2105.14914v1 [cs.RO] 31 May 2021

arxXiv

DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid
Robots using Extended Kalman Filtering on Matrix Lie Groups
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Francisco Javier Andrade Chavez?3, Silvio Traversaro?, and Daniele Pucci!

Abstract—This paper presents a contact-aided inertial-
kinematic floating base estimation for humanoid robots consid-
ering an evolution of the state and observations over matrix
Lie groups. This is achieved through the application of a
geometrically meaningful estimator which is characterized by
concentrated Gaussian distributions. The configuration of a
floating base system like a humanoid robot usually requires
the knowledge of an additional six degrees of freedom which
describes its base position-and-orientation. This quantity usu-
ally cannot be measured and needs to be estimated. A matrix
Lie group, encapsulating the position-and-orientation and linear
velocity of the base link, feet positions-and-orientations and In-
ertial Measurement Units’ biases, is used to represent the state
while relative positions-and-orientations of contact feet from
forward kinematics are used as observations. The proposed
estimator exhibits fast convergence for large initialization errors
owing to choice of uncertainty parametrization. An experimen-
tal validation is done on the iCub humanoid platform.

I. INTRODUCTION

State estimation remains an active research domain in the
field of robotics. In the case of Humanoid Robotics, the model
uncertainties, the unpredictable surrounding environment, and
the often large number of robot sensors for both kinematic and
dynamic quantities pose deep questions about the fundamental
topic of sensor fusion. When attempting to answer these
questions, the Lie group geometry of the underlying floating
base system represents a further threat for controllers aiming
at robot stabilization. This paper contributes towards the
development of a proprioceptive base estimator for humanoid
robots assuming that both the states and observations evolve
over a space of distinct matrix Lie groups.

In the legged robotics community, a common approach
to achieve a reliable proprioceptive base estimation is to
fuse high frequency Inertial Measurement Units’ (IMU)
and kinematic sensors along with contact state information.
The approach was first applied using a strap-down IMU
and a rigid body kinematics model, which can lead to
an Observability Constrained Extended Kalman Filter
(OCEKF) to estimate the base position-and-orientation of a
quadrupedal robot with point foot contacts [1]. These results
can be extended to scenarios that incorporate the rotational
constraints imposed by a humanoid robot’s flat foot [2], [3].
Although inclusion of foot rotations within the state and
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observation models yielded better estimator performance,
the approach seems to suffer from a lack of convergence
guarantees in the case of large initialization errors.

Alternately, the theory of invariant observer design is a
solid framework to formulate the estimation problem using
the theory of matrix Lie groups and exploit the symmetries
of the underlying system [4], [5]. It can be applied, for
instance, to derive a non-linear observer for robots with
point foot contacts [6]. This estimation design method
presents the interesting property that the evolution of the
estimation error is independent from the current state estimate,
thereby resulting in stronger convergence and consistency
guarantees. A S E 2 matrix Lie group is defined to include
the base position-and-orientation and linear velocity along
with the feet positions in the state representation by exploiting
the property of semi-direct products of rotations. Invariant
measurement updates are exploited for contact feet relative
position measurements evolving in Euclidean spaces. The
property of invariant updates, however, cannot be directly
used when feet rotations are introduced in the observations,
so the approach cannot be applied on humanoid robots having
flat feet. Further, including the feet rotations within the state
violates the semi-direct product rule. So, the SEn12(3) group
may not be used anymore unless the feet positions-and-
orientations are considered in a decoupled manner.

In the context of matrix Lie groups, this paper presents an
estimator for the IMU biases and the humanoid robot floating
base and feet positions-and-orientations, hereafter referred to
as poses. The model observations consists of the full relative
pose measurements obtained from robot forward kinematics.
In a sense, we extend the application scenarios of [6] to flat
contact surfaces while retaining fast estimation convergence—
see Table 1. More precisely, the contributions of the present
paper follow.

o Development of a Dlscrete Lle Group ExteNded
kalman filTer for a contact-aided Kinematic-Inertial
Odometry (DILIGENT-KIO) having both the state
and the observations evolving over distinct matrix Lie
groups and investigating the benefits of the proposed
modeling choice for the estimator design.

« Validation of the estimator through experiments using
the iCub humanoid platform, with a performance
comparison with the state of the art.

We exploit the theory of EKF over matrix Lie groups using
Concentrated Gaussian Distributions (CGD) [7], [8]. The
uncertainty representation enabled by the matrix Lie group



TABLE I: Comparison with the State-of-the-art

Author, Year State Kinematic Support Fast
measurement | for flat | Con-
contact ver-
surfaces gence
Rotella, 2014 | Euclidean + | Euclidean + | v X
(OCEKF) [2] Unit quater- | Unit quater-
nion nion
Hartley, 2020 | Matrix Lie | Euclidean X v
(InvEKF) [6] group
Ramadoss, 2021 | Matrix Lie | Matrix Lie v v
(DILIGENT- group group
KIO)
Adg(Xsz) € RP*P
TX2G
(¢]
X, eG
G

X1 =expl(e) €G

Fig. 1: An illustration of a Lie Group and its operators.

structure allows us to formulate an estimator with good
convergence properties which improves over the existing
work for humanoid robots.

This paper is organized as follows. Section II introduces
the mathematical concepts for understanding the DILIGENT-
KIO algorithm. Section III describes the modeling of the
system dynamics and observation models using matrix Lie
groups and necessary Jacobian computations for the filter.
This is followed by experimental evaluation of the proposed
filter in Section IV and concluding remarks in Section V.

II. MATHEMATICAL BACKGROUND
A. Notations and definitions

1) Coordinate Systems:

« C[D] denotes a frame with origin oc and orientation D;
« %o € R? and “Rp € SO(3) are the position and
orientation of a frame B with respect to the frame A;

e given ‘AOC and BOc, ‘AOC = ARB BOC + ‘AOB =
AHiBoc, where “Hp € SE(3) is the homogeneous
transformation and B6c = (Poc; 1) € R* is the

homogeneous representation of Boc;

BlAly 45 = Aop = 4 (Aog) € R? denotes the linear
part of a mixed-trivialized velocity [9, Section 5.2]
between the frame B and the frame .4 expressed in the
frame B[A]. “w4 5 € R? denotes the angular velocity
between the frame 3 and the frame A expressed in .A4;

o A denotes an absolute or an inertial frame;

e B, LF, RF and S indicate the frames attached to
the base link, left foot, right foot and the IMU rigidly
attached to the base link respectively;

2) Lie Groups: For a gentle introduction to the theory
of Lie groups applied to state estimation for robotics, we
refer the readers to [10, Chapter 7], [11], [8]. We will rely
on the notation for Lie groups used by [8] in this paper.

e G,G" C R™*™ denote matrix Lie groups and X,Y € G

are elements of the matrix Lie group G.

e 9,9 C R™ ™ denote the matrix Lie algebras for the

groups G, G’ respectively.

[]& : R? — g and []% : g — RP are the hat and
vee operators for the matrix Lie group G which denote
a linear isomorphism between g and a p-dimensional
vector space. Va € g, a=[a]k € RP, a=[a]}.

e expy : R? — G is the exponential map operator that
maps elements from the vector space directly to elements
of the group. Va € R?, expp(a) = exp([a]g).

e logl, : G — RP is the logarithm map operator that
maps elements of the group directly to the vector space.
V X € G, logl(X) = log([X]%). This mapping may
not be unique.

e Adg : R? — RP? is the adjoint matrix operator that
linearly transforms vectors of the tangent space at an el-
ement X onto the Lie algebra which can be computed by,
VX €eGaeRracg Adg(X)a=[X a X 1]

e Va € RP, &n(—a) denotes the right Jacobian of the

matrix Lie group that relates any perturbations in the

parametrizations of the Lie group to the changes in
the group velocities X ~' X Similarly, the left Jacobian

®¢(a) relates those to the changes in X X1 [12].

A graphical representation of the Lie group operations is
made in Figure 1.
3) Miscellaneous:

e I, and 0,, denote the n x n identity and zero matrices;

o given w € R3 the hat operator for SO(3) is S(.) :
R3 — 50(3), where s0(3) is the set of skew-symmetric
matrices and S(x) y = x X y. X is the cross product
operator in R3:

o The following identity will be useful for our derivations,

vu € R®, R € SO(3), S(Ru)= RS(u)R". (1)
B. Matrix Lie Groups of interest

The matrix Lie groups that we use to construct the
estimation problem and their corresponding operators are
described in the Table II. Additionally, the property that the
product of Lie groups is a Lie group [8], [13] is used to
build a composite state space and observation representation.
This is done through a combination of direct and semi-direct
products. We will also exploit the property that a composite
state space obtained through direct products result in
non-interacting manifolds and corresponding non-interacting
operators [11, Section IV].

C. Discrete Extended Kalman Filter on Matrix Lie Groups

The concept of Concentrated Gaussian Distribution (CGD)
is used to define the notion of uncertainty for the matrix
Lie groups [7], [8], [10], [14] producing a distribution on G
centered at X ,

X=X exppy(€) €~ Nep(0p1, P), (@)

where, X € G C R™"%" is the mean of X and ¢ € RP is a
small perturbation having a zero-mean Gaussian distribution
defined in the p-dimensional local vector space associated
to the state, with the covariance matrix P € RP*P. It must
be noted that for the CGD, the mean is defined on the group
and the covariance is defined in the Lie algebra. This remains



TABLE II: Matrix Lie groups depicting the group of rotations, rigid body transformation, double-direct spatial isometries [4], and translations, respectively.

Lie Group G | Dim. p Xed c € RP [l €g Xi0X2€G Xted X eqG
SO(3) 3 R € R3%3 weR? | S(w) € R3X3 R Ry RT I3
SE(3) 6 (p, R) Of«s ﬂ € Rix4 :)] €RS [gfxwz 8] (R1p2 +p1, R1R2) (=RTp,RT) (03x1,13)

R p v v Sw) v a
SE>(3) 9 (pRyv) = |01x3 1 0| € RSXS w| er? O1x3 0 0 (Rip2 +p1, RiR2, Riva +v1) | (=RTp, RT,—RTv) | (03x1,13,03%1)
O1x3 0 1 a Oi1x3 0 O
D 0s b
T(6) 6 b= {lee 1] € R7*7 beRS [leﬁ o] b1+ by -b 061

a reasonable representation of uncertainty over Lie groups
if the maximum eigenvalues of P are sufficiently small.
Given a discrete dynamical system on matrix Lie groups,

X1 = Xy expg (X, ur) + wy) 3)
2z = h(Xy) expgy (n), “4)

@ : G xR™ — RP is the left trivialized velocity of
the matrix Lie group expressed as a function of the state

X € G and an exogenous control input u; € R™ at an
instant k. wy ~ Nge (0p,1,Qr) is a Gaussian white noise
with covariance Q) in RP.

The observations zj, are considered to be evolving over
a matrix Lie group G’ of dimensions [ distinct from the
state space G. h : G — G’ is the measurement model

mapping the states X € G to the space of observations G’.

ng ~ Nra (Oq,17 Ny) is the measurement noise described as
a Gaussian white noise with covariance Nj defined in the
g-dimensional vector space of the observations.

The Discrete EKF on matrix Lie groups, using the left
invariant error formulation X 1 X , is described in Algorithm
1. The algorithmic structure reduces to the regular EKF
algorithm if we consider G and G’ as Euclidean spaces.

Algorithm 1 Discrete EKF on matrix Lie groups [7]

Input: Xli\ksplc\k-,szrlyuk
Output: X 1541, Prt1jp+1

Propagation: .
X1k = Xejr expgy (U Xk, ur))
P = Fi Py Fil +
i (= QX ur)) Qr Ba(— Q(Xk\lmuk))T

Update:

Ki1 = Poape Hipr (Hiwr Poape Higa + Niwr) ™!
Zpgr = logd (M(Xpqan)~
Mypr = Kit1Zk1
Xiprppr1 = Xppap expg (M)

Peyijesr = Po(—my ) Up — Keyr Hip1)Pogae @a( —

m1:+1)T

! Zlc+1)

where, R R
Fr = Adg (expg (—Q( Xk ur))) + @o (= X, un)) Fr

Fr = %Q(Xk‘k expg(e)) —o

H, = g—f log, (h_l(XkJrl‘k) h,(Xk+1|k eng(E)))L:o

III. DILIGENT-KIO: DISCRETE LIE GROUP EXTENDED
KALMAN FILTER FOR KINEMATIC-INERTIAL ODOMETRY
A. State representation

We wish to estimate the position Aog, orientation ARB
and linear velocity of the base link ‘¢ in an inertial frame.
Additionally we also consider the feet positions 4oz and

orientations Rz, where F = {LF,RF} in the state.
Further, to extend the implementation for the real-world
hardware applications, it is necessary to estimate the slowly
time-varying biases (b,, by) affecting the accelerometer and
gyroscope measurements from the IMU. It must be noted
that the biases are always expressed in the local IMU frame.

For the sake of readability, we will use the following
short-hand notations in the rest of the paper. We will denote
the tuple representing the base link quantities Xp,ee =
(0B, “ R, o) as (p, R,v), while the feet quantities X ; =
(Ao, Ry) are denoted as (dy, Z;), where f = {I,7}. The
biases (b,, b,) are sometimes included in a single vector as b.

As seen earlier, due to the introduction of the feet rotations
in the state space, the SEn2(3) Lie group cannot be used
to model the state representation. Instead, we use a non-
interacting composite matrix Lie group SFEs(3) x SE(3)? x
T(6) C R?9%20 (o represent the state space M,

R p v 03 031 03 031 036 03]

013 1 0 013 0 013 0 016 O

013 O 1 013 0 013 0 016 O

03 031 031 24 dp 03 031 036 O3:1

X = 0113 0 0 013 1 01,3 0 01,6 0 e M.

03 031 031 03 031 Z. dr 036 031

013 O 0 013 0 03 1 016 O

063 061 061 0Os3 061 Os3 0Os1 Is b

1015 O 0 013 0 013 0 016 1

The hat operator [€]4, mapping the vectors € € R*7 to the

Lie algebra m becomes,

[S(er) & € 03 031 03 031 036 031]
01,3 0 0 013 0 01,3 0 016 O
01,3 0 0 01,3 0 01,3 0 01,6 0
03 031 031 S(ez) eq 03 031 036 031
[l =] 013 0 0 013 0 013 0 016 O |€m
03 031 031 03 031 S(ez,) e€a, 036 031
01,3 0 0 013 0 01,3 0 O16 0
063 01 01 Os3 061  Os3 01 Os €
[0 0 0 015 0 O35 0 O O]
with the vector € € R?7 as,
T
T T T T T T T
EM = [ep €R € €4, €z, €, €z, eb] . (5

The exponential mapping is given by,
expiy(€) = (J(€r) &, exp§os)(€r), J(€r) €, J(ez,) €a,,
eXPQO(s)(sz)a J(ez,) €d,, CXP§0(3)(€ZT»)a €)- ©)

where, J and expg, ., are the left Jacobian and the

exponential map of SO(3) (see [15] for closed-form
expressions). The adjoint matrix operator is given as,

AdM(X) = blkdiag(Ad5E2(3>(Xbase), AdSE(g) (Xl),

7

Adspes)(Xr), Ts). (

The left Jacobian of the matrix Lie group is given as,
®r1(€) = blkdiag (s, () (ebuse), Psrs)(€r), )

Pspes)(er), Is).



The relevant matrix Lie group operator definitions for (7),
(8) are provided in the Appendix.

B. Discrete System Dynamics

We use the discretized system dynamics similar to [1],
[2], [6], [3] in this work. The evolution of the base pose
is described by a rigid body kinematics model based on
a strap-down IMU rigidly attached to the base link of the
robot. For simplicity, the coordinate frames of IMU (S) and
the base link (B) are assumed to coincide. Without such
an assumption, we need to be careful about the necessary
coordinate transformations required to express quantities of S
in B. The accelerometer measurements 07?4’{1; and gyroscope
measurements 5@ A,B are passed as exogenous inputs uy to
the system. These measurements are modeled to be affected
by slowly time-varying biases, b, and b, and additive white
Gaussian noise WaB and wf , respectively. Further, the biases
are assumed to be affected by noise WEa and ng .

G4k = BE (Y05, —9) + bar + wg

©)

B@A,Bk = Bw_A’Bk + bgk + Wf.
A constant motion model is considered for the feet pose
assuming the holonomic constraints imposed by the feet when
making a rigid contact with the environment. Thus, the feet
velocities are considered equal to zero and affected only by
white Gaussian noise. These noises can be characterized
as translational or rotational slippage of the feet, when
expressed in the inertial frame [2]. The bias dynamics are
also considered as constant and affected only by noise.
The discrete system dynamics is described as,

Pk+1 =Dpr + v AT + % Ry Paan, AT’

Rit1 = Ry CXPQO(:%)(B""Aﬁk AT)

=, + Ry Paaps, AT

dik+ Zik Wf AT

Zy ki1 = Zp k eXPos) (WS AT)
brgr=br+ wp AT

Ukl (10)

df k+1

where, Pa g5, = (07%12 k— bar — wB) + RTAgis the

linear acceleration of the base with respect to the inertial
frame expressed in the base frame. “'¢ is the acceleration
due to gravity expressed in the inertial frame. Bw AB, =
5% AB, — by, — wE is the unbiased angular velocity
expressed in the base frame. AT is the sampling period
with which a zero-order hold on the inputs are assumed
in order to discretize the continuous system dynamics. w;
and w7 are the white Gaussian noise affecting the null feet
velocities, both expressed in the feet frames.

Given Eqns. (3) and (10), the left trivialized motion model

and the noise vector become,

RTvAT + $Bayp AT?
BwA’BAT
B(XAyB AT

018,1

X, u) = € R?, (11)

W = (7 0.5 WfAT, 7wg, 7w5, wf}-,wf}-7 WR}— WR}-, wll}s) AT

Qr = Cov(w) € R2™27,
(12)

The state is propagated through the left trivialized motion
model as )A(kﬂ‘k = XMk exp/iiy (Q) using the current
state estimate )A(k‘k and the IMU measurements ug. The
covariance propagation requires the computation of Jacobian
of the left trivialized motion model at the current state
estimate with an infinitesimal additive perturbation in the
vector space, (X expl(eam)).

Considering Eqn. (6) and assuming a first-order
approximation for the exponential map and the left Jacobian
of SO(3) [15], and neglecting cross-products of infinitesimal
perturbations, we have the tuple,

X expiy(e) ~ (Rep+p, R+R S(er), Re,+v, Zj eq +di,
Z1+ 7 S(Ez,), Zy €q, +dp, Zp+ Z, S(EZT)> b+ Eb).
(13)
Subsequently, by substituting (13) in (11), the Jacobian of
the left trivialized motion model Fj, can be computed in a
straight-forward manner as,

Fr = QQ(X expg(e)) =

e —o
03 S(E) Is AT 03@2 —%13 AT? 03 (14)
03 03 03 03,12 03 —I3 AT
03 S(g) 03 0312 —I3AT 03
018,3 018,3 018,3 01s,12  Ois,3 018,3

where, 2 = RTvAT + 3 RT A9 AT? and § = R 4g AT.

The contact states are assumed to be known and passed
as inputs to the system. When a foot is not in contact,
the variances related to the foot velocities are dynamically
scaled to very high values causing the estimated foot pose
from the prediction model to grow uncertain. When a foot
gains contact, the measurement updates cause the foot pose
to reset to the new and correct estimate. The absence of
contacts is not handled within this formulation.

C. Forward Kinematics Measurement Model

The measurement model is the relative pose between the
frames of the feet in contact with the environment and the
base link using the Forward Kinematics (FK).

The encoder measurements § = s + w*® provide the joint
positions s affected by additive white Gaussian noise w,. The
relative pose of the feet with respect to the base link is com-
puted using forward kinematics FK(s) : RP°F — SF(3) as,

2y = PH r = FK(3)

woe— |PHer o 0a | _ [FK(3) 04
DS 04 BHgrr 04 FK(3)|

The measurements 2Zg evolve over SE(3) during the single
support and zps over SF(3)? during double support. For the
rest of this section, we will only focus on the single support
scenario, since the same computations apply also for double
support due to the rule of non-interacting manifolds as a
result of the direct product.

As a function of the state, forward kinematic measurements
can be written in the form of Eqn. (4) as,

T _ F
Ry p)] xPn ) ([E%D (16)

15)

F o RTZ
#Ss T | o 3f



The left-trivialized forward kinematic noise is related to the
encoder noise w through the manipulator Jacobian FJ B,F as,

.F
0 = |:n”].—:| = ]:J&f wg € Rﬁ, Nig1 = Cov(n]:) € R%*6.

nw
In order to update the state estimates using the FK measure-
ments, the innovation Zj; is computed using the logarithm
mapping of SE(3) (see [11, Appendix D] for definition).
Further, the only required derivation is the measurement
model Jacobian,

0 . N
H/i#l = & lOngE@) (hil(Xkﬂ,,l‘k) h(Xk+1‘k eij\\A(EM)))

e=0
Computing b~ (X) k(X exp/us(éam)) using the first order
approximation of (13) as,

|:I3 +S(€Zf) — S(Z? ReR)

ca; — ZF Rep+ ZF S(Reg) (p— df)}
01,3 1 :

Approximating the matrix logarithm assuming the per-
turbations are small, VB € R*! log(B) =~ B —
I; , and using the identities S(z)y = —S(y)z and (1),
1025 53) (h_l(X) h(X expﬁA(eM))) becomes,

€d; — ZfRep— S(RT"(p—dy)) Zf Rer
€74 7ZfTR €R ’

Finally, on further simplifications using the identities, and
taking partial derivatives, the measurement model Jacobian

during single support can be written as,

HEF — —ZI'R —ZIS(p—d)R 03 I3 03 0312
03 -Zr'R 03 03 I3 0312
HRF — -Z'R -ZIS(p—dr-)R 039 Iz 03 Osp
03 -ZI'R 039 03 I3 036"
a7

During double support, these matrices are simply stacked
together to form a composite Jacobian. We now have all

the necessary elements for the computation of Kalman gain
K41 for the measurement update and subsequently the state
reparametrization using m, . ,. The presented method can
similarly be extended for an arbitrary number of contacts.

IV. EXPERIMENTS AND RESULTS

In this section, we present the results from the
experimental evaluation of DILIGENT-KIO on the iCub
humanoid platform.

A. Experimental Setup

A subset of 32 degrees-of-freedom (legs, torso, arms and
neck) on the iCub that are equipped with joint encoders is used
to measure the joint angles at 1000Hz. The robot is equipped
with an XSens MTi-300 series IMU mounted in its base link
providing linear accelerometer and gyroscope measurements
at 100Hz. The contact states are inferred through a Schmitt
trigger thresholding of contact wrenches estimated by the
estimation algorithm presented in [16] available at 100Hz.
The base estimation is run at 100Hz, and the encoder measure-
ments are sub-sampled to the same frequency as the estimator.
The estimators are validated on the robotic hardware with
pose measurements from the Vicon motion capture system.

TABLE III: Noise parameters and prior deviations

Sensor noise std dev.
Lin. Accelerometer 0.09 m/s? State element initial std dev.
Gyroscope 0.01 rads~! "IMU & feet position 0.01 m
Acc. bias 0.01 m/s? IMU & feet orientation 10 °
Gyro. bias 0.001 rads=! IMU linear velocity | 0.5 ms™?
Contact foot lin. velocity | 0.009 ms—! Acc. bias 0.01 m/s?
Contact foot ang. velocity|0.004 rads~! Gyro. bias 0.002 rads—!
Joint encoders 0.1°

B. Baseline algorithms for comparison

We use the state-of-the-art filters, Observability Constrained
quaternion based EKF (OCEKF) described in [2] and Right
Invariant EKF (InvEKF) described in [6], for a baseline
comparison. It must be noted that while the former supports
flat foot contacts, the latter only point foot contacts.

Further, we also use a Simple Weighted Averaging method
(SWA) similar to [17, Method I] as one of the baseline
algorithms. In SWA, Legged Odometry (LO) is used to
obtain the base pose estimates. The rotation estimated by LO
is then fused with a rotation estimated by an off-the-shelf
quaternion EKF. This fusion is done through a weighted
rotation averaging over SO(3) using Manton’s convergent
algorithm [18, Section 5.1], which computes the average
in the tangent space and projects it back to SO(3). The
base velocities in SWA are computed using the weighted
pseudo-inverse approach used in [19].

C. Experiments

A position-controlled walking [20] experiment and a
torque-controlled Center of Mass (CoM) sinusoidal trajectory
tracking experiment [16] are used for the evaluation of the
estimators on the real robotic platform, in an open-loop
fashion. We first carry out the convergence analysis done
in [6] for the walking experiment, in order to compare
the performance of DILIGENT-KIO with the OCEKF in
estimating the observable states. These estimators are run
for 25 trials with the same measurements, noise parameters
and prior deviations but with random initial orientations and
linear velocities.

The roll and pitch Euler angles for setting the initial IMU
orientation were uniformly sampled from —30° to 30°, while
the initial IMU linear velocities were sampled uniformly from
—0.5 to 0.5ms ™. Table III shows the noise parameters and
initial state standard deviations used for the experiment.

The comparison of the estimates for OCEKF and
DILIGENT-KIO is shown in Figure 2. DILIGENT-KIO is
seen to converge considerably faster than the OCEKF towards
the ground truth measurements. The difference between the
OCEKF and DILIGENT-KIO lies mainly in the uncertainty
representation. The former uses non-interacting manifolds
for all the state elements, while the latter uses interacting
manifolds (such as SE3(3) and SE(3)) resulting in different
tangent parametrizations for the error state. This causes the
uncertainty representation to be more involved for the latter
as seen in (13) resulting in more appropriate Kalman gain
computations for innovation updates.

Figures 3 and 4 show the comparison of estimates from
OCEKF, InvEKF, SWA and DILIGENT-KIO against the
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Fig. 2: Orientation and velocity estimates from 25 trials of OCEKF and DILIGENT-KIO (proposed) for a forward walking experiment on the iCub
humanoid platform using the same noisy measurements from the robotic hardware, noise statistics and initial covariances, but initialized with random
orientations and velocities. The dashed black line is the ground truth trajectory from the Vicon motion capture system. DILIGENT-KIO (bottom row) is
seen to converge considerably faster than OCEKF (top row) in almost all the directions.
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Fig. 3: Base position for walking (left) and COM sinusoid experiment (right).
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Fig. 4: Base roll and pitch for walking and COM sinusoid experiment.

ground truth measurements for both the walking and the
CoM sinusoid trajectory experiment. It can be noticed in
Figures 2, 3, and 4, there seems to be a discontinuity in
the ground truth measurements between times ¢t = 4.3s and

= 4.5s for the walking experiment, which is an outlier
caused by the occlusion of Vicon markers while the robot
was walking in a cluttered environment. The Absolute
Trajectory Error (ATE) [21] and Relative Pose Error (RPE)
[22] in the left-invariant sense are shown in Table IV for
a 8s walking experiment and the CoM trajectory tracking
experiment. DILIGENT-KIO is seen to perform comparably
with the base-line estimators for both the experiments,
especially in the observable directions of orientation and
velocity. For longer experiment durations, DILIGENT-KIO
suffers more from position drifts than the other filters, while
the orientation and velocity errors remain comparable.

TABLE IV: Left invariant Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE) comparison for walking and CoM sinusoid experiment.

Filter Walking 8s CoM sinusoid
ATE RPE ATE RPE

rot pos vel rot pos rot pos vel rot pos

[°] [m]  [m/s] [°] [m]  [°] [m]  [m/s] [°] [m]
SWA 398 0.025 0291 393 0.029 039 0.005 0.0545 0.28  0.0013
InvEKF 334 0.038 0.133 1.90 0.025 427 0.006 0.0098 1.36  0.0018
OCEKF 467 0.038 0.132 447 0.035 068 0.006 0.0094 0.18 0.0019
DILIGENT- 229  0.040 0.130 1.90 0.039 0.59 0.005 0.0089 0.16 0.0016
KIO

V. CONCLUSION

A proprioceptive floating base estimation was proposed
using extended Kalman filtering on matrix Lie groups by
considering the evolution of the state and the observations
over distinct Lie groups. The proposed filter was shown to
perform better, in terms of convergence, than the observability-
constrained quaternion-based extended Kalman filter (flat foot
filter). The latter is also a discrete EKF on Lie groups, however
differs from the proposed estimator in terms of uncertainty
propagation. It must be noted that the theory of autonomous
error propagation [4], [6] and update [23] or observability-
based rules [1], [24] were not explicitly exploited within this
framework. This could potentially lead to inconsistencies
in the filter. Nevertheless, the proposed estimator exhibits
strong convergence properties with a large basin of attraction.
Future work includes fusion of the proposed estimator with
exteroceptive sensor information.

APPENDIX

The expression for the adjoint matrix Adgg(s)(.) and the
closed-form expression for the left Jacobian ®gp(3)(.) can
be found in [15, Appendix A]. The adjoint matrix of SFE5(3)

R SR O0s
is defined as Adgp,(3)(Xbase) = |03 R 03
05 SR R
we will use the definition of Q(p, ¢) from [15, Appendix A]
to define the left Jacobian of SFE5(3) as, Pgp,(3)(€base) =
J(er) Q(ep,er) 03
03 J(er) 03
03 Qev,er) J(er)
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