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Abstract— Autonomous robots deal with unexpected scenar-
ios in real environments. Given input images, various visual
perception tasks can be performed, e.g., semantic segmentation,
depth estimation and normal estimation. These different tasks
provide rich information for the whole robotic perception
system. All tasks have their own characteristics while sharing
some latent correlations. However, some of the task predictions
may suffer from the unreliability dealing with complex scenes
and anomalies. We propose an attention-based failure detection
approach by exploiting the correlations among multiple tasks.
The proposed framework infers task failures by evaluating
the individual prediction, across multiple visual perception
tasks for different regions in an image. The formulation of
the evaluations is based on an attention network supervised
by multi-task uncertainty estimation and their corresponding
prediction errors. Our proposed framework1 generates more
accurate estimations of the prediction error for the different
task’s predictions.

I. INTRODUCTION

Extensive research has shown that visual information is
an important component in autonomous driving and many
robotic perception systems [1]–[3]. Autonomous agents uti-
lize the information from various learning-based visual
perception predictions. Existing works have shown good
performance on cases where the deployment environment
has similar distribution to the training set [4]. However,
many state-of-the-art deep learning approaches still face
the lack of ability in dealing with open and unconstrained
world [5]–[7], and will produce failures especially in unseen
environments [8]. Thus, a method to detect prediction failures
of various robotics visual perception tasks is crucial for safe
robotic deployments. With higher introspection capabilities,
autonomous robots will be more controllable in safety-
critical scenarios.

This work focus on identifying failure predictions of
various robotics perception tasks by exploiting the latent
correlations among them. Those correlations have been
recently used to improve tasks performance [9,10]. Our
basic idea is to exploit the complementary information from
multiple tasks to improve the introspection capability of
the perception system on every single task based on an
attention mechanism. Our failure detection model has a
unified structure that attends the encoded multi-task feature
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Fig. 1: Example Result of Our Approach. Our method
captures the high prediction uncertainty regions of a single
task using multiple visual tasks. The result maintains the use-
ful uncertainty estimation from the original task (highlighted
areas in red circle). Moreover, beneficial from the multi-task
setup, our approach captures the relevant information from
other tasks (highlighted areas in blue circle) to compensate
the missed failure regions.

maps with the expressive power to perform failure prediction
for different tasks.

Existing research recognizes uncertainty as a common
measurement of the multi-task prediction’s confidence [8].
The uncertainties are ideally correlated to the corresponding
task prediction errors, which measures the reliability of
the predictions. General uncertainty estimation methods are
based on a single task, e.g., softmax entropy from semantic
segmentation [11]. However, the quality of the uncertainty
estimation is limited by several factors, such as environmen-
tal conditions (e.g., clean/foggy weather), anomalies, and
more [12]. In addition, to avoid the limitation brought by
single task uncertainty estimation, our model takes various
tasks encoded predictions as input and computes an attention
map for each single task. The attention values are modeled
as the regional contribution of every task uncertainty to one
certain task prediction error.

To investigate the model robustness, we train our model on
the Cityscapes [13] dataset and test it on several datasets with
different distribution characteristics [14,15]. We evaluate the
model for different tasks and compare it against several
existing methods. We show that our approach outperforms
all other failure prediction approaches. Moreover, our frame-
work is flexible to the number and types of tasks with
different task prediction & uncertainty estimation methods.
A result example of our approach is shown in Figure 1.

ar
X

iv
:2

11
0.

02
54

9v
2 

 [
cs

.C
V

] 
 2

8 
Fe

b 
20

22

https://github.com/ethz-asl/uncertainty_with_multiple_tasks
https://github.com/ethz-asl/uncertainty_with_multiple_tasks


In summary, the contributions of this work are:
• The first work to exploit the multiple visual tasks setup

for detecting failures in their prediction in deployment.
• A novel framework with an attention mechanism over

the multiple visual tasks being deployed to extract the
complementary information in their uncertainty esti-
mates for failure detection.

• A thorough evaluation of design components and their
influence in open world scenarios.

II. RELATED WORK

Works on single task failure prediction can be classified in
failure detection from the estimated uncertainty and learning-
based failure detection. Other works have exploited the multi-
task setup to achieve better per-task prediction accuracy.
However, to the best of our knowledge, failure prediction
from multiple tasks has not been proposed prior to this work.

Failure Detection via Uncertainty Estimation

Uncertainty estimation has a close relation with failure
detection and introspection. The uncertainty of the prediction
results reflects the level of its confidence. And the intuition
follows that a low-confidence prediction is likely a failure.
Therefore, uncertainty estimation could be regarded as a ref-
erence to failures prediction. A conventional way to calculate
the uncertainty is to directly analyze the distribution of the
model prediction such as the softmax entropy [16], or softmax
distance [17] used in classification models. Besides, image
flipping [5] investigates the model results’ difference in
dealing with the original and flipped image. Finally, Bayesian
estimation [18]–[20] estimates the uncertainty by sampling
multiple models, e.g. Monte-Carlo dropout [8,21] captures
the uncertainty by randomly dropping the connection be-
tween different layers.

Failure Detection via Learning-based methods

Given the rapid development of deep learning. Neural
network has become a possible option for failure detection
task. Most of the failure detection methods in the visual
perception area focus on detect semantic segmentation miss-
classification. These methods can be roughly divided into two
categories. One group directly trains detectors with failure
cases [22]–[24]. The other group uses re-synthesis methods
[12,23,25,26] that rebuild image from semantic prediction,
and capture the anomalies by comparing the rebuilt image
and the original one.

Learning from Multiple Tasks

Prior works have already acknowledged the relation
among different perception tasks [27,28]. This latent cor-
related structure among visual tasks has been exposed in
the work of Taskonomy [9]. The utilization of cross-task
relations also lies in the area of domain adaptation [29,30],
transfer learning [10], and multi-task learning [31]–[33].
More specifically, recent attention has focused on using
cross-task supervised learning to improve the performance
of a single task, such as to improve depth prediction under
the supervision of semantic understanding [34,35].

Fig. 2: Visual Tasks Failure Detection Framework. Given
an image and its multiple tasks predictions, our approach
computes the attention maps to weigh the multiple tasks
uncertainty estimations. This weighted sum of attention and
uncertainty maps is our failure prediction for a chosen task.

In this work, we draw inspiration from multi-task learning
and single-task failure detection approaches. Our approach
utilizes every single task’s estimation information, exploiting
their latent correlations, and infer a more robust per-task
pixel-wise failure prediction.

III. METHOD

A. Approach Architecture

The intuition of our proposed method comes from the fact
that tasks can compensate and refine each other’s prediction
in a multi-task setup [9,36]. Therefore, it will be easier to
identify a certain task prediction failure with the existence of
some other tasks. However, unlike a simple high-level task
selection case, the proposed approach generates a pixel-wise
attention map for each participant task. For clarification, the
Attention used in this work is a scalar-product and it does not
refer to the Transformer Networks [37] in computer vision
community. These maps are used to compute a weighted
sum of each task’s own failure prediction. Starting with
a query image, firstly, predictions of all participant tasks
are generated. Secondly, these predictions and the query
image are passed into our attention network. The attention
network will predict a pixel-wise attention map for each
task. Meanwhile, uncertainties2 of each task prediction are
produced. In the final step, the attention maps are applied
to these uncertainties to calculate a weighted sum failure
prediction for a specific task. The weighted sum result for
this task is expected to have better performance, comparing
with its uncertainty estimation method. Figure 2 shows the
basic structure of this aforementioned procedure.

B. Multi-task Element Generation

Our approach admits any number of visual perception
tasks that provide per-pixel predictions and their per-pixel
uncertainties. We rely on open-source state-of-the-art task
prediction methods. As for the uncertainty estimation, many

2We use the term uncertainty here to cover all the statistical measurement
of prediction reliability, which is often called uncertainty, reliability or
dispersion metrics in other works.



Fig. 3: Example of the Model Architecture: This example model uses three different tasks: semantic segmentation, depth,
and normal estimation. For the uncertainties U1,U2,U3 and prediction errors E, we resize them to 256× 256. Using the
predefined attention patch size 𝑝, the output attention from the model W1,W2,W3 will have the size (256/𝑝) × (256/𝑝).
Then the output would be equally upscaled by a factor of 𝑝 so that the attention maps’ sizes are 256× 256. Now the
computed attention maps have the same size as the uncertainties, then element-wise multiplication can be performed.

options are available. Softmax entropy [16]and softmax dis-
tance [17] can be used for classification tasks, such as seman-
tic segmentation. Sampling-based methods can be used for
both classification and regression tasks. Even, the learning-
based failure prediction approach for a single task can play
the role of uncertainty estimation and be feed into our
attention network. Different chosen uncertainty estimation
methods will certainly influence the final output, and thus
we evaluate their influence in Section IV.

C. Attention Network Model

We denote the original image as I. The predictions of all
𝑛 tasks are denoted as T1,T2, · · · ,T𝑛. The uncertainty estima-
tions of them are denoted as U1, U2, · · · , U𝑛, respectively.
The architecture of our attention network is shown in Figure
3. The model first encodes the original images I and its
task predictions {T𝑖} , 𝑖 ∈ {1,2 . . . , 𝑛}. We chose to encode the
image I with the first several layers of ResNet50 [38] into a
256-channel feature with a 128×128 size. On the other hand,
the predictions {T𝑖} are encoded by part of MobileNetV2
[39]. Each of them is encoded into a 24-channel feature map
of size 128×128. All tasks prediction, {T𝑖}, share the same
encoding structure. The encoded feature maps are denoted
as CI , {C𝑖}, correspondingly.

After the encoding process, the encoded features are con-
catenated along the channel dimension. The resulting feature
map, C𝑐𝑎𝑡 is in the size of (256+24𝑛) ×128×128. C𝑐𝑎𝑡 is
then forwarded into a neural network with four convolutional
layers. In these convolutional layers, the output of the second
and third layers will be concatenated together and used as
the input to the last layer. In this case, the output layer has
one channel for each task. Given a predefined patch size
𝑝, two pooling layers are added after the second and the
third convolutional layers to resize each output channel into
(256/𝑝) × (256/𝑝), which is the resolution of our attention
maps. The higher the required attention resolution, the larger
the resized map size of each channel. An extra nearest

neighbour rescaling layer is added here to rescale each
channel to the size of the uncertainty maps. The rescaled
feature maps in each channel are the final attention map
generated by our attention network. We denote them as W1,
W2, · · · , W𝑛, for each task, respectively. The final failure
prediction for a single task is generated by calculating the
weighted sum of all tasks’ uncertainty estimates, with the
attention maps as the weights. The weighted sum failure
prediction is denoted as E.

E =

𝑛∑︁
𝑖=1

W𝑖 ·U𝑖 (1)

D. Training Procedure

As introduced in the last subsection, the attention maps
are predicted by our attention network:

{W𝑖} = 𝑓𝜃 (I, {T𝑖}) (2)

We set a single error approximation loss function to learn the
network parameters 𝜃. When training the network to learn
a certain task failure, we compute the pixel-wise prediction
error for this task, which is denoted as 𝜖 {·}. For example,
𝜖𝑆 is computed as the cross-entropy for semantic segmenta-
tion, and 𝜖𝐷 is simply calculated as the L2-norm between
depth prediction and ground truth depth. The general loss
computation is shown as Equation 3.

𝑙𝑜𝑠𝑠{·} = ‖
𝑛∑︁
𝑖=1

(W𝑖 ·U𝑖) − 𝜖 {·}‖ (3)

At last, to prevent any task’s error from dominating the
prediction due to the imbalanced scales, we perform an
image-wise normalization process to re-scale all the C𝑐𝑎𝑡

in both training and inference stages into range [0,1].



Task Prediction Uncertainty Estimation
Method Methods

SDC Net [7]

Softmax Entropy [11]
Semantic Softmax Distance [17]

Segmentation Synboost∗ [12]
MC Dropout [40]

Depth Monodepth V2 [6]
Bayesian Estimation [20]

Estimation MC Dropout [40]
Self Learning∗ [21]

Normal VNL [41] Flipping∗ [5]Estimation
Instance EfficientPS [42] ROI Softmax

Segmentation Uncertainty∗ [43]

TABLE I: The selected task prediction methods and the
uncertainty estimation methods for all different tasks in the
experiments. ∗ indicates the method used by default in the
experiments unless otherwise mentioned.

IV. EXPERIMENTS

A. Experimental Setup

1) Model Implementation: Inspired by task networks
graph in taskonomy [9], we decided to choose tasks from
three visual tasks in total in our different experiments:
semantic segmentation, depth estimation, and normal esti-
mation. We add later in the experiments a fourth task, in-
stance segmentation. For each task, we implemented publicly
available task prediction methods and uncertainty estimation
methods. All evaluated methods are shown in Table I.

2) Dataset: Training was performed on Cityscapes train-
ing dataset [13], including 2975 driving scenes images with
fine semantic annotations and disparity ground truth. We
produced our dataset by applying the methods shown in
the Table I. The training set is then composed by set in
form of {I,TS ,TD ,TN ,US ,UD ,UN , 𝜖 {·}}, where 𝑆,𝐷, 𝑁

denote semantic segmentation, depth estimation, and normal
estimation, tasks, respectively, and 𝜖 {·} correspond to the
prediction error of the chosen task to predict its failure.

To test our model’s performance, pre-processing of the
various test datasets is also required. Here we performed
the same pipeline as mentioned in the subsection IV-A.2
for Cityscapes validation set [13], Foggy Cityscapes vali-
dation set [44], Wilddash [15] and Dark Zurich dataset [14].
Wildash provides a dataset and benchmark for challenging
driving scenarios under real-world conditions, it contains
scenarios from very diverse environments, locations, and
weather conditions. Dark Zurich is a dataset designed for
semantic uncertainty-aware model evaluations. It contains
driving scenes images captured at night time, twilight and
day time. Here we only use the night time images for our
evaluation. The purpose of testing on these extra two datasets
is to validate the model robustness when dealing with the
challenging unseen scenarios.

3) Metrics: We choose the zero-mean normalized cross-
correlation (ZNCC) in our experiments as a measurement of
how close the predicted failure is to the ground-truth failure.
The ZNCC of the estimation E and the ground truth error 𝜖

Task Entries Semantic Depth
𝑆 𝐷 𝑁 ZNCC↑ AP-Err↑ AP-Suc↑ FPR95↓ ZNCC↑
X X X 0.649 0.590 0.987 0.280 0.646
X X 0.609 0.545 0.990 0.278 0.489
X 0.494 0.413 0.978 0.570 -

X - - - 0.483

TABLE II: Multiple Tasks Experiments: Comparison among
multiple different task entries for both semantic segmenta-
tion’s and depth estimation’s failure prediction. The check-
mark represents the task at the corresponding place is in-
cluded in the model, both during training and evaluation
process.

is defined as:

ZNCC =

∑
(𝑢,𝑣) (E(𝑢, 𝑣) − 𝜇E) (𝜖 (𝑢, 𝑣) − 𝜇𝜖 )√︃∑

(𝑢,𝑣) (E(𝑢, 𝑣− 𝜇E)2
√︃∑

(𝑢,𝑣) (𝜖 (𝑢, 𝑣)) − 𝜇𝜖 )2

(4)
where 𝜇E and 𝜇𝜖 denote the mean values of E, 𝜖 , respec-
tively, and (𝑢, 𝑣) are the pixel locations.

ZNCC is invariant of affine pixel value changes [45].
Therefore, it is not be influenced by the normalization
operation during the prediction and evaluation procedure, and
it is also less sensitive to resizing operations than normalized
cross-correlation (NCC). This metric is seamlessly applicable
to classification and regression tasks.

In addition, for the classification task of semantic segmen-
tation, previous works on failure detection have used several
metrics for evaluation [12,24,26]. Thus, we also report:

• AUPR-Error: the area under the Precision-Recall
(AUPR) curve, which regard incorrect prediction as the
positive class.

• AUPR-Success: it computes AUPR as well, whereas
treats correct prediction as the positive class.

• FPR95: the false positive rate at 95% true positive rate.
As for regression tasks, such as depth estimation, we are
not aware of any previous work focusing on evaluating the
failure prediction model.

B. Comparisons

Our framework is built on a multi-task setup, and uses
different single task’s uncertainty estimation methods as the
input. Thus, most of the our evaluations focus on relative
comparison between our model’s output and the input it uses,
or among the models with different configurations. We set
up several experiments to evaluate different components or
factors and be able to answer a series of questions.

Are multiple tasks beneficial for single task failure
detection? In these experiments we evaluate two aspects.
The first one is the influence of increasing the number of
tasks as inputs to our failure detection. And the second one,
we evaluate our failure detection on different main tasks: a
classification task (semantic segmentation) and a regression
task (depth estimation).

We start in our network structure by only having the input
of a single task (the task for which the failure is being
detected), see last 2 rows of Table II, on the Cityscapes
original validation set. This is equivalent to learning failures



from single task knowledge and thus can be compared to use
the uncertainty input as a proxy to the failure.

Then, we continue by adding a second task (depth or se-
mantics, as appropriate), and a third one (normal estimation),
see first row in Table II.

From this experiment we have evidence that, indeed,
a multi-task setup improves failure detection of one task,
and, this is true for both semantic segmentation and depth
estimation. This is a confirmation of our hypothesis that our
framework leverages the latent correlations among tasks to
improve the introspection capabilities of the every single one
of them. It is also in line of the findings of [9] where is
shown that the normal estimation task is more correlated to
the depth estimation than to the semantic segmentation one,
as seeing in the higher increase in performance of the depth
estimation failure detection compared to that improvement
the semantic segmentation failure detection.

At what resolution should the attention maps be
computed to capture the relevant information for failure
detection? In our network architecture, we have the choice
to generate the attention maps at different resolutions by
modifying the last pooling layers. Something that could be
beneficial for differentiating between full image task failure
or per pixel or region task failure detection.

Method Patch Original Foggy
ZNCC↑ AP-Err↑ ZNCC↑ AP-Err↑

Ours

1 0.649 0.590 0.560 0.518
2 0.601 0.520 0.556 0.495
4 0.570 0.487 0.530 0.475
8 0.529 0.439 0.530 0.470

16 0.489 0.400 0.516 0.466
32 0.455 0.368 0.500 0.450
64 0.440 0.356 0.496 0.448
128 0.437 0.357 0.501 0.454

SynBoost - 0.450 0.387 0.506 0.480

TABLE III: Variable Attention Map Resolution: Comparison
among multiple different patch sizes for semantic segmenta-
tion’s failure prediction.

Method Patch Original Foggy
ZNCC↑ ZNCC↑

Ours

1 0.646 0.570
2 0.638 0.573
4 0.627 0.560
8 0.611 0.537
16 0.569 0.529
32 0.455 0.445
64 0.317 0.341

128 0.279 0.282
Self Learning - 0.248 0.255

TABLE IV: Variable Attention Map Resolution: Comparison
among multiple different patch size for depth estimation’s
failure prediction.

We modify the patch size of our model from 1 to 128,
while the generated attention map is up-scaled to size 256×
256. From the evaluation results in Tables III and IV, we
can conclude that with higher resolution the model is able
to predict failures more accurately, for it has higher AP-Err,
and higher ZNCC for both task failures. Here we included

as well the Foggy dataset to check the performance in more
challenging scenarios.

How dependant is our failure detection on the un-
certainty estimate input? The uncertainty of each task is
an important component of our failure detection framework.
Thus, this experiment investigates whether our conclusions
have been biased to the uncertainty input used. For the se-
mantic segmentation task we evaluate three more uncertainty
inputs, and for the depth estimation another two (see Table I).
For each specific uncertainty method, we select two of our
models with different patch sizes (1 and 16).

Method Patch Cityscapes Original Cityscapes Foggy
ZNCC↑ AP-Err↑ ZNCC↑ AP-Err↑

Ours with 1 0.649 0.590 0.560 0.518
Synboost 16 0.489 0.400 0.516 0.466
SynBoost - 0.450 0.387 0.506 0.480
Ours with 1 0.681 0.618 0.628 0.565
Soft. Ent. 16 0.568 0.447 0.593 0.497
Soft. Ent. - 0.572 0.444 0.619 0.520
Ours with 1 0.576 0.506 0.430 0.408

MC Dropout 16 0.358 0.274 0.327 0.307
MC Dropout - 0.249 0.218 0.163 0.236

Ours with 1 0.668 0.593 0.600 0.532
Soft. Dis 16 0.540 0.409 0.574 0.479
Soft. Dis. - 0.527 0.408 0.569 0.489

TABLE V: Effect of Changing the Semantic Uncertainty In-
put: Our models vs. selected uncertainty inputs for semantic
estimation’s failure prediction.

Method Patch Original Foggy
ZNCC↑ ZNCC↑

Ours with 1 0.646 0.570
Self Learning 16 0.569 0.529
Self Learning - 0.248 0.255

Ours with 1 0.757 0.645
Bayesian 16 0.684 0.584
Bayesian - 0.091 0.074
Ours with 1 0.648 0.516

MC Dropout 16 0.575 0.446
MC Dropout - 0.076 0.075

TABLE VI: Effect of Changing the Depth Uncertainty In-
puts: Our models vs. selected uncertainty methods for depth
estimation’s failure prediction.

The results of this investigation can be seen in Tables V
and VI. Our framework is consistently outperforming the
uncertainty input for both tasks failure detections, within
both original and foggy image set from Cityscapes.

How is the failure detection performing when adding
one more task? Finally, the question comes to our failure
detection based on a multi-task setup is fixed to the already
chosen tasks in the previous experiments. For that reason,
we add the extra task of instance segmentation (𝐼𝑆), with its
corresponding uncertainty estimate, see last row of Table I.

The results of this experiment, shown in Table VII, in-
dicate that the addition of an extra task continues to be
beneficial for the different tasks failure detections. However,
we observe that the contribution is higher for the depth esti-
mation failure detection than for the semantic segmentation.
We believe this is due to less extra information provided



Fig. 4: Qualitative Examples. For an input image in the left block, the middle block contains the various visual tasks (1𝑠𝑡
row) and the corresponding uncertainties (2𝑛𝑑 row), tasks are semantic, depth, normal, instance, from left to right. In the
right block our failure predictions (1𝑠𝑡 row) and the ground truth (2𝑛𝑑 row) are presented, semantic on the left and depth
on the right. For the purpose of clear visualization, the ego-vehicle part in both Cityscapes examples are filtered out.

Patch Task Entries Semantic Depth
𝑆 𝐷 𝑁 𝐼𝑆 ZNCC↑ AP-Err↑ ZNCC↑

1 X X X X 0.641 0.585 0.655
X X X 0.649 0.590 0.646

16 X X X X 0.493 0.403 0.581
X X X 0.489 0.400 0.529

TABLE VII: Adding an Extra Task: Comparison among mul-
tiple different task entries for both semantic segmentation’s
and depth estimation’s failure prediction.

by the instance segmentation with respect to the semantic
segmentation task. While differentiating among different
instances of the same class is highly informative for the depth
estimation task.

How is our failure detection generalizing to scenarios
with larger distribution mismatch? Here, we use our
default models trained with the Cityscapes dataset, and
deployed them on Wilddash and Dark Zurich (night) datasets,
for the tasks of failure detection of the semantic segmen-
tation. Results can be seen in Table VIII. Additionally,
we include the evaluation of different uncertainty inputs
as they are quite dependent on the distribution mismatch
between the test and training set. We can conclude that
the improvements brought by our framework generalize to
more complex scenarios, invariant to the uncertainty estimate
input.

Some qualitative results for the different datasets are
visualized in figure 4.

Method Wilddash Dark Zurich
ZNCC↑ AP-Err↑ ZNCC↑ AP-Err↑

Ours with Synboost 0.412 0.595 0.238 0.775
SynBoost 0.323 0.584 0.199 0.726

Ours with Soft. Ent. 0.520 0.630 0.544 0.867
Soft. Ent. 0.508 0.625 0.578 0.830

Ours with MC Dropout 0.321 0.537 0.101 0.734
MC Dropout 0.139 0.428 -0.128 0.678

Ours with Soft. Dis 0.511 0.628 0.497 0.861
Soft. Dis. 0.478 0.619 0.502 0.797

TABLE VIII: Generalization: Our models vs. selected uncer-
tainty inputs for semantic segmentation’s failure prediction
on two other datasets: Wilddash and Dark Zurich.

V. CONCLUSION

We propose a framework to detect visual task prediction
failures. We leverage the information from multiple visual
tasks simultaneously being deployed, and build a learning-
based attention neural network to perform a weighted sum of
task uncertainties to approximate the task prediction failure.
Our approach is more accurate in detecting semantic and
depth prediction errors, compared with various uncertainty
estimation methods. Additionally, our thorough experimental
evaluation also proves its ability to further improve the
performance by increasing the attention map resolution, as
well as by including in extra correlated visual tasks. Finally,
we observe that the multi-task setup allows for better gener-
alization to environments with a larger distribution mismatch
to that of the training set. We believe our framework shows
the potential capability to be applied on various autonomous
mobile robots with multi-task visual modules, such as safety
in autonomous driving.
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