Pred(0.25), ArchOptions reports 95% accuracy, which is in an acceptable 

accuracy range in accordance to [Conte et al., 1986]. The results, as sketched in Figure 

6.18 and depicted in Table 6.20, extend the confidence in the ArchOptions prediction. 

The variation, however, could be attributed to the following reasons: First, the 

assumptions that the Binomial options theory makes to the computation. Second, the 

approximation of the implied volatility from the probability adjusted values. 

However, the application of Black and Scholes [1973] offers a closed and an easy-to-

compute solution, for it assumes that xiV is lognormaly distributed, not requiring xiV 

to be probability-adjusted for rise and drop in value, as when compared to [Cox and 

Rubinstein, 1985]. Furthermore, determining u and d is a difficult empirical problem 

because asset “price” rarely follow a classical binomial process [Hull, 1997].   

 

Comparing ArchOptions to Binomial Options Theory
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Figure 6.18. ArchOptions and Binomial options compared for 18 observations  
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Table 6.20. The Refactoring case study: the MRE upon computing the calls of 
ArchOptions using [Black and Scholes, 1973] and  [Cox and Rubinstein, 1985] 

 

Observation Cei Xiv T ArchOptions Binomial MRE 
1 38296 3516 4 0 0 0 
2 47834 4396 4 0 0 0 
3 59795 5494 4 0 0 0 
4 29953 8046 4 100.6 92.5 0.0875676 
5 36458 11039 4 204 281 0.2740214 
6 45609 13764.1 4 252 236 0.0677966 
7 1893 9938.9 0.5 8046 8045 0.0001243 
8 2366 13405 0.5 11039 11039 0 
9 2958 16722 0.5 13764 13765 7.265E-05 
10 1893 9939 4 8052 8046 0.0007457 
11 2366 13405 4 11045 11039 0.0005435 
12 2958 16722 4 13772 13764 0.0005812 
13 1893 2877.6 4 993 992 0.0010081 
14 2366 4887.7 4 2522 2521 0.0003967 
15 2958 4983 4 2029 2026 0.0014808 
16 1893 1858 3 71.9 71.8 0.0013928 
17 2366 2323 3 90.2 90.03 0.0018883 
18 2958 3201.5 3 298 320 0.06875 

 
 

Exercise 3.  We compare some of the ArchOptions results for the refactoring case of 

Section 6.3 to that of [Leitch and Stroulia, 2003], where the latter is based on PV 

analysis. Consider the following changes in requirements as depicted in Table 6.21. 

These changes benefit from the flexibility of the refactored structure through likely 

savings in maintenance. These savings are relative to the unrefactored structure. The 

benefits are denoted by Xivs and based on accumulated savings upon exercising an 

additional change. The benefits range from $464.6 for one change to $4640 if all the 

ten changes materialize in a given time, leaving us with us with %14.1 volatility for 

ten likely changes. Every change is made, it is assumed to cost an average of $181.7 

corresponding to an estimate for Cei. ArchOptions reports an added value of $2823 

for ten changes following refactoring. That is, if refactoring was designed and in 

mind at most ten changes, the structure is worth $2823 of man-month savings as 

when compared to the unrefactored one.  

 

Let us now assume that uncertainty is resolved: this means the value of the structure 

is certain. PV can be then used. Using options analysis with the assumption that 

uncertainty is resolved: for the one to ten changes, the options held on the 
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architecture are worth $2823.  That is, if we calculate the value of the structure now 

for any change using options thinking, we are left by PV for the change  + Growth 

Options =  $2823 as shown in Table 6.21.  

 

Table 6.21. Comparing ArchOptions to [Leitch and Stroulia, 2003] 
 

Changes Xiv Options  Now Stroulia 

1 464.6 2823 -1352.4 
2 929.2 2823 -887.8 
3 1393.8 2823 -423.2 
4 1858.4 2781.5 + 41.4 41.4 
5 2323 2315.5 + 506 506 
6 2787.6 1817 + 970.6 970.6 
7 3252.2 1387.8 + 1435.2 1435.2 
8 3716.8 923.2 + 1899.8 1899.8 
9 4181.4 459 + 2364 2364.4 
10 4640 2823 2823 

 

 

Let us now turn to [Stroulia and Leitch, 2003]. The results show that their use of PV 

underestimates the value of the structure as they ignore the growth options held on 

the architecture. For example, for 1 to 4 changes, they report negative values for less 

than 4 changes. That is, if a decision need to be made based on PV, the investment in 

refactoring may seem to be unattractive ignoring the growth options held on the 

architecture. Only for ten changes, Stroulia and Leitch’s use of PV reveals the $2823 

options value, which the actual value of the structure and as shown in Figure 6.19.  
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Comparing ArchOptions to Stroulia & Leitch [2003]
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Figure 6.19. Comparing ArchOptions to [Leitch and Stroulia, 2003] 

 

 
6.5 Summary and Implications  
 

The evaluation has explored the approach “fitness” in addressing two architectural-

centric software evolution problems. In the first case, we have taken refactoring, as a 

representative example, to show how ArchOptions can be used to assess the 

worthiness of re-engineering an architecture for change. The importance of this 

example is not in the architecture itself, but in how we have used the theory and the 

model to reason about the flexibility of the architecture in relation to likely change in 

requirements. We have verified the claim that the flexibility of an architecture in face 

of likely changes has values in the form of real options. In the second case, we have 

shown how ArchOptions can inform the selection of a “more” stable middleware-

induced software architecture in the face of future changes in non-functional 

requirements, taking change in scalability requirements as an example. We have 

verified the hypothesis that flexibility creates real options in the structure relative to 

the likely change. We have shown how the uncertainty, attributed to the likelihood 

of the change, makes real options theory superior to other valuation techniques 

which fall short in dealing with the value of architectural flexibility under 

uncertainty. We have compared the options results to other valuation techniques, PV 

and DCF, where the latter fall short in dealing with the value of architectural 
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flexibility under uncertainty. The results show that ArchOptions yield more realistic 

measures under uncertainty, as it continue to account for the embedded options in a 

system of a given architecture. We have exemplified and demonstrated the 

comprehensiveness and the effectiveness of the valuation points of view framework 

in “capturing” the options on an evolving architecture from two valuation points of 

view. This is necessary for reaching a comprehensive value of options from different 

perspectives. We have verified the claim that the decision of selecting a potentially 

stable architecture has to maximize the value added relative to some valuation points 

of view. For this case, we have particularly shown that the choice of a “more” stable 

distributed software architecture has to be guided by the choice of the underlying 

middleware and its flexibility in responding to future changes in scalability 

requirements and relative to two valuation points of view. These are the 

maintainability and the throughput valuation points of view. The overall results 

show that value-based reasoning and real options can provide better insights on 

stability and investment decisions related to the evolution of software architectures. 

 

On the discipline level, the application of ArchOptions to the above cases has drawn 

some preliminary observations, lessons, and insights that could stimulate future 

research in the area of relating requirements to software architectures. Consequently, 

these observations advance our understanding to the architectural stability problem, 

when addressed from an evolution and economics-driven software engineering 

perspectives. For example, the case of the middleware-induced architectures 

provides the reader with a fair amount of insight into the complexity and economic 

ramifications of a typical critical change in non-functional requirements (i.e., changes 

in scalability) and its impact on the architecture. Note that in-depth analysis of the 

change in critical non-functionality like scalability, its impact on the architecture, and 

its economics implications are often ignored and left unaddressed in the 

requirements and the architectures research. This, we believe, is just a step towards a 

better understanding of how critical non-functional requirements could relate to the 

architecture and tend to evolve as the requirements evolve.  

 

Though ongoing research on the “coupling” of middleware and architectures(e.g., 

[Jazayeri, 1995; Gall et al., 1997; Sullivan et al., 1997; Oreizy et al., 1998; Di Nitto and 

Rosenblum, 1999; Metha et al., 2000;  Denaro et al., 2004])  could have an impact on 
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understanding the relation between architectures and non-functional requirements, 

their contributions to such understanding is still insufficient. As far as the 

architectural stability problem is concerned, no effort has been devoted for 

understanding the evolution of non-functional requirements in relation to both the 

architecture and the middleware, when coupled. Our use of architectural flexibility 

and its value as metric to inform the decision of selecting a “more” stable 

middleware-induced architecture is novel and only a step toward such an 

understanding using a value-based reasoning.  

 

Researchers working on relating requirements to architectures (e.g., [Finkelstein, 

2000; van Lamsweerde, 2000; Nuseibeh, 2001]) have often begged the question: 

which architectural styles tend to be more stable in face of likely changes in 

requirements? Our observations have reshaped this question. In particular, the 

results- of Section 6.3 - have shown that though two architectures have exhibited 

similar styles (i.e., three-tier styles), they have differed in the way they cope with 

likely changes in scalability requirements. The governing factor, hence, appears to be 

to a large extent dependent on the flexibility of the middleware (e.g., through its 

built-in primitives) in supporting the change. The intuition and the preliminary 

observations, therefore, suggest that the style alone is not enough for answering this 

question, as when the non-functional requirements evolve. Understanding 

architectural stability relative to changes in non-functional requirements is also a 

factor of the extent to which the middleware primitives can support changes in non-

functional requirements. Though this is an interesting observation, its validity is 

subject to further careful empirical studies.  
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Chapter 7 
 
 
 
Conclusions, Future Work, and Open 
Questions  
 

 

In this chapter, we summarize the thesis contribution. We highlight some future 

work on ArchOptions. We conclude by highlighting some open questions that could 

stimulate future research in architectural stability, relating requirements to software 

architectures, and architectural economics.     

 

7.1 Summary of the Contribution  
 

The main goal of the thesis has been the development of a framework for 

systematically evaluating the stability of software architectures in face of changes in 

requirements, taking an economics-driven approach. The contribution could be 

summarized as follows:  

 

We have reviewed research work on architecture evaluation and have discussed 

their limitations in addressing architectural evaluation for stability. We have 

investigated the requirements for evaluating architectural stability from an 

economics-driven software engineering perspective and have described a real 

options-based model to address these requirements. We have complemented the 

model with a three-phase method for conducting an architectural evaluation for 

stability. The method provides guidelines on eliciting the likely changes in 

requirements and relating architectural decisions to value. For valuing flexibility of 
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an architecture to change, the method includes a valuation points of view 

framework, which we have outlined. The framework accounts for the economic 

ramifications of the change on the structural (e.g., maintainability) and behavioral 

(e.g., throughput) qualities of an architecture and on relevant business goals (e.g., 

new market products). We have exemplified and demonstrated the 

comprehensiveness of the valuation points of view framework in capturing the 

options on an evolving architecture from different perspectives. This framework is 

viable for the decision of selecting a potentially stable architecture has to maximize 

the value added relative to some valuation points of view. 

 

In evaluating the thesis in the large, we have explored the approach “fitness” in 

addressing two architectural-centric software evolution problems. These are (i) 

assessing the worthiness of reengineering for change, and (ii) informing the selection 

of a “more” stable middleware-induced software in the face of changes in non-

functional requirements. Addressing these problems have resulted in novel 

applications of real options theory in valuing the payoff of refactoring [Bahsoon and 

Emmerich, 2004b] and in informing the selection of middleware-induced software 

architectures using options[Bahsoon et al., 2005]. In evaluating the thesis in the small, 

we have verified the claim that the flexibility of an architecture in face of likely 

changes has values in the form of real options. We have shown how the uncertainty, 

attributed to the likelihood of the change, makes real options theory superior to other 

valuation techniques which fall short in dealing with the value of architectural 

flexibility under uncertainty. We have compared the options results to other 

valuation techniques, PV and DCF, where the latter fall short in dealing with the 

value of architectural flexibility under uncertainty. The overall results show that our 

approach yields more realistic measures for the value of architectural flexibility 

under uncertainty, as the approach accounts for the embedded growth options in a 

system of a given architecture. We have used general qualitative characteristics 

including simplicity of use, openness, comprehensiveness, and prediction 

effectiveness to further evaluate the thesis.   

 

On the discipline level, the application of ArchOptions to the above cases has drawn 

some preliminary observations, lessons, and insights that could have implications on 

future research in the area of relating requirements to software architectures. 
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7.2 Future Work on ArchOptions 
 

Multi-objective optimization view to design and the interdependence of 
non-functional requirements 
 

We have taken the view that software design and engineering activity is one of 

investing valuable resources under uncertainty with the goal of maximizing the 

value added [Sullivan, 1996]. It is possible to adopt a complex view of value. One 

could characterize software design as a multi-objective optimization activity in 

which one trades safety for performance, or in which one satisfies multiple 

stakeholders [Boehm, 1989]. We have taken a narrow view to valuation: the value is 

measured relative to one objective at a time. For example, upon applying the 

ArchOptions model to select a “more” stable middleware-induced software 

architectures, we have relaxed considering the change impact of scaling up the 

software system on other non-functional requirements like security, availability, and 

reliability to optimize for these interacting requirements. However, we note that the 

analysis might get complex upon accounting for the impact of the change on other 

non-functional requirements and their interactions. Note the change could positively 

or negatively affect other non-functional requirements. For the refactoring case, we 

have valued the payoff of investing in a refactoring exercise relative to future savings 

in maintainability. We, however, acknowledge the fact that refactoring could also 

have implications on other quality of the structure such as extensibility, modularity, 

reusability, or efficiency. If we take the multi-optimization view to software design, 

understanding the cost/value implications is not straightforward and worth a 

separate investigation. In this context, utilizing the NFR framework [Mylopoulos et 

al., 1992], for example, could be a promising starting point to model the interaction of 

various non-functional requirements, their corresponding architectural decisions, 

and the negative/positive contribution of the architectural decisions in satisfying 

these non-functionalities. The framework could be then complemented by means for 

measuring (i) the corresponding cost of implementing the change itself, and (ii) the 

additional cost due to the impact of the change on other contributing or conflicting 

non-functionalities. 
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Valuation of the architectural potential to the change 
 
As we have acknowledged, the problem of valuing the architectural potential to the 

change is a multi-perspective valuation problem. In today’s world of rapidly 

changing information technology, organizations, and marketplaces, the requirements 

tend also to change, and in ways that require participation of all knowledgeable 

parties to value the architectural potential to the change. This necessitates finding a 

comprehensive solution for capturing the value from different perspectives. In 

chapter 5, we have highlighted a framework for addressing this problem. The 

valuation point of view framework aims at providing a comprehensive solution for 

quantifying the options from different perspectives. Future work may entail finding 

ways to manage the valuation under this framework, such as identifying the 

dimensions, which are critical for understanding architectural stability, prioritizing 

and weighting the valuation of these dimensions, managing conflicts, and 

reconciling the options results. This is necessary to provide a sound comprehensive 

valuation, which takes into account the various valuation points of views. The model 

interpretations and decision-making may then need to be tuned accordingly. Though 

both contributions are unrelated and address different problems, it would be 

possible for future research on ArchOptions to benefit from existing work on 

viewpoints frameworks (e.g., [Nuseibeh et al., 1994]). This because the highlighted 

framework inherits and mimics much of the characteristics described in viewpoints 

frameworks (e.g. “modularity” and “separation of concerns”); it follows the trend 

towards heterogeneity in reasoning. Up to the author’s knowledge, no work has been 

done on exploiting viewpoints in the economics-driven software engineering 

research. This will demonstrate the ability to leverage the contribution on robust 

approaches in software engineering to solve problems in an emerging discipline, the 

value-based software engineering.  

 

Further application of the model: aspects and architectural economics 
 
The success and popularity of aspect-oriented software development have created an 

interest in transforming existing software systems into aspect-oriented ones. Such a 

transformation tends to improve the value of the structure, through the separation of 

concerns, but incurs upfront costs. The upfront costs include the cost of identifying 
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potential aspects and the crosscutting concerns in existing non-aspect-oriented 

system; the cost of refactoring a non-aspect into an aspect-oriented one; and the cost 

of “evolving” the associated maintenance-related infrastructure as a result of such 

transformation (e.g., generating new test suites following the transformation). The 

benefits, if any, are due to the enhanced flexibility in the structure. These benefits, 

however, are uncertain, long-term, and may not be immediate. The benefits may take 

the form of expected savings in maintenance and/or returns due to the enhancement 

of some qualities such as maintainability, extensibility, modularity, reusability, or 

efficiency.  

 

The problem of understanding the economics of transforming non-aspect systems 

into aspect-oriented ones is appealing to the use of real options theory in general and 

ArchOptions in specific. Building on ArchOptions may result in economics models, 

which aim to quantify the payoffs of transforming a system into aspects. These 

models may inform the decision of investment through a tradeoff between the up-

front costs and the expected benefits as a result of such transformation. These models 

may need to be derived empirically from real life cases to answer questions like: 

when is it cost-effective to invest in an aspect-transformation exercise? How can we 

value the payoff due to such transformation prior to investing in such an exercise? 

How can we reason about this payoff in connection with changes in the structure and 

at correspondingly higher level of abstractions than code? The studies and the 

derived models are likely to have an impact on understanding the economics of 

aspect-transformation activities, may result, or motivate economics-driven 

approaches to aspects. 

 

 

7.3 Open Questions  
 

Though the software architecture, as a key designed artifact, is considered to be “the 

promising solution for easing and guiding software maintenance and evolution” 

[Jazayeri, 2002], rapid technological advances and industrial evidence are now 

showing that the architecture is creating its own maintenance, evolution, and 

economics problems. Part of the problem stems in (i) the rapid technological 

advancements where evolution is not limited to a specific domain but extends to 
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“horizontally” cover several domains, (ii) the current practice in engineering 

requirements, which ignore the above, (iii) and the improper management of the 

evolution of these requirements and across different design artifacts of the software 

system. In the subsequent sections, we highlight some open issues that future 

research may consider to address some architectural-centric software evolution 

problems. Addressing these questions may have a positive implication on 

understanding the architectural stability problem.  

 

Coping with rapid technological advancements and changes in the 
application domain 
 

Assume that a distributed e-shopping system architecture which relies on a fixed 

network needs to evolve to support new services, such as the provision of mobile e-

shopping. Moving to mobility, the transition may not be straightforward: the original 

distributed system’s architecture may not be respected, for mobility poses its own 

non-functional requirements for dynamicity that are not prevalent in traditional 

distributed setting [Capra, 2003]. Examples of these requirements include the need to 

react to frequent changes in the environment, such as change in location; resource 

availability; variability of network bandwidth; the support of different 

communication protocols; losses of connectivity when the host need to be moved; 

and so forth. These requirements may not be satisfied by the current fixed 

architecture, the built-in architectural caching mechanisms, and/or the underlying 

middleware. Replacement of the current architecture and/or its underlying 

middleware may be required. 

 

The challenge is thus to cope with the co-evolution of both the architecture and the 

non-functional requirements as we change domains. This poses challenges in 

understanding the evolution trends of non-functional requirements; designing 

architectures, which are aware of how these requirements will change over the 

projected lifetime of the software system and tend to evolve through the different 

domains. From an economics perspective, such is necessary to reduce the future 

“switching cost”, which could hinder the success of evolution. In this perspective, 

engineering requirements and designing architectures need to be treated as value-

maximizing activities in which we can maximize the net benefits (or real options) by 
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minimizing the future “switching costs” while transiting across different domains. 

This necessitates amending the current practice of engineering requirements and 

brings a need for methods and techniques, which explicitly model the domain, the 

“vertical” evolution of the software system within the domain itself and how the 

domain is likely to change over the projected lifetime of the software system. Again, 

goal-oriented requirements engineering could be a promising starting point to 

“horizontally” capture the evolution across various domains and “vertically” across 

the domain itself. The problem of selecting an architecture, which tend to be stable as 

the “vertical” and the “horizontal” requirements evolve, become a multi-

optimization design problem, where the selected architecture must maximize the 

value added relative to the “vertical” and the “horizontal” changes. The modeling 

could be then complemented by valuation frameworks which have the promise for 

answering questions of interest such as which architectural styles and middlewares, 

have the promise to reduce the switching costs and could prevail over the life time of 

the software system? This we believe is a practical need for engineering requirements 

to support stable software architectures. 

 

Architectural stability: the architecture or the middleware?  

 

Recent research effort (e.g., [Jazayeri, 1995; Gall et al., 1997; Sullivan et al., 1997; 

Oreizy et al., 1998; Di Nitto and Rosenblum, 1999; Metha et al., 2000;  Denaro et al., 

2004]) on the relation between software architectures and middleware has been 

motivated by pragmatic needs. The effort has revolved on issues such as 

investigating the compliancy of architectural styles with middleware; capabilities 

that the middleware and the architecture can bring when “coupled” to understand 

quality attributes of the system such as performance; mapping between middleware 

and software architectures; and semantics and syntactical issues related to the 

mapping process. As it has been noted in several occasions [Emmerich 2000b; 

Emmerich 2002], research on software architectures has over-emphasized 

functionality and not sufficiently addressed how global properties and non-

functional requirements are achieved in an architecture, where these requirements 

cannot be attributed to individual components or connectors. Though we believe that 

ongoing research on the “coupling” of middleware and architectures could have an 

impact on understanding the relation between architectures and non-functional 
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requirements, their contributions to such understanding is still insufficient. As far as 

the architectural stability problem is concerned, no effort has been devoted for 

understanding the evolution of non-functional requirements in relation to both the 

architecture and the middleware, when coupled. Our use of architectural flexibility 

and its value as metric to inform the decision of selecting a “more” stable 

middleware-induced architecture is novel but only a step toward such an 

understanding using a value-based reasoning. Some of the results are still 

preliminary: though, for example, the two middleware-induced architecture have 

exhibited similar three-tier styles, these architectures have differed in the way they 

cope with the change in scalability. Our preliminary observations suggest that the 

style by itself is not revealing to the analysis of architectural stability with respect to 

changes in non-functional requirements. Though this observation reveals a trend that 

agrees with the intuition and the state-of-practice, confirming the validity of these 

observations are still subject to some systematic empirical studies. These studies may 

need to consider other non-functional requirements, their concurrent evolution, and 

their corresponding change impact on different architectural styles and middleware, 

which worth future research.  

  

Change management: traceability of requirements to the architecture 
 

An important outcome of the initial development of the software system is the 

knowledge that the development team acquires: the knowledge of the application 

domain, user requirements, role of the application in the business process, solutions 

and algorithms, data formats, strength and weakness of the architecture, and 

operating environment. This knowledge is acknowledged to be crucial prerequisite 

for evolution [Bennet and Rajlich, 2000]. In particular, both the architectures and the 

team knowledge make the evolution possible [Bennet and Rajlich, 2000]. These to a 

great extent allow the team to make changes in the software without damaging the 

architectural integrity. Once one or the other aspect disappears, the system is no 

longer evolvable and enters the stage of servicing (also referred to as maturity by 

Lehman) [Bennet and Rajlich, 2000]. At the servicing stage, only small tactical 

changes would be possible. For the business, the software is likely to be no longer a 

core product and the cost-benefit of the change becomes marginal. According to 

Bennet and Rajlich [2000], there is a positive feedback between the loss of software 
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architecture coherence and the loss of software knowledge. Less coherent 

architectures requires more extensive knowledge in order to evolve the system of the 

given architecture. However, if the knowledge necessary for evolution is lost, the 

changes in the software will lead to faster deterioration of the architecture. Very 

often on software projects, the loss of knowledge is triggered by loss in key 

personnel and the project slips into the servicing stage. Hence, planning for 

evolution and stable software architectures urges the need for traceability 

techniques, which traces requirements and their evolution back and forth into the 

architecture and aid in “preserving” the team knowledge.  

 

Davis [1993] gives the earliest definition of traceability. Davis defines traceability as 

“the ability to describe and follow (track) the lifetime of an artifact, in both a forward 

and a backward direction, i.e., from its origin to development and vice versa” [Davis, 

1993]. Gotel and Finkelstein [1995] have preserved the spirit of Davis’s definition of 

traceability. They, however, have scoped the definition on tracing a requirement 

through its “life”. The requirements life covers periods of a requirement origin, 

development and specification, deployment, use, and on-going refinement. They 

have defined requirements traceability as “the ability to describe and follow the life of a 

requirement in both a forwards and backwards direction (i.e., from its origins, 

through its development and specification, to its subsequent deployment and use, 

and through periods of on-going refinement and iteration in any of these phases)”. 

Gotel and Finkelstein [1995] have particulary discussed the importance of tracing 

requirements back to their source. These sources might be people, other 

requirements, documents, or standards.  

 

Traceability is important for modeling dependencies among software objects and for 

managing the change across software artifacts. Traceability information records the 

dependencies between requirements and the sources of these requirements, 

dependencies between requirements themselves, and dependencies between 

requirements and the system implementation [Kotonya and Sommerville, 1998]. 

Advances in software-development environments and repository technology have 

enabled software engineers to trace the change in software using traceability 

techniques. According to [Gotel and Finkelstein, 1995], these techniques span a 

variety of approaches ranging from cross-referencing schemes (e.g., cross-referencing 
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schemes, based on some form of tagging, numbering, indexing, traceability matrices, 

and matrix sequences), through document-centered techniques (e.g., Templates, 

hypertext, and  integration documents), to more elaborate structure-centered 

techniques (e.g., assumption-based truth maintenance networks, constraint 

networks, axiomatic, key phrase, and/or relational dependencies). 

 

We define requirement to architecture traceability as the ability to describe the “life” of a 

requirement through the requirements engineering phase to the architecture phase in 

both forwards and backwards. Forwards demonstrates which (and how) 

architectural element(s) satisfy an individual requirement in the requirements 

specification. Backwards demonstrates which requirement(s) in the requirements 

specification an individual architectural element relate to and satisfy. Current 

architectural practices, however, do not provide a support for traceability from the 

requirements specification to the architectural description (i.e., which and (how) 

requirement(s) in the requirements specification an individual architectural element 

relate to and satisfy and vise versa). Maintaining traceability “links” is necessary for 

managing the change, the co-evolution of both the requirements and the architecture, 

confining the change, understanding the change impact on both the structure and the 

other requirements, providing a support for automated reasoning about a change at 

a high level of abstraction. Further, such traceability “links” make it easier to 

preserve the acquired knowledge of the team through guided documentation. This 

may then minimize the impact of personnel losses, and may allow the enterprise to 

make changes in the software system without damaging the architectural integrity 

and making the software system unevolvable.  

 

Architectural change impact analysis 
 

Although change impact analysis techniques are widely used at lower levels of 

abstractions (e.g., code levels) and on a relatively abstract levels (e.g., classes in O.O. 

paradigms), little effort has been done on the architectural level (i.e., architectural 

impact analysis). Formal notations for representing and analyzing architectural 

designs generically referred to as Architectural Description Languages (ADLs) have 

provided new opportunities for architectural analyses [Garlan 2000]. Examples of 

such analyses includes system consistency checking [Allen and Garlan, 1994; 
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Luckham et al., 1995], and conformance to constraints imposed by an architectural 

style [Abowd et al., 1993].  

 

Notable effort using dependency analysis on the architectural level includes the 

“chaining” technique suggested by Stafford, Richardson, and Wolf [1997]. The 

technique is analogous in concept and application to program slicing. In chaining, 

dependence relationships that exist in an architectural specification are referred to as 

links. Links connect elements of the specification that are directly related. The links 

produce a chain of dependencies that can be followed during analysis. The technique 

focuses the analysis on components and their interconnections. A component may 

have a set of input and output ports (which correspond to the component’s 

interface). These ports may have been connected to one another to form a particular 

architectural configuration. Communication between components is accomplished 

by sending events to the component’s ports. Stafford et al. [1997] supports the 

approach with an analysis tool, Aladdin. Aladdin accepts an architectural 

specification as input. A variety of computations can be then performed. The 

computations include unconnected component identification, change impact analysis 

(i.e., which components will be affected by an architectural change), and event 

dependence analysis (i.e., which components can send the following event to this 

port). These computations start at a particular component and/or port. Forward 

and/or backward chaining are then performed to discover related components. 

Forward and backward chaining is analogous in concept to forward and backward 

walk in the data-flow slicing. The applicability of this technique is demonstrated on 

small scale architectures and could be extended to address current architectural 

development paradigms. For example, how such a concept could be refined to 

perform what-if analysis on large-scale software architectures such as product-line or 

model-driven architectures? For product-line architectures, this is necessary for 

reasoning about how the change could impact the commonality, variability, and their 

interdependence. These techniques could be then complemented by analysis tools 

which could facilitate automated reasoning and provide a basis for what-if analyses 

to manage the change across instances of the core architecture. Understanding how 

the change could then ripple across different products might be feasible. For model-

driven architectures, for example, this could help in reasoning about how the change 
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could affect the Platform Independent Model (PIM) and ripple to affect the Platform 

Specific Models (PSM). These techniques could be complemented by automated 

reasoning to manage evolution. When combined with traceability links, the 

combination could provide a comprehensive framework for managing the change 

and guiding evolution.  

 

Empirical studies 
 

A key benefit of adopting an architecture-centric approach to manage the evolution 

of the software system is driven by the objective of reducing future evolution costs, 

while attaining a net benefit and embedding real options. Though this is the 

motivation behind many architectural-centric approaches to software evolution, such 

as product-line architectures and model-driven architectures, little -if no- 

documented empirical evidence is available on the extent to which the architecture 

has succeeded or failed in attaining its objectives. In particular, the architectural 

stability problem is just a hint on the fact that the architecture is also creating its own 

problems. This brings a need for systematic empirical studies to analyze real life 

horror cases, which lead to substantial “break” in the architecture of the software 

system upon accommodating changes in requirements. The “breakage” could be 

attributed to the nature of the change, personnel, the architectural style, the adopted 

middleware, and so forth. Lessons to be learned from these studies may have 

positive implications on the way we engineer our future requirements, design 

architectures to meet these changing requirements, and have better understanding 

on how we can control risks associated with the change and its impact. The main 

objective is to learn from the state-of-practice to improve the state-of-the-art.  

 
Concluding remarks  
 
The thesis is a culmination of four years of independent “make a way” challenge into 

the architectural stability problem, in the absence of closely related focused research. 

The contribution may have the following implications: advancing the understanding 

of the architectural stability and its related problems from an economics-driven 

perspective, stimulating, and possibly motivating future research in architectural 

stability and related problems. The intellectual framework is most critical; the thesis 
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demonstrates that with value-based reasoning we can improve our ability to evaluate 

for architectural stability, develop software systems that need to adapt to the 

inevitable evolving requirement, and provide a basis for analyzing the stability and 

investment decisions for many architecture-centric evolution problems.  
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Appendix A 
  
 

The COnstructive COst MOdel (COCOMO): 
Brief Background 
 

The COCOMO (COnstructive COst MOdel) cost and schedule estimation model was 

originally published in [Boehm 1981]. It became one of most popular parametric cost 

estimation models of the 1980s. However, COCOMO ’81 along with its 1987 Ada 

update experienced difficulties in estimating the costs of software developed to new 

life-cycle processes and capabilities. Boehm validated his COCOMO model in the 

1980’s and he obtained very good results for the intermediate and detailed 

COCOMO, and quite poor ones for the basic COCOMO. Independent evaluations 

performed on other data sets have not always produced such good results, with 

results fluctuating from high to low accuracy in predictions. For example, it was 

found that COCOMO I may systematically overestimate the effort. COCOMO I has 

been improved and resulted in the so called COCOMO II. COCOMO II improves the 

estimation by incorporating expert knowledge using Bayesian Statistics. Such a 

calibration has lead COCOMO II to reach promising results outperforming 

COCOMO I.  

 

In particular, the COCOMO II research effort was started in 1994 at USC to address 

the issues on non-sequential and rapid development process models, reengineering, 

reuse driven approaches, object oriented approaches, etc. COCOMO II [Boehm et al., 

1995] has three submodels, Applications Composition, Early Design and Post-

Architecture, which can be combined in various ways to deal with the current and 

likely future software practices marketplace. The Application Composition model is 

used to estimate effort and schedule on projects that use Integrated Computer Aided 
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Software Engineering tools for rapid application development. These projects are too 

diversified but sufficiently simple to be rapidly composed from interoperable 

components. Typical components are GUI builders, database or objects managers, 

middleware for distributed processing or transaction processing, etc. and domain-

specific components such as financial, medical or industrial process control 

packages. The Applications Composition model is based on Object Points [Banker et 

al., 1994; Kauffman and Kumar, 1993]. Object Points are a count of the screens, 

reports and 3GL language modules developed in the application. Each count is 

weighted by a three-level; simple, medium, difficult; complexity factor. This 

estimating approach is commensurate with the level of information available during 

the planning stages of Application Composition projects. The Early Design model 

involves the exploration of alternative system architectures and concepts of 

operation. Typically, not enough is known to make a detailed fine-grain estimate. 

This model is based on function points (or lines of code when available) and a set of 

five scale factors and seven effort multipliers. The Post-Architecture model is used 

when top level design is complete and detailed information about the project is 

available and as the name suggests, the software architecture is well defined and 

established. It estimates for the entire development life-cycle and is a detailed 

extension of the Early-Design model. This model is the closest in structure and 

formulation to the Intermediate COCOMO ’81 and Ada COCOMO models. It uses 

Source Lines of Code and/or Function Points for the sizing parameter, adjusted for 

reuse and breakage; a set of 17 effort multipliers and a set of 5 scale factors, that 

determine the economies/diseconomies of scale of the software under development. 

The 5 scale factors replace the development modes in the COCOMO ’81 model and 

refine the exponent in the Ada COCOMO model. The Post-Architecture Model has 

been calibrated to a database of 161 projects collected from Commercial, Aerospace, 

Government and non-profit organizations using the Bayesian approach [Chulani et 

al., 1998]. The Early Design Model calibration is obtained by aggregating the 

calibrated Effort Multipliers of the Post-Architecture Model as described in [USC-

CSE, 1997]. The Scale Factor calibration is the same in both the models. 

Unfortunately, due to lack of data, the Application Composition model has not yet 

been calibrated beyond an initial calibration to the [Kauffman and Kumar, 1993] 

data. A primary attraction of the COCOMO models is their fully-available internal 

equations and parameter values. Over a dozen commercial COCOMO ’81 
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implementations are available; one (Costar) also supports COCOMO II: for details, 

see the COCOMO II website http://sunset.usc.edu/COCOMOII/suite.html. 
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Appendix B 
  
 

Further Supporting Material: The 
Middleware-Induced Architecture Case 
 

In this appendix, we provide supporting material for the case of using ArchOptions 

to select a “more” stable middleware-induced architecture, described in Section 6.3 

of Chapter 6. 

 

 
B.1 Description of the fault tolerance architecture 
 

We describe the components of the Fault Tolerance Infrastructure as shown on the 

top of Figure 6.5 of Chapter 6. These include Replication Manager, Fault Notifier, and 

Fault Detector. The bottom of Figure 6.5 shows three hosts: H1, H2, and H3. The client 

application object C on H1 invokes a replicated server object with two replicas S1 on 

host H2, and S2 on host H3. The Figure shows Factory and Fault Detector objects that 

may be present and specific for a host. The service objects are replicated objects. The 

host-specific objects, however, are not replicated. The figure also shows the Message 

Handler and the Logging and Recovery Mechanisms that are present on each host. 

Logically, a single instance of the Replication Manager and Fault Notifier shall exist 

in each fault tolerance domain. Physically, however, they are replicated to protect 

against faults, as any other application object are.  
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B.2 Description of the load balancing architecture 
 

Figure 6.6 of Chapter 6 illustrates the components in TAO’s load balancing service. 

The design supports adaptive load balancing and on-demand request forwarding 

[Othman et al. 2001b] and outlined below: 

 

The Replica Locator identifies which of the replicas will be assigned a request. The 

Replica Locator component forwards the requests to the Load Analyzer component. The 

Load Analyzer component analyses the requests; it select the replica to be assigned the 

request. The Replica Locator obtains a reference to a replica from the load analyzer 

and then forwards the request to that replica. The Replica Locator binds clients to the 

identified replicas. The Load Analyzer also allows explicit selection of a load balancing 

strategy at runtime, while maintaining a simple and flexible design. The replica 

locator is portably implemented using servant locators implementing the interceptor 

pattern [Schmidt et. al., 2000], abiding to standard CORBA portable object adapter 

mechanisms [Henning and Vinoski, 1999]. The Load Balancer component is a 

mediator that integrates all the components. It provides an interface for load 

balancing without exposing clients to the intricate interactions between the 

components it integrates. The Load Monitor component monitors loads on a given 

replica, reports replica load to a Load Balancer, and informs replicas when they should 

accept requests versus forward them back to the load balancer. Each object that 

TAO’s load balancing service manages communicates with it through a unique 

proxy. The load balancer uses the replica proxies components to distinguish different 

replicas to workaround CORBA’s so-called “weak” notion of object identity [Object 

Management Group, 1999], where two references to the same object might have 

different values.  

 

B.3 Implementation of the fault tolerant, the load balancing Services, and 
their Change Impact on the CORBA-induced architecture  
 

A List of classes and files necessary to implement the fault tolerant service into the 

Duke’s Bank architecture of Section 6.3 of Chapter 6 is depicted in Table B-1. Table B-

2 reports on the effort necessary to develop and integrate the load balancing service 

into the middleware. 
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Table B-1. Implementing the fault tolerance service on CORBA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File Name File 
Type 

SLOC Description 

CosFaultTolerance IDL 242 Interface description of remote 
methods  

PropertyManagerImpl Java 273 Implementation of the 
PropertyManager interface 

ObjectGroupManagerImpl Java 672 Implementation of the 
ObjectGroupManager interface 

GenericFactoryImpl Java 523 Implementation of the 
GenericFactory interface 

ReplicationManagerImpl Java 865 Implementation of the 
ReplicationManager interface 

FaultNotifier Java 611 Implementation of the 
FaultNotifier interface 

ClientPolicy Java 155 Implementations of the 
RequestDurationPolicy interface 

ServerPolicy Java 61 Implementation of the 
HeartbeatEnabledPolicy 

FTPolicy Java 207 Implementation of the 
HeartbeatPolicy interface 

FaultDetector Java 149 Class defining the component 
illustrated above 

DefaultFaultAnalyzer Java 113 The default fault analyzer 
ReplicationManagerFaultAnalyzer Java 865 Replication Manager's fault 

analyzer 
FaultConsumer Java 200 Connect to the fault notifier 
PropertyValidator Java 29 Class providing static methods to 

validate properties 
MemberInfo Java 50 Structure that contains all 

member-specific information 
PropertyUtils Java 53 Provides some methods used to 

manipulate properties 
Operators Java 23 Class providing static methods 

related to operators 
ReplicationManagerServer Java 13 Class running the Replication 

Manager server 
FaultNotifierServer Java 13 Class running the Fault Notifier 

server 
Total 5117 



 

 249

Table B-2. Implementing the load balancing service on CORBA 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

File Name File 
Type 

SLOC Description 

CosLoadBalancing IDL 90 Interface description of remote 
methods 

LoadAlertImpl Java 26 Implementation of LoadAlert 
interface. 

LoadCPUMonitorImpl Java 138 LoadMonitor implementation that 
monitors the overall CPU load on a 
given host 

LoadManagerImpl Java 919 Implementation of LoadManager 
interface 

LeastLoaded Java 405 Implementations of Strategy 
interface 

LoadAverage Java 305 Implementations of Strategy 
interface 

LoadMinimum Java 389 Implementations of Strategy 
interface 

RoundRobin Java 121 Implementations of Strategy 
interface 

Random Java 128 Implementations of Strategy 
interface 

MemberLocator Java 59 Class which defines the component 
described above 

LoadAlertHandler Java 40 This class handles all 
asynchronously received replies 
from all registered LoadAlert 
objects.  It only exists to receive 
asynchronously sent exceptions 

LoadAlertInfo Java 30 Structure that contains all 
LoadAlert-specific information 

LoadAlertMap Java 60 Maps a LoadAlertInfo with a 
location 

LoadListMap Java 60 Maps a LoadList with a location 
LoadMap Java 60 Maps a load with a location 

MonitorMap Java 60 Maps a LoadMonitor with a 
location 

PullHandler Java 58 Event handler used when the "pull" 
monitoring style configured 

PushHandler Java 39 Event handler used when the 
"push" monitoring style is 
configured 

LB_ServerRequestInterceptor Java 109 Responsible for redirecting the 
requests back to the manager 

LB_ORBInitializer Java 72 Creates and registers with the ORB the 
LB_IORInterceptor and 
LB_ServerRequestInterceptor 

LB_ClientRequestInterceptor Java 62 Handles transparent object group 
member registration with the 
LoadManager, and registration of 
the LoadAlert object necessary for 
load shedding 

LB_ClientORBInitializer Java 33 Creates and registers with the ORB 
the LB_ClientRequestInterceptor 

LoadManagerServer Java 214 Class running the load balancer 
server 

LoadMonitorServer Java 315 Class running the load monitor 
server 

Total                                        3943 
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Appendix C 
 
 

 
Discount Cash Flows (DCF) and Net Present 
Value (NPV): Brief Explanation 
 

 

According to [Trigeorgis, 1995] in finance, the cost and benefits associated with an 

investment are called cash flows. Investments are compared only on the basis of cash 

flows. Usually, there is an original investment, Co, represented as a negative number. 

Subsequent cash flows are denoted as Cash Flow Year 1,…, Cash Flow Year n, 

spanning the time horizon in which the investment incurs costs and generates 

benefits. The Present Value (PV) of a future cash flow is the value of the cash flow as 

though it was received toady.  

 

Moving forward from present to future, an investment is expected to grow at a 

certain rate of return. Now turning it around: Moving backward from future to 

present, an investment shrinks with the same rate of return. When moving back in 

time, the rate of backward adjustment is itself is called discounting.  The general 

technique of valuing a capital investment project by summing its discounted future 

cash flows is known as discounted cash flows (DCF). Simply the DCF is obtained by 

the discounted benefits minus the discounted costs as given in the below formula:  
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The Cash flow Year i, represents cash flows in which the cash flows occur, and r is a 

per-period discount rate. The formula simply tells that whether an investment is 

worth more than it costs. The rule is that if DCF is positive, the investment is worth 

undertaking; that is, it generates more value than it costs. If DCF is negative, it 

should be forgone as the investment generates less value than its costs. If it is zero, 

we are indifferent between undertaking and forgoing it.  
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Glossary of Economics Terms   
 
 
 
American option An option that may be exercised at any time up to and including the 

expiration date 

Call  

Option 

An option contract that gives its holder the right (but not the 

obligation) to purchase a specified number of shares of the underlying 

stock at the given strike price, on or before the expiration date of the 

contract. 

Cash flow In investments, cash flow represents earnings before depreciation, 

amortization, and non-cash charges. Sometimes called cash earnings. 

Cash flow from operations (called funds from operations by real estate 

and other investment trusts) is important because it indicates the 

ability to pay dividends 

Discount Cash 

Flows  

Future cash flows multiplied by discount factors to  

obtain present values 

European option Option that may be exercised only at the expiration date. 

Exercise price  The price at which the security underlying a options contract may be 

bought or sold 

In-the-money A call option with a strike price lower than the underlying futures 

price. For example, if the March COMEX silver futures contract is 

trading at $6 an ounce, a March call with a strike price of $5.50 

would be considered in the money by $0.50 an ounce. 

Net present value 

(NPV) 

The present value of the expected future cash flows minus the cost. 

Option 

 

Gives the buyer the right, but not the obligation, to buy or sell an 

asset at a set price on or before a given date. Investors, not companies, 

issue options. Buyers of call options bet that a stock will be worth 

more than the price set by the option (the strike price), plus the price 
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they pay for the option itself.  

Out-of-the-money  A call option is out of the money if the strike price is greater than the 

market price of the underlying security. That is, you have the right to 

purchase a security at a price higher than the market price, which is 

not valuable. 

Rate of return The ratio of the additional annual income or profit generated by an 

investment to the cost of the investment. Here's a simple example, 

although the calculations are usually a great deal more involved for 

actual investments. If the cost of constructing a new factory is $10 

million and it gives you an extra $1 million in profit each year, then 

its rate of return is 10 percent. 

Strike price 

 

The stated price per share for which underlying stock may be 

purchased (in the case of a call) or sold (in the case of a put) by the 

option holder upon exercise of the option contract. 
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